几何最值问题(习题及答案)

合集下载

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷一、单选题(共6道,每道16分)1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( )A.100°B.110°C.140°D.80°答案:A解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题.试题难度:三颗星知识点:最值问题2.如图,当四边形PABN的周长最小时,a的值为( )A. B.1C.2D.答案:A解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题.试题难度:三颗星知识点:最值问题3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点P在直线l上运动,则的最大值为( )A. B.3C.1D.5答案:D解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题.试题难度:三颗星知识点:最值问题4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( )A.2B.1C. D.3答案:C解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题.试题难度:三颗星知识点:最值问题5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A随之在OM上运动,且等腰Rt△ABC的形状和大小保持不变,若AB=2,则运动过程中点C到点O 的最大距离为( )A. B.2C. D.3答案:B解题思路:找运动过程中的不变特征:直角特征不变、AB的长度不变——取AB的中点M,连接OM、CM,则OM=1,CM=1,当且仅当O,M,C三点共线时OC取最大值2.试题难度:三颗星知识点:最值问题6.如图,AC=5,C为AB上一个动点,分别以AC,BC为边在AB的同侧作等边△ABD和等边△BCE,那么DE长的最小值是()A. B.3C. D.答案:A解题思路:分别过点D,E作DM⊥AC,EN⊥AC交于点M,N,DE的最小值即MN的值.试题难度:三颗星知识点:最值问题。

几何最值问题(习题及答案)

几何最值问题(习题及答案)

➢例题示范几何最值问题(习题)例1:如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP=2,E,F 分别是OA,OB 边上的动点.若△PEF 周长的最小值为2,则α=()A.30°B.45°C.60°D.90°思路分析:1.分析定点、动点.定点:P动点(定直线):E(射线OA),F(射线OB)和最小(周长最小)对称到异侧2.根据不变特征分析判断属于轴对称最值问题,可调用轴对称最值问题的处理方式:作点P 关于OA 的对称点P′,点P 关于OB 的对称点P′′,连接P′P′′,交OA 于点E,交OB 于点F,此时△PEF 的周长取得最小值.3.设计方案求解.如图,由题意得OP′=OP′′=P′P′′=2,所以△OP′P′′是等边三角形,故α=30°.13➢巩固练习1.如图,在平面直角坐标系中,Rt△OAB 的直角顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,),P 为斜边OB 上一动点.若点C 的坐标为(1,0),则PA+PC 的最小值为()2A.132B.312C.3 + 192D.22.如图,已知A,B 两点在直线l 的异侧,A 到直线l 的距离AM=4,B 到直线l 的距离BN=1,且MN=4.若点P 在直线l 上运动,则PA -PB 的最大值为()A.5 B.41 C.3 415D.63.已知点A,B 均在由面积为1 的相同小长方形组成的网格的格点上,建立如图所示的平面直角坐标系,若P 是x 轴上使得PA+PB 的值最小的点,Q 是y 轴上使得QA -QB 的值最大的点,则OP·OQ= .2第1 题图第2 题图74.如图1,A,B 两个单位位于一条封闭街道的两旁(直线l1,l2分别是街道的两边),现准备合作修建一座过街人行天桥.图1 图2 (1)天桥建在何处才能使由A 经过天桥走到B 的路程最短?在图2 中作出此时桥PQ 的位置.(注:桥的宽度忽略不计,桥必须与街道垂直)(2)根据图1 中提供的数据计算由A 经过天桥走到B 的最短路程.(单位:米)5.如图,已知正方形ABCD 的边长为2,当点A 在x 轴上运动时,点D 随之在y 轴上运动,则在运动过程中,点B 到原点O 的最大距离为.3【参考答案】➢巩固练习1. B2. A3. 34. (1)略(2)由A 经过天桥走到 B 的最短路程为85 米55. 1+4。

中考真题分类整理:几何最值(附答案)

中考真题分类整理:几何最值(附答案)

一、选择题12.(2020·长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+5 BD的最小值是【】A.25B.45C.53D.10【答案】B二、填空题16.(2020·黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8.点M为AB的中点.若∠CMD=120°,则CD的最大值是.【答案】14【解析】将△CAM沿CM翻折到△CA′M,将△DBM沿DM翻折至△DB′M,则A′M=B′M,∠AMC=∠A′MC,∠DMB=∠DMB′,∵∠CMD=120°,∴∠AMC+∠DMB=∠A′MC+∠DMB′=60°,∴∠A′MB′=180°-(∠AMC+∠DMB+∠A′MC+∠DMB′)=60°,∴△A′MB′是等边三角形,又∵AC=2,BD=8,AB=8.点M为AB的中点,∴A′B′=A′M=B′M=AM=12AB=4,CA′=AC=2,DB′=DB=8,又CD≤CA′+A′B′+DB′=2+4+8=14.三、解答题24.(2019山东威海,24,12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止,设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围; (3)求△BEF 面积的最大值. 【解题过程】(1)证明:过E 作MN ∥AB ,交AD 于M ,交BC 于N , ∵四边形ABCD 是正方形,∴AD ∥BC ,AB ⊥AD , ∴MN ⊥AD ,MN ⊥BC , ∴∠AME =∠FNE =90°=∠NFE +∠FEN , ∵AE ⊥EF ,∴∠AEF =∠AEM +∠FEN =90°, ∴∠AEM =∠NFE , ∵∠DBC =45°,∠BNE =90°, ∴BN =EN =AM .∴△AEM ≌△EFN (AAS ). ∴AE =EF .∵四边形ABCD 是正方形, ∴AD =CD ,∠ADE =∠CDE , ∵DE =DE ,∴△ADE ≌△CDE (SAS ), ∴AE =CE =EF .(2)在Rt △BCD 中,由勾股定理得:BD=,∴0≤x ≤. 由题意,得BE =2x ,∴BN =EN x.由(1)知:△AEM ≌△EFN , ∴ME =FN ,∵AB =MN =10,∴ME =FN =10x ,如图(1),当0≤x 时, ∴BF =FN -BN =10x x =10-x . ∴y =12BF ·EN =1(102-=-2x 2+(0≤x ≤2); 如图(2),当2<x ≤∴BF =BN -FN-(10x)=-10, ∴y =12BF ·EN=12-=2x 2-(2≤x≤.∴222(0);22(2x x y x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩(1) (2) (3)y =-2x 2+5x =-2(x-52)2+254,∵-2<0, ∴当x =524时,y 有最大值是;即△BEF 面积的最大值是;<x ≤ y =2x 2-=22(4x --254, 此时2>0,开口向上,对称轴为直线x =4, ∵对称轴右侧,y 随x 的增大而增大, ∴当x =y 最大值=50.∴当x =BEF 面积的最大值是50.【知识点】四边形综合运用,二次函数的解析式,二次函数的最值问题,三角形全等的判定. 25.(2019山东省威海市,题号25,分值12) (1)方法选择如图①,四边形ABCD 是OO 的内接四边形,连接AC ,BD .AB =BC =AC . 求证:BD =AD +CD .小颖认为可用截长法证明:在DB 上截取DM =AD ,连接AM ..…… 小军认为可用补短法证明:延长CD 至点N ,使得DN =AD …… 请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .BC 是⊙O 的直径,AB =AC .试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论. 【探究2】如图③,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是⊙O 的直径,∠ABC =30°,则线段AD ,BD ,CD 之间的等量关系式是. (3)拓展猜想如图④,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是O 0的直径,BC :AC :AB =a :b :c ,则线段AD ,BD ,CD 之间的等量关系式是.【思路分析】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,由旋转全等得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,由旋转全等得BN =CD ,∴BD =ND +BNAD +CD 【探究2】数量关系为:BD =2ADCD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形, 由旋转相似得BP,∴BD =PD +BP =2AD(3)拓展猜想数量关系为:BD =a bAD +cb CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,由旋转相似得=BQ AB c CD AC b =,=DQ BC aAD AC b=, 图①图②B图③BC 图④BC∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +c b CD【解题过程】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,可得△AMD 为等边三角形,可证△BAM ≌△CAD (SAS )得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,∠BAN =∠CAD ,可证△BAN ≌△CAD (SAS )得BN =CD ,∴BD =ND +BNAD +CD【探究2】数量关系为:BD =2ADCD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形,∴=tan 30AP ABAD AC=︒,∠BAP =∠CAD ,可证△BAP ∽△CAD 得BPCD ,∴BD =PD +BP =2ADCD答案图①答案图②B(3)拓展猜想数量关系为:BD =a bAD +c b CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,可得∠BAQ =∠CAD ,∠ABQ =∠ACD ,∠ADQ =∠ACB ,∠BAC =∠QAD ∴△BAP ∽△CAD ,△ADQ ∽△ACB ∴=BQ AB c CD AC b =,=DQ BC aAD AC b=, ∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +cb CD26.(2020·益阳)如图,在半面直角坐标系xOy 中,矩形ABCD 的边AB=4,BC=6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动. (1)当∠OAD=30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形 OMCD 的面积为221时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.第26题图 第26题备用图【解题过程】(1)如图1,过点C 作CE ⊥y 轴,垂足为E.答案图③B答案图④BC第26题答图1∵矩形ABCD 中,CD ⊥AD , ∴∠CDE+∠ADO=90°, 又∵∠OAD+∠ADO=90°, ∴∠CDE=∠OAD=30°. 在Rt △CED 中,CE=21CD=2, ∴DE=32242222=-=-CE CD ; 在Rt △OAD 中,∠OAD=30°, ∴OD=21AD=3. ∴点C 的坐标为(2,323+). (2)∵M 为AD 的中点, ∴DM=3,6=DCM S △. 又∵221=OMCD S 四边形, ∴29=ODM S △, ∴9=OAD S △. 设OA=x ,OD=y ,则⎪⎩⎪⎨⎧==+9213622xy y x , ∴xy y x 222=+, 即0)(2=-y x , ∴x=y.将x=y 代入3622=+y x 得182=x , 解得23=x (23-不合题意,舍去), ∴OA 的长为23.(3)OC 的最大值为8.理由如下: 如图2,第26题答图2 ∵M 为AD 的中点,∴OM=3,522=+=DM CD CM .∴OC ≤OM+CM=8,当O 、M 、C 三点在同一直线时,OC 有最大值8.连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON ⊥AD ,垂足为N. ∵∠CDM=∠ONM=90°,∠CMD=∠OMN , ∴△CMD ∽△OMN , ∴OM CMMN DM ON CD ==, 即3534==MN ON , 解得59=MN ,512=ON , ∴56=-=MN AM AN . 在Rt △OAN 中, ∵55622=+=AN ON OA , ∴55cos ==∠OA AN OAD . 26.(2020·衡阳)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以cm/s 的速度沿AB 匀速运动.动点Q 同时从点C 出发以同样的速度沿BC 延长线方向匀速运动.当点P 到达点B 时,点P 、Q 同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB′的值最小?并求出最小值.解:(1)∵△ABC为等边三角形,∴∠B=60°,∵BP⊥PQ,∴2BP=BQ即2(6-t)=6+t,解得t=2.∴当t为2时,△BPQ为直角三角形;(2)存在.作射线BF,∵PE⊥AC,∴AE=0.5t.∵四边形CQFE是平行四边形,∴FQ=EC=6-0.5t,∵BF 平分∠ABC,∴∠FBQ+∠BQF=90°.∵BQ=2FQ,BQ=6+t,∴6+t=2(6-0.5t),解得t=3.(3)过点P作PG∥CQ交AC于点G,则△APG是等边三角形.∵BP⊥PQ,∴EG=12AG.∵PG∥CQ,∴∠PGD=∠QCD,∵∠PDG=∠QDC,PG=PA=CG=t,∴△PGD≌△QCD.∴GD=12GC.∴DE=12AC=3.(4)连接AM,∵△ABC为等边三角形,点M是BC的中点,∴BM=3.由勾股定理,得AM=.由折叠,得BM′=3.当A 、B′、M在同一直线上时,AB′的值最小,此时AB′=3.过点B′作B′H⊥AP于点H,则cos30°=AHAB',即2t,解得t=9-∴t为9-AB′的值最小,最小值为-3.MMM QB C1.(2020·重庆A 卷)如图,在平面在角坐标系中,抛物线y =x 2-2x -3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF +FP +13PC 的最小值;(2)在(1)中,当MN 取得最大值,HF +FP +13PC 取得小值时,把点P 向上平移个2单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A OQ '',其中边A Q ''交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得OG Q Q ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.解:(1)由题意得A (-1,0),B (3,0),C (0,-3),D (1,-4),直线BD :y =2x -6. 如答图1,连接DN 、BN ,则S △BDN =12BD •MN ,而BD 为定值,故当MN 最大时,S △BDN 取最大值.此时由S △BDN =S △DFN +S △BFN =12EH •FN +12BH •FN =12BE •FN =FN ,从而S △BDN 取最大值时,即为FN 有最大值.令N (m ,m 2-2m -3),则F (m ,2m -6),从而FN =(2m -6)-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,此时,当且仅当m =2,FN 有最大值为1,于是N (2,-3),F (2,-2),H (2,0). 在直角三角形中,设最小的直角边为a ,斜边为3a ,较长直角边为3,即可求出a =324,于是在x 轴上取点H B'M FD E QA BP yxOEDCBA第26题备用图第26题图K (-324,0),连接KC ,易求直线KC :y =-22x -3.如答图1,过点F 作FR ⊥CK 于点R ,交OC 于点P ,作FT ⊥OC ,交CK 于点T ,则∠OCK =∠TFR ,于是,由△PCR ∽△ACO ∽△TFR ,得133PR OK a PC KC a ===,从而PR =13PC ,因此由FH 为定值,再由定点F 到直线的垂直线最短,可知MN 取得最大值时,HF +FP+13PC 最小值=HF +FR .在y =-22x -3中,当y =-2,x =-24,于是FT =2+24.在Rt △FTR 中,由223FR FT =,得FR =223FT =223(2+24)=14233+,故HF +FP +13PC 最小值=2+14233+=7423+.(2)4525(,)55--,2545(,)55-,4525(,)55,2545(,)55-. 第26题答图4第26题答图5第26题答图1 T KR QP HF NMyxO ED CBA第26题答图2第26题答图32.(2020·重庆B 卷)在平面直角坐标系中,抛物线2y =++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HKKG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记作D ’,N 为直线DQ 上一点,连接点D ’,C ,N ,△D ’CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.解:(1)∵2y x =+与x 轴交于A ,B 两点, ∴当y=0时,即20=+,∴122,4x x =-=,即A (-2,0),B (4,0), 设直线BC 的解析式为y =kx +b ,∵C (0,,B (4,0),∴40b k b ⎧=⎪⎨+=⎪⎩,∴b k ⎧=⎪⎨=⎪⎩,∴直线BC的解析式为y =+设点2(,4),P m m +<< ∵PE ∥y 轴且点E 在直线BC上,∴(,E m +∠PEF =∠OCE ,∴2(04),PE m =<< ∵PF ⊥BC ,∴∠PFE =∠COB =90°,∴△PEF ∽△BCO ,设△PEF 的周长为1l ,△BCO 的周长为2l , 则12l PEl BC=,∵B (4,0),C (0,,∴BC=24l =+∴21)(04),l m =+<< 备用图图1图2∴当m=2时,1l此时点P 的坐标为(2,, ∵A (-2,0),C (0,,∴∠ACO =30°,∠CAO =60°, ∵BG ∥AC ,∴.∠BGD =30°,∠OBG =60°,∴G (0,-, 直线BG解析式为y -PM解析式为y =,过点G 作GN ⊥BG ,过点P 作PM ⊥GN 于点M ,如图1,此时,点H 为PM 与对称轴的交点,K 为PM 与y 轴的交点,点K 与点O 重合, 则KM=OMKG ,PH +HKKG 的最小值为线段PM 的长.(此问题是胡不归问题).解法一:(作一线三直角利用相似求解)如图2,过点P 作PQ ∥x 轴交对称轴于点T , 过点M 作MQ ⊥y 轴交PT 于点Q ,过点G 作GJ ⊥MQ 交MQ 于点J.设点Q (n,,∴J (n,-,∴PQ =2-n ,2-n ), ∵GJ =-n ,∴MJ=,∴MQ +MJ =CG=(--=2-n )+()=n =-3,∴Q (-3,,∴PQ =5, ∴PM =2PQ =10,∴PH +HKKG 的最小值为10, ∵∠OGM =60°,∠PHT=30°,∠HPT=60°,∴PT =1,∴HTH (1.图1N解法二:由上面的解法可知MG ⊥BG ,直线MG的解析式为:y =- 如图3,过点P 作PR ⊥x 轴交MG 于点R ,∴R (2,, 由第一种解法可知∠PRG =60°,∴PMP R()=10, ∴PH +HKKG 的最小值为10,同理可求H (1.(2)这样的N 点存在.当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .【提示】由(1)可知∠ACO=30°,∠OAC=60°,又∵221)y x =++=-D (1, ∵抛物线按射线AC的方向平移,设平移后顶点'(D a +,平移后的抛物线解析式为21)y x a =--++该抛物线经过原点,则201)a =--+图2NN∴2280a a --=,∴a =4或a =-2(舍去),即D .设点N (1,b )'CD =CN ='ND 如图4,当△'CD N 为等腰三角形时,分三种情况: ①当'CD CN ==,可得1N,2N ; ②当''CD D N ==3N,4N ,③当'CN D N ==可得5N , ∴当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .3.(2020·天津)已知抛物线y=x 2-bx+c(b,c 为常数,b>0)经过点A (-1,0),点M(m,0)是x 轴正半轴上的动点,(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D )在抛物线上,当AM=AD,m=5时,求b 的值; (3)点Q(1b ,2+y Q )2QM +时,求b 的值. 解:(1)∵抛物线y=x 2-bx+c 经过点A (-1,0), ∴1+b+c=0,∴c=-1-b 当b=2时,c=-3,∴抛物线的解析式为y=x 2-2x-3, ∴顶点坐标为(1,-4) (2)由(1)知,c=-1-b , ∵点D(b,y D )在抛物线上, ∴y D =-b-1,∵b>0,∴b 02b >>,-b-1<0,∴D(b,-b-1)在第四象限,且在抛物线对称轴2bx =的右侧.如图,过点D 作DE ⊥x 轴于E ,则E (b ,0),∴AE=b+1=DE,所以1)b +, ∵m=5,∴AM=5-(-1)=6, ∴1)b +∴b=(3)∵点Q(1b ,2+y Q )在抛物线上, ∴yQ=2113)()12224b b b b b +-+--=--(, ∴点Q (1b ,2+3-24b -)在第四象限,且在直线x=b 的右侧,2QM +的最小值为4,A(-1,0) ∴取点N(0,1),如图,过点Q 作QH ⊥x 轴于H ,作QG ⊥AN 于G,QG 与x 轴交于点M ,则H (1b ,2+0),∠GAM=45°,∴GM=2AM ,∵M (m,0),∴AM=m+1,MH=1b 2m +-,QH=324b +, ∵MH=QH,∴1b 2m +-=324b +, ∴m=1-24b ,∴AM=13-12424b b +=+,3)24b =+2QM +33)2())24244b b +++=,∴b=4. 4.(2020·自贡)如图,已知直线AB 与抛物线:y =ax 2+2x +c 相交于点A (-1,0)和点B (2,3)两点. (1)求抛物线C 函数解析式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标; (3)在抛物线C 的对称轴上是否存在顶点F ,使抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.解:(1)将A (-1,0)和B (2,3)代入抛物线解析式得{a −2+c =04a +4+c =3解得,{a =−1c =3∴抛物线解析式为y =-x 2+2x +3.(2)过M 作MH ∥y 轴,交AB 于H ,设直线AB 为y =kx +b ,将A ,B 坐标代入得,{−k +b =02k +b =3解得,{k =1b =1.∴直线AB 的解析式为y =x +1.设M 为(m ,-m 2+2m +3),则H (m ,m +1) ∴MH =y M -Y H =(-m 2+2m +3)-( m +1)=-m 2+m +2. ∴S △ABM =S △AMH +S △BMH =12·MH ·(x B -x A ) =12·(-m 2+m +2)·(2+1)=-32(m 2-m )+3 =-32(m -12)2+278.∵四边形MANB 是以MA 、MB 为相邻的两边的平行四边形, ∴△ABM ≌△BAN .∴S 四边形MANB =2 S △ABM =-3(m -12)2+274,∵a =-3<0且开口向下,∴当m =12时,S 四边形MANB 的最大值为274. 此时,M 坐标为(12,154). (3)存在,理由如下:过P 作直线y =174的垂线,垂足为T ,∵抛物线为y =-x 2+2x +3=-(x -1)2+4.∴抛物线的对称轴为直线x =1,顶点坐标为(1,4). 当P 为顶点,即P (1.4)时, 设F 点坐标为(1,t ), 此时PF =4-t ,PT =174-4=14.∵P 到F 的距离等于到直线y =174的距离,∴4-t =14,即t =154.∴F 为(1,154)设P 点为(a ,-a 2+2a +3),由勾股定理,PF 2=(a -1)2+(-a 2+2a +3-154)2=a 4-4a 3+132a 2-5a +2516.又∵PT 2=[174-(-a 2+2a +3)]2= a 4-4a 3+132a 2-5a +2516. ∴PF 2=PT 2,即PF =PT .∴当F 为(1,154)时,抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离 .27.(2020·淮安)如图①,在△ABC 中,AB=AC=3,∠BAC=100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB.将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP=°;②连接CE ,直线CE 与直线AB 的位置关系是.(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE.试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解题过程】(1)①由题意得,PE=PB ,∠BPE=80°,∴∠BEP=︒=︒-︒50280180; ②如图所示,∵AB=AC ,D 是BC 的中点,∠BAC=100°, ∴∠ABC=︒=︒-︒402100180,∵∠BEP=50°,∴∠BCE=∠CBE=40°, ∴∠ABC=∠BCE , ∴CE ∥AB.答案:①50°;②平行(2)在DA 延长线上取点F ,使∠BFA=∠CFA=40°,总有△BPE ∽△BFC. 又∵△BPF ∽△BEC , ∴∠BCE=∠BFP=40°, ∴∠BCE=∠ABC=40°, ∴CE ∥AB.(3)当点P 在线段AD 上运动时,由题意得PB=PE=PC ,∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上, 如图所示:∴AE 的最小值为AC=3.5.(2020·凉山州)如图,抛物线y = ax 2+bx +c 的图象过点A (-1,0)、B (3,0)、C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小,若存在,请求出点 P 的坐标及△P AC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △P AM =S △P AC ,若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)由题知⎪⎩⎪⎨⎧==++=+-30390c c b a c b a ,解得⎪⎩⎪⎨⎧==-=321c b a ,∴抛物线的解析式为y = -x 2+2x +3;(2)存在.连接BC 交抛物线对称轴于点P ,此时△P AC 的周长最小.设BC :y =kx +3,则3k +3=0,解得k =-1,∴BC :y =-x +3.由抛物线的轴对称性可得其对称轴为直线x =1,当x =1时,y =-x +3=2,∴P (1,2).在Rt △OAC 中,AC =2231+=10;在Rt △OBC 中,BC =2233+=32.∵点P 在线段AB 的垂直平分线上,∴P A =PB ,∴△P AC 的周长=AC +PC +P A = AC +PC +PB =AC +BC =10+32.综上,存在符合条件的点P ,其坐标为(1,2),此时△P AC 的周长为10+32;(3)存在.由题知AB =4,∴S △P AC =S △ABC -S △P AB =21×4×3-21×4×2=2.设:AP :y =mx +n ,则⎩⎨⎧=+=+-20n m n m ,解得⎩⎨⎧==11n m ,∴AP :y =x +1. ①过点C 作AP 的平行线交x 轴上方的抛物线于M ,易得CM :y =x +3,由⎩⎨⎧++-=+=3232x x y x y 解得⎩⎨⎧==3011y x ,⎩⎨⎧==4122y x ,∴M (1,4);②设抛物线对称轴交x 轴于点E (1,0),则S △P AC =21×2×2=2=S △P AC .过点E 作AP 的平行线交x轴上方的抛物线于M ,设EM :y =x +t ,则1+t =0,∴t =-1,∴EM :y =x -1. 由⎩⎨⎧++-=-=3212x x y x y 解得⎪⎪⎩⎪⎪⎨⎧--=-=2171217111y x (舍),⎪⎪⎩⎪⎪⎨⎧+-=+=2171217122y x ,∴M (2171+,2171+-). 综上,存在符合条件的点M ,其坐标为(1,4)或(2171+,2171+-).27.(2020·苏州,26,10)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =.如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示. (1)直接写出动点M 的运动速度为 cm/s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D →C →B 的方向匀速运动,设动点N 的运动速度为v (cm/s ).已知两动点M ,N 经过时间x (s )在线段BC 上相遇(不包含点C ),动点M ,N 相遇后立即同时停止运动,记此时△APM 与△DPN 的面积分别为S 1(cm 2),S 2(cm 2) ①求动点N 运动速度v (cm/s )的取值范围;②试探究S 1•S 2是否存在最大值,若存在,求出S 1•S 2的最大值并确定运动时间x 的值;若不存在,请说明理由.图① 图② 图③(第27题)【解题过程】解:(1)∵t =2.5s 时,函数图象发生改变,∴t =2.5s 时,M 运动到点B 处,∴动点M 的运动速度为52.5=2cm/s ,∵t =7.5s 时,S =0,∴t =7.5s 时,M 运动到点C 处,∴BC =(7.5﹣2.5)×2=10(cm ), 故答案为2,10;(2)①∵两动点M ,N 在线段BC 上相遇(不包含点C ),∴当在点C 相遇时,v 527.53==(cm/s ),当在点B 相遇时,v 5102.5+==6(cm/s ),∴动点N 运动速度v (cm/s )的取值范围为23cm/s <v ≤6cm/s ; ②过P 作EF ⊥AB 于F ,交CD 于E ,如图所示:则EF ∥BC ,EF =BC =10,∴AF APAB AC=,∵AC==∴5AF =解得AF =2,∴DE =AF =2,CE =BF =3,PF ==4, ∴EP =EF ﹣PF =6,∴S 1=S △APM =S △APF +S 梯形PFBM ﹣S △ABM 12=⨯4×212+(4+2x ﹣5)×312-⨯5×(2x ﹣5)=﹣2x +15,S 2=S △DPM =S △DEP +S 梯形EPMC ﹣S △DCM 12=⨯2×612+(6+15﹣2x )×312-⨯5×(15﹣2x )=2x ,∴S 1•S 2=(﹣2x +15)×2x =﹣4x 2+30x =﹣4(x 154-)22254+,∵2.5154<<7.5,在BC 边上可取,∴当x 154=时,S 1•S 2的最大值为2254.第27题答图6.(2020·巴中)如图,抛物线y =ax 2+bx -5(a ≠0)经过x 轴上的点A(1,0)和点B 及y 轴上的点C,经过B,C 两点的直线为y =x+n.①求抛物线的解析式;②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t描,求t为何值时,△PBE的面积最大,并求出最大值.③过点A作AM⊥BC与点M,过抛物线上一动点N(不与点B,C重合)作直线AM的平行线交直线BC于点Q,若点A,M,N,Q为顶点的四边形是平行四边形.求点N的横坐标.第26题图分析:①由点A和直线y=x+n可得方程组,解出系数,求得二次函数的解析式;②根据题意表示出三角形面积,利用二次函数最值进行求解;③分析得到AM平行且等于NQ,设出坐标,利用坐标关系列方程进行求解,并检验.解:①因为点B,C在y=x+n上,所以B(-n,0),C(0,n),因为点A(1,0)在抛物线上,所以25050 5a ban bnn,解得,a=-1,b=6,所以抛物线的解析式为:y=-x2+6x-5.②由题意得:PB=4-t,,BE=2t,由①可知:∠OBC=45°,点P到BC上的高h=BPsin45(4-t),所以S△PBE=12BE h =222222t,当t=2时,S取得最大值为③因为l BC:y=x-5,所以B(5,0), 因为A(1,0),所以AB=4,在Rt△ABM中,∠ABM=45°,AMAB=M(3,-3),过点N作x轴的垂线交直线BC于点P交x轴于点H, 设N(m,-m2+6m-5),则H(m,0),P(m,m-5),易证△PQN为等腰直角三角形,即NQ=PQ=所以PN=4.当NH+HP=4时,即-m2+6m-5-(m-5)=4, 解之得,m1=1,m2=4.当m1=1时,点N与点A重合,故舍去;当NH+HP=4时,即m-5-(-m2+6m-5)=4,解得,m1541,m2541,因为m>5,所以m 541;当NH-HP=4,即-(-m2+6m-5)-[-(m-5)]=4,解得,m1541,m2541,因为m<0,所以m 541.综上所述,要使点A,M,N,Q 为顶点的四边形是平行四边形,点N 的横坐标为:4541或541.第26题答图7.(2020·淄博)如图,顶点为M 的抛物线y =ax 2+bx +3与x 轴交于A (3,0),B (-1,0)两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由. (3)若在第一象限的抛物线下方有一动点D ,满足DA =OA ,过D 作DG ⊥x 轴于点G ,设△ADG 的内心为I ,试求CI 的最小值.解:(1)将A 、B 两点坐标代入抛物线表达式,得933030a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=⎩.∴y =-x 2+2x +3.(2)假设存在点P ,使△P AM 是直角三角形.当点M 为直角顶点,过M 作CD ⊥y 轴,过A 作AD ⊥x 轴,交CD 于D ,CD 交y 轴于C ,∵∠AMP =90°, ∴∠CMP +∠AMD =90,∴∠CMP =∠MAD ,又∵∠DM =∠PCM ,∴△CPM ∽△DMA ,∴CM AD =PCMD, ∴14=2PC ,∴PC =12,∴P 1(0,72); 当点A 为直角顶点,过A 作CD ⊥x 轴,过M 作MD ⊥y 轴交AD 于D ,过P 作PC ⊥y 轴交CD 于C ,同上△CP A∽△DAM ,∴PC AD =AC MD ,∴34=2AC ,∴AC =32,∴P 2(0,-32); 当点P 为直角顶点,过M 作CM ⊥y 轴于C ,∴△CPM ∽△OAP ,∴PC AO =CM PO ,∴3PC =14-PC,∴PC =1或3,∴P 3(0,3),P 4(0,1).图综上所述,使△P AM 是直角三角形的点P 的是P 1(0,72),P 2(0,-32),P 3(0,3),P 4(0,1).(3)(方法1)由(1)得DA =OA =3,设D (x ,y ),△ADG 的内切圆半径为r ,则△ADG 的内心I 为(x +r ,r ), ∴DG =y ,AG =3-x由两点距离公式可得()2222339DA x y =-+==①由等面积法得r =()33+22y x DG AG DA +---==2y x-②∴()()2223CI x r r =++-③由①②③得(2229123124CI x y -⎡⎤⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,2CI 在3335=512105x y =--,最小,此时CI 也最小,()()min 912253=10-242CI -=(方法2)简解:如图,由内心易知:∠DIA =135°,∠DAI =∠OAI ,△DAI ≌△OAI (SAS ),∴∠DIA =∠OIA =135°,则I 在圆周角∠OIA =135°⊙T 的圆周上运动,且半径R =322,圆心T 为(32,32),∴CI =3102在△CIA 中,CI ≥CT -IT =()310-22,当C 、I 、T 三点一线时,()min 3=10-22CI .8.(2020·枣庄)已知抛物线y =ax 2+32x+4的对称轴是直线x =3,与x 轴相交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C.(1)求抛物线的解析式和A 、B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由.(2)答图1Iy 12(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M 的坐标.解:(1)抛物线y=ax2+32x+4的对称轴为:x=332224ba a a-=-=-=3,∴a=14-,∴抛物线的解析式为:y=14-x2+32x+4,令y=0,得14-x2+32x+4=0,解之,得,x1=-2,x2=8,∵点B在点A的右侧,∴A(-2,0),B(8,0);(2)连接BC,在抛物线y=14-x2+32x+4中,令x=0,得y=4,∴C(0,4),∴OC=4,OB=8,∴S△OBC=16,∵B(8,0),C(0,4),设l BC:y=kx+b,得0=8k+b,4=b,∴k=12-,b=4,l BC:y=12-x+4,∴过点P作PD∥y轴交BC于点D,过点C作CE垂直PD于点E,过点B作BF⊥PD于点F,则S△PBC=S△PCD+S△PBD=12PD×CE+12PD×BF=12PD×(CE+BF)=12PD×(x B-x C)=12PD×8=4PD,∵点P在抛物线上,设点P(x,14-x2+32x+4),∵PD∥y轴,点D在直线BC上,∴D(x,12-x+4),∵点P在B,C间的抛物线上运动,∴PD=y P-y D=14-x2+32x+4-(12-x+4)=14-x2+2x,S△PBC=4PD=4(14-x2+2x)=-x2+8x=-(x-4)2+16,∴当x=4时,S△PBC取最大值16,∴此时S四边形OBPC=S△OBC+S△PBC=32;第25题答图(3)∵MN∥y轴,∴设M,N的横坐标为m,∵点M在抛物线上,设点M(m,n),其中n=14-m2+32m+4,点N在直线BC上,∴N(m,12-m+4),∵点M是抛物线上任意一点,∴点M和点N的上下位置关系不确定,∴MN=|14-m2+32m+4-(12-m+4)|=|14-x2+2x|,∵MN=3,∴|14-x2+2x|=3,即14-x2+2x=3或14-x2+2x=-3,解这两个方程,得m1=2,m2=6, m3=4+4=4-∴n1=6, n2=4, n3-1, n4-1,∴M1(2,6), M2(6,4), M3(4+-1), M 4(4-1).9.(2020· 聊城)如图,在平面直角坐标系中,抛物线y =ax 2+bx+c 与x 轴交于点A(-2,0),点B(4,0),与y 轴交于点C(0,8),连接BC,又已知位于y 轴右侧且垂直于x 轴的动直线l,沿x 轴正方向从O 运动到B(不含O 点和B 点),且分别交抛物线,线段BC 以及x 轴于点P,D,E. (1)求抛物线的表达式;(2)连接AC,AP,当直线l 运动时,求使得△PEA 和△AOC 相似的点P 的坐标; (3)作PF ⊥BC,垂足为F,当直线l 运动时,求Rt △PFD 面积的最大值.第25题图解:(1)由已知,将C(0,8)代入y =ax 2+bx+c,∴c =8,将点A(-2,0)和B(4,0)代人y =ax 2+bx+8,得428016480a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩,∴抛物线的表达式为y =-x 2+2x+8; (2)∵A(-2,0),C(0,8),∴OA =2,OC =8,∵l ⊥x 轴,∠PEA =∠AOC =90°,∵∠PAE ≠∠CAO,只有当∠PAE =∠ACO 时,△PEA ∽△AOC.此时AE PECO AO=,∴AE =4PE.设点P 的纵坐标为k,则PE =k,AE =4k,∴OE =4k -2,P 点的坐标为(4k -2,k),将P(4k -2,k)代入y =-x 2+2x+8,得-(4k -2)2+2(4k -2)+8=k,解得k 1=0(舍去),k 2=2316,当k =2316时,4k -2=154,∴P 点的坐标为(154,2316). (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠OCB,∴Rt △PFD ∽Rt △BOC,∴2PFD=S PD S BC ⎛⎫ ⎪⎝⎭△△BOC,∴S △PFD =2PD S BC ⎛⎫⋅ ⎪⎝⎭△BOC ,由B(4,0)知OB =4,又∵OC =8,∴BC 又S △BOC =12OB OC ⋅=16,∴S △PFD =215PD ,∴当PD 最大时,S △PFD 最大.由B(4,0),C(0,8)可解得BC 所在直线的表达式为y =-2x+8,设P(m,-m 2+2m+8),则D(m,-2m+8),∴PD =-(m -2)2+4,当m =2时,PD 取得最大值4,∴当PD =4时,S △PFD =165,为最大值.10.(2020·济宁)如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.解:(1)由折叠可得AF=AD=10,EF=ED,矩形ABCD中,∠B=90°,∴AB2+BF2=AF2,∴6, BF===∴CF=BC-BF=AD-BF=10-6=4.设CE=x,则EF=DE=CD-CE=AB-CE=8-x,∵EF2=CE2+CF2.∴(8-x)2=x2+42.∴x=3,∴CE=3.(2)①∵矩形ABCD中,AD∥BC,∴∠DAG=∠AGF,∵∠DAG=∠F AG, ∠DAG=∠AGF,∴∠F AG=∠AGF,∴AF=FG=10,∴BG=BF+FG=6+10=16.∵矩形ABCD中∠B=90°,∴AB2+BG2=AG2,∴AG==∵AD=FG,AD∥FG,∴四边形AFGE是平行四边形,又∵AD=AF,∴平行四边形AFGE是菱形,∴DG=DA=10,∴∠DAG=∠DGA,∵∠DMG=∠DMN+∠NAG=∠DAM+∠ADM, ∠DMN=∠DAM,∴∠NMG=∠ADM.在△ADM和△MNG中,∠ADM=∠NMG, ∠DAG=∠DGA,∴△ADM∽△GMN.∴AD AMMG NG=10xy=-,∴2110105y x x=-+,∵110>0,∴当51210x=-=⨯时,y有最小值为214101021410⎛⨯⨯-⎝⎭=⨯.∴y关于x的函数解析式是:211010y x x=-+,当x=y有最小值为2.②在△DMN 和△DMG 中,∠DMN =∠DGM ,∠MDG =∠MDG ,∴△DMN 和△DMG 是相似三角形. 当△DMG 是等腰三角形时,△DMN 也是等腰三角形.∵M 不与A 重合,∴DM ≠DG ,∴△DMG 是等腰三角形只有GM =GD 或DM =GM 两种情况:(1)如图3,当△DMG 中GM =GD =10时,△DMN 也是等腰三角形,即x =AG -MG =10;(2)如图4,当△DMG 中DM =GM 时,△DMN 也是等腰三角形,∴∠MDG =∠DGM ,∴∠DAG =∠MDG =∠MDG ,∴△ADG ∽△DMG ,∴AD AGMG DG =,=x综上:当x 的值为2△DMN 是等腰三角形.11.(2020·滨州)如图①,抛物线y =-x 2+x +4与y 轴交于点A ,与x 轴交于点B ,C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D . (1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点 ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离; ②当点P 到直线AD 的距离为时,求sin ∠P AD 的值.解:(1)当x =0时,y =4,则点A 的坐标为(0,4),………………………………………1分 当y =0时,0=-x 2+x +4,解得x 1=-4,x 2=8, 则点B 的坐标为(-4,0),点C 的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°.∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0).………………………………………………………………………2分设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=-x+4.……………………………………………………………4分(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,-t2+t+4),则点N的坐标为(t,-t+4),∴PN=(-t2+t+4)-(-t+4)=-t2+t,………………………………………………6分∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°.作PH⊥AD于点H,则∠PHN=90°,∴PH==(-t2+t)=t=-(t-6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),………………………………8分即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是.………………9分②当点P到直线AD的距离为时,如右图②所示,则t=,解得t1=2,t2=10,………………………………………………………………………10分则P1的坐标为(2,),P2的坐标为(10,-).当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;…………………………………………………………12分当P 2的坐标为(10,-),则P 2A ==,∴sin ∠P 2AD ==;由上可得,sin ∠P AD 的值是或.……………………………………………14分二、填空题16.(2020·南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,24AB =,5BC =.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②OAB ∆的面积最大值为144;③当OD 最大时,点D 的坐标为,.其中正确的结论是 .(填写序号)【答案】②③ 【解析】点E 为AB 的中点,24AB =,1122OE AB ∴==, AB ∴的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧,90AOB ∠=︒,∴点E 经过的路径长为90126180ππ⨯⨯=,故①错误; 当OAB ∆的面积最大时,因为24AB =,所以OAB ∆为等腰直角三角形,即OA OB =, E 为AB 的中点,OE AB ∴⊥,1122OE AB ==, ∴124121442AOB S ∆=⨯⨯=,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF y ⊥轴于点F , 5AD BC ==,1122AE AB ==,∴13DE ===,131225OD DE OE ∴=+=+=, 设DF x =,∴OF =,四边形ABCD 是矩形,90DAB ∴∠=︒,DFA AOB ∴∠=∠,DAF ABO ∴∠=∠, DFA AOB ∴∆∆∽∴DF DA OA AB =,∴524x OA =,∴245x OA =, E 为AB 的中点,90AOB ∠=︒,AE OE ∴=,AOE OAE ∴∠=∠,DFO BOA ∴∆∆∽,∴OD OF AB OA=,∴25245=,解得x =x =舍去,∴OF =,∴D .故③正确. 故答案为:②③.【知识点】直角形的性质;矩形的性质;相似三角形的判定和性质三、解答题17. (2019 · 镇江)如图,菱形ABCD 的顶点B 、C 在x 轴上(B 在C 的左侧),顶点A 、D 在x 轴上方,对角线BD(2,0)E -为BC 的中点,点P 在菱形ABCD 的边上运动.当点(0,6)F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于( )A .103BC .163D .3【答案】A【解析】如图1中,当点P 是AB 的中点时,作FG PE ⊥于G ,连接EF .(2,0)E -,(0,6)F ,2OE ∴=,6OF =,EF ∴=90FGE ∠=︒,FG EF ∴,∴当点G 与E 重合时,FG 的值最大.如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设2BC a =.PA PB =,BE EC a ==,//PE AC ∴,BJ JH =,四边形ABCD 是菱形,AC BD ∴⊥,BH DH ==BJ PE BD ∴⊥,90BJE EOF PEF ∠=∠=∠=︒,EBJ FEO ∴∠=∠, BJE EOF ∴∆∆∽, ∴BE BJ EF EO=,∴62=, 53a ∴=, 1023BC a ∴==, 故选:A .【知识点】菱形的性质;平面直角坐标系;相似三角形的判定和性质;垂线段最短。

几何最值问题-2023年中考数学压轴题专项训练(全国通用)(解析版)

几何最值问题-2023年中考数学压轴题专项训练(全国通用)(解析版)

12023年中考数学压轴题专项训练1.几何最值问题一、压轴题速练1一、单选题1(2023·山东烟台·模拟预测)如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD +PE 的最小值为()A.8 B.45 C.10 D.45-2【答案】A【分析】根据∠BEC =90°得到点的运动轨迹,利用“将军饮马”模型将PE 进行转化即可求解.【详解】解:如图,设点O 为BC 的中点,由题意可知,点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆O '),点E 的对称点为E 1,连接O 'E 1,则PE =PE 1,∴当点D 、P 、E 1、O '共线时,PD +PE 的值最小,最小值为DE 1的长,如图所示,在Rt △DCO '中,CD =8,CO '=6,∴DO '=82+62=10,又∵O 'E 1=2,∴DE 1=DO '-O 'E 1=8,即PD +PE 的最小值为8,故选:A .【点睛】本题考查线段和最短问题、轴对称的性质、勾股定理及圆周角定理,利用“将军饮马”模型将PE 进行转化时解题的关键.2(2023·安徽黄山·校考模拟预测)如图,在平面直角坐标系中,二次函数y =32x 2-32x -3的图象与x 轴交于点A ,C 两点,与y 轴交于点B ,对称轴与x 轴交于点D ,若P 为y 轴上的一个动点,连接PD ,则12PB +PD 的最小值为()2A.334B.32C.3D.543【答案】A【分析】作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,可求得∠ABO =30°,从而得出PE =12PB ,进而得出PD +12PB =PD +EP ,进一步得出结果.【详解】解:如图,作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,抛物线的对称轴为直线x =--322×32=12,∴OD =12,当x =0时,y =-3,∴OB =3,当y =0时,32x 2-32x -3=0,∴x 1=-1,x 2=2,∴A (-1,0),∴OA =1,∵tan ∠ABO =OA OB =13=33,∴∠ABO =30°,∴PE =12PB ,∴12PB +PD =PD +PE ≥DF ,当点P 在P 时,PD +PE 最小,最大值等于DF ,在Rt △ADF 中,∠DAF =90°-∠ABO =60°,AD =OD +PA =12+1=32,∴DF =AD ⋅sin ∠DAE =32×32-334,∴12PB +PD 最小=DF =334,故选:A .【点睛】本题以二次函数为背景,考查了二次函数与一元二次方程之间的关系,解直角三角形等知识,解决问题的关键是用三角函数构造12PB .3(2023秋·浙江金华·九年级统考期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且∠EAB =∠EBC .连结AE ,BE ,PD ,PE ,则PD +PE 的最小值为()3A.213-2B.45-2C.43-2D.215-2【答案】A【分析】先证明∠AEB =90°,即可得点E 在以AB 为直径的半圆上移动,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,问题随之得解.【详解】解:∵四边形ABCD 是正方形,∴∠ABC =90°,∴∠ABE +∠EBC =90°,∵∠EAB =∠EBC ,∴∠EAB +∠EBA =90°,∴∠AEB =90°,∴点E 在以AB 为直径的半圆上移动,如图,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,E∵∠G =90°,FG =BG =AB =4,∴OG =6,OA =OB =OE =2,∴OF =FG 2+OG 2=213,∴EF =OF -OE =213-2,故PE +PD 的长度最小值为213-2,故选:A .【点睛】本题考查了轴对称-最短路线问题,正方形的性质,勾股定理,正确的作出辅助线,得出点E 的运动路线是解题的关键.4(2022秋·安徽池州·九年级统考期末)如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为()4 A.154 B.245 C.5 D.203【答案】B【分析】作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,点P 即为所求作的点,此时PB +PD 有最小值,连接AB ,根据对称性的性质,可知:BP =B P ,△ABC ≅△AB C ,根据S △ABB =S △ABC +S △AB C =2S △ABC ,即可求出PB +PD 的最小值.【详解】解:如下图,作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,连接AB ,点P 即为所求作的点,此时PB +PD 有最小值,根据对称性的性质,可知:BP =B P ,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴AB =AC 2+BC 2=5,根据对称性的性质,可知:△ABC ≅△AB C ,∴S △ABB =S △ABC +S △ABC =2S △ABC ,即12×AB ⋅B D =2×12BC ⋅AC ,∴5B D =24,∴B D =245,故选:B .【点睛】本题考查了轴对称一最短路线问题,解题的关键是掌握轴对称的性质.5(2023秋·甘肃定西·八年级校考期末)如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB 的度数是()A.118°B.125°C.136°D.124°【答案】D【分析】先在BC 上截取BE =BQ ,连接PE ,证明△PBQ ≌△PBE SAS ,得出PE =PQ ,说明AP +PQ =AP +PE ,找出当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ 最小,过点A 作AE ⊥BC 于点E ,交BD 于点P ,根据三角形外角的性质可得答案.【详解】解:在BC 上截取BE =BQ ,连接PE ,如图:∵BD 平分∠ABC ,∠ABC =68°,∴∠ABD =∠CBD =12∠ABC =34°,∵BP =BP ,∴△PBQ ≌△PBE SAS ,∴PE =PQ ,∴AP +PQ =AP +PE ,∴当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ最小,过点A作AE ⊥BC 于点E ,交BD 于点P ,如图:∵∠AEB =90°,∠CBD =34°,∴∠APB =∠AEB +∠CBD =124°.故选:D .5【点睛】本题主要考查了角平分线的定义,三角形全等的判定和性质,垂线段最短,三角形内角和定理与三角形的外角的性质,解题的关键是找出使AP +PQ 最小时点P 的位置.6(2022秋·重庆沙坪坝·八年级重庆市凤鸣山中学校联考期末)如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA +PE 的最小值为()A.5B.42C.210D.10【答案】A【分析】连接EC 交BD 于P 点,根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长,求出EC 的长即可.【详解】连接EC ,交BD 于P 点∵四边形ABCD 为正方形∴A 点和C 点关于BD 对称∴PA =PC∴PA +PE =PC +PE =EC根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长.∵AE =1,DE =3∴AD =4∴DC =4∴CE =DE 2+CD 2=32+42=5∴PA +PE 的最小值为5故选:A【点睛】本题主要考查了正方形的性质和两点之间线段最短,这是一个将军饮马模型.熟练掌握正方形的性质并且能够识别出将军饮马模型是解题的关键.7(2023春·湖南张家界·八年级统考期中)如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.5【答案】D【分析】由正方形的对称性可知点B 与D 关于直线AC 对称,连接BM 交AC 于N ′,N ′即为所求在Rt △BCM 中利用勾股定理即可求出BM 的长即可.【详解】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,6连接BD ,BM 交AC 于N ′,连接DN ′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =CM 2+BC 2=32+42=5故DN +MN 的最小值是5.故选:D .【点睛】本题考查的是轴对称-最短路线问题及正方形的性质,先作出D 关于直线AC 的对称点,由轴对称及正方形的性质判断出D 的对称点是点B 是解答此题的关键.8(2022秋·浙江杭州·九年级杭州外国语学校校考开学考试)如图,在平面直角坐标系中,二次函数y =-x 2+bx +3的图像与x 轴交于A 、C 两点,与x 轴交于点C (3,0),若P 是x 轴上一动点,点D 的坐标为(0,-1),连接PD ,则2PD +PC 的最小值是()A.4B.2+22C.22D.32+232【答案】A【分析】过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H ,根据2PD +PC =2PD +22PC =2PD +PJ ,求出DP +PJ 的最小值即可解决问题.【详解】解:连接BC ,过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H .∵二次函数y =-x 2+bx +3的图像与x 轴交于点C (3,0),∴b =2,∴二次函数的解析式为y =-x 2+2x +3,令y =0,-x 2+2x +3=0,解得x =-1或3,∴A (-1,0),令x =0,y =3,∴B (0,3),∴OB =OC =3,∵∠BOC =90°,∴∠OBC =∠OCB =45°,∵D(0,-1),∴OD =1,BD =4,∵DH ⊥BC ,∴∠DHB =90°,设DH =x ,则BH =x ,∵DH 2+BH 2=BD 2,7∴x =22,∴DH =22,∵PJ ⊥CB ,∴∠PJC =90°,∴PJ =22PC ,∴2PD +PC =2PD +22PC =2PD +PJ ,∵DP +PJ ≥DH ,∴DP +PJ ≥22,∴DP +PJ 的最小值为22,∴2PD +PC 的最小值为4.故选:A .【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,得到∠OBC =∠OCB =45°,PJ =22PC 是解题的关键.9(2022·山东泰安·统考中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52 B.125 C.13-32 D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的圆上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的圆上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.810(2022·河南·校联考三模)如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()A.42,35B.22,35C.35,22D.35,42【答案】A【分析】根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,从而确定正方形的边长为6,根据将军饮马河原理,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,利用相似三角形,计算AG 的长即为横坐标.【详解】如图,根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,∵点E 是BC 的中点,∴BC =6,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,∵四边形ABCD 是正方形,AB =6,∴CE ∥AD ,AC =62+62=62,DE =62+32=35,∴△CGE ∽△AGD ,∴CG AG =CE AD =12,∴AC AG=32,∴AG =42,故点M 的坐标为(42,35),故A 正确.故选:A .【点睛】本题考查了正方形的性质,三角形相似的判定和性质,函数图像信息的获取,将军饮马河原理,熟练掌握正方形的性质,灵活运用三角形相似,构造将军饮马河模型求解是解题的关键.2二、填空题11(2023春·江苏宿迁·九年级校联考阶段练习)如图,矩形ABCD ,AB =4,BC =8,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足∠APB =12∠AGB ,则DP 的最小值.【答案】210-22【分析】由题意可知,∠AGB =90°,可得∠APB =12∠AGB =45°,可知点P 在以AB 为弦,圆周角∠APB =45°的9圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧),设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,可知△AOB 为等腰直角三角形,求得OA =22AB =22=OP ,AQ =OQ =22OA =2,QD =AD -AQ =6,OD =OQ 2+QD 2=210,再由三角形三边关系可得:DP ≥OD -OP =210-22,当点P 在线段OD 上时去等号,即可求得DP 的最小值.【详解】解:∵B 、G 关于EF 对称,∴BH =GH ,且EF ⊥BG∵E 为AB 中点,则EH 为△ABG 的中位线,∴EH ∥AG ,∴∠AGB =90°,∵∠APB =12∠AGB ,即∠APB =12∠AGB =45°,∴点P 在以AB 为弦,圆周角∠APB =45°的圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧)设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,则OA =OB =OP ,∵∠APB =45°,∴∠AOB =90°,则△AOB 为等腰直角三角形,∴OA =22AB =22=OP ,又∵E 为AB 中点,∴OE ⊥AB ,OE =12AB =AE =BE ,又∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC =8,∴四边形AEOQ 是正方形,∴AQ =OQ =22OA =2,QD =AD -AQ =6,∴OD =OQ 2+QD 2=210,由三角形三边关系可得:DP ≥OD-OP =210-22,当点P 在线段OD 上时去等号,∴DP 的最小值为210-22,故答案为:210-22.【点睛】本题考查轴对称的性质,矩形的性质,隐形圆,三角形三边关系,正方形的判定及性质,等腰直角三角形的判定及性质,根据∠APB =12∠AGB =45°得知点P 在以AB 为弦,圆周角∠APB =45°的圆上是解决问题的关键.12(2023春·江苏连云港·八年级期中)如图,在边长为8的正方形ABCD 中,点G 是BC 边的中点,E 、F 分别是AD 和CD 边上的点,则四边形BEFG 周长的最小值为.【答案】2410【分析】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G ,根据两点之间线段最短即可解决问题.【详解】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G∵EB =EB ,FG =FG ,∴BE +EF +FG +BG =B E +EF +FG +BG ,∵EB +EF +FG ≥B G ,∴四边形BEFG 的周长的最小值=BG +B G ,∵正方形ABCD 的边长为8∴BG =4,BB =16,BG =12,∴B G =162+122=20,∴四边形BEFG 的周长的最小值为=4+20=24.故答案为:24.【点睛】本题考查轴对称求线段和的最短问题,正方形的性质,勾股定理,解题的关键是学会利用轴对称解决最短问题.13(2022·湖南湘潭·校考模拟预测)如图,菱形草地ABCD 中,沿对角线修建60米和80米两条道路AC <BD ,M 、N 分别是草地边BC 、CD 的中点,在线段BD 上有一个流动饮水点P ,若要使PM +PN 的距离最短,则最短距离是米.【答案】50【分析】作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,根据菱形的性质和勾股定理求出BC 长,即可得出答案.【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,∵四边形ABCD 是菱形,∴AC ⊥BD ,∠QBP =∠MBP ,即Q 在AB 上,∵MQ ⊥BD ,∴AC ∥MQ ,∴M 为BC 中点,∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形,∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形,∴NQ =BC ,设AC 与BD 的交点为点O ,∵四边形ABCD 是菱形,∴AC ⊥BD,OC =12AC =30米,OB =12BD =40米,∴BC =OB 2+OC 2=50米,∴PM +PN 的最小值是50米.故答案为:50.11【点睛】本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P 的位置.14(2023春·江苏·九年级校考阶段练习)如图,正方形ABCD 的边长为4,⊙B 的半径为2,P 为⊙B 上的动点,则2PC -PD 的最大值是.【答案】2【分析】解法1,如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,连接PM 、DM ,推得2PC -PD=2PC -22PD =2PC -PM ,因为PC -PM ≤MC ,求出MC 即可求出答案.解法2:如图:连接BD 、BP 、PC ,在BD 上做点M ,使BM BP =24,连接MP ,证明△BMP ∼△BPD ,在BC 上做点N ,使BN BP=12,连接NP ,证明△BNP ∼△BPC ,接着推导出2PC -PD =22MN ,最后证明△BMN ∼△BCD ,即可求解.【详解】解法1如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,∴∠PDM =45,DM =PM =22PD ,∵四边形ABCD 正方形∴∠BDC =45°,DB DC=2又∵∠PDM =∠PDB +MDB ,∠BDC =∠MDB +MDC∴∠PDB =∠MDC在△BPD 与△MPC 中∠PDB =∠MDC ,DB DC=DP DM =2∴△BPD ∼△MPC∴PB MC=2∵BP =2∴MC =2∵2PC -PD =2PC-22PD =2PC -PM ∵PC -PM ≤MC ∴2PC -PD =2PC -PM ≤2MC =2故答案为:2.解法2如图:连接BD 、BP 、PC根据题意正方形ABCD 的边长为4,⊙B 的半径为2∴BP =2,BD =BC 2+CD 2=42+42=42∵BP BD =242=2412在BD 上做点M ,使BM BP=24,则BM =22,连接MP 在△BMP 与△BPD 中∠MBP =∠PBD ,BP BD =BM BP∴△BMP ∼△BPD∴PM PD =24,则PD =22PM ∵BP BC =24=12在BC 上做点N ,使BN BP=12,则BN =1,连接NP 在△BNP 与△BPC 中∠NBP =∠PBC ,BN BP =BP PC∴△BNP ∼△BPC∴PN PC=12,则PC =2PN ∴如图所示连接NM ∴2PC -PD =2×2PN -22PM =22PN -PM ∵PN -PM ≤NM ∴2PC -PD =22PN -PM ≤22NM在△BMN 与△BCD 中∠NBM=∠DBC ,BM BC =224=28,BN BD =142=28∴BM BC=BN BD ∴△BMN ∼△BCD∴MN CD=28∵CD =4∴MN =22∴22MN =22×22=2∴2PC -PD ≤22NM =2故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.15(2023秋·广东广州·九年级统考期末)如图,四边形ABCD 中,AB ∥CD ,AC ⊥BC ,∠DAB =60°,AD =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则△MBC 面积的最小值为.【答案】63-4【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则OM +ME ≥OF ,通过计算得出当O ,M ,E 三点共线时,ME 有最小值,求出最小值即可.【详解】解:如图,取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则13OM +ME ≥OF ,∵AB ∥CD ,∠DAB =60°,AD =CD =4,∴∠ADC =120°,∵AD =CD ,∴∠DAC =30°,∴∠CAB =30°,∵AC ⊥BC ,∴∠ACB =90°∴∠B =90°-30°=60°,∴∠B =∠DAB ,∴四边形ABCD 为等腰梯形,∴BC =AD =4,∵∠AMD =90°,AD =4,OA =OD ,∴OM =12AD =2,∴点M 在以点O 为圆心,2为半径的圆上,∵AB ∥CD ,∴∠GCF =∠B =60°,∴∠DGO =∠CGF =30°,∵OF ⊥BC ,AC ⊥BC ,∴∠DOG =∠DAC =30°=∠DGO ,∴DG =DO =2,∴OG =2OD ⋅cos30°=23,GF =3,OF =33,∴ME ≥OF -OM =33-2,∴当O ,M ,E 三点共线时,ME 有最小值33-2,∴△MBC 面积的最小值为=12×4×33-2 =63-4.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点M 位置的确定是解题关键.16(2023春·全国·八年级专题练习)如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB,AD 上的两个定点且BP =AQ =1cm ,点M 为线段BD 上一动点,连接PM ,QM ,则PM +QM 的最小值为cm .【答案】5【分析】如图所示,作点P 关于BD 的对称点P ,且点P 在BC 上,则PM +QM =P M+QM ,当P ,M ,Q 在同一条直线上时,有最小值,证明四边形PP QA 是平行四边形,P Q =AP =AB -BP ,由此即可求解.【详解】解:如图所示,作点P 关于BD 的对称点P ,∵△ABC 是等边三角形,BD ⊥AC ,∴∠ABD =∠DBC =12∠ABC =12×60°=30°,14∴点P 在BC 上,∴P M =PM ,则PM +QM =P M +QM ,当P ,M ,Q 在同一条直线上时,有最小值,∵点P 关于BD 的对称点P ,∠ABD =∠DBC =30°,∴PP ⊥BM ,BP =BP =1cm ,∴∠BP P =60°,∴△BPP 是等边三角形,即∠BP P =∠C =60°,∴PP ∥AC ,且PP =AQ =1cm ,∴四边形PP QA 是平行四边形,∴P Q =AP =AB -BP ,在Rt △ABD 中,∠ABD =30°,AD =3,∴AB =2AD =2×3=6,∴AP =P Q =P M +QM =PM +QM =AB -BP =6-1=5,故答案为:5.【点睛】本题主要考查动点与等边三角形,对称-最短路径,平行四边形的判定和性质的综合,理解并掌握等边三角形得性质,对称-最短路径的计算方法,平行四边形的判定和性质是解题的关键.17(2022秋·山东菏泽·九年级校考阶段练习)如图,在周长为12的菱形ABCD 中,DE =1,DF =2,若P 为对角线AC 上一动点,则EP +FP 的最小值为.【答案】3【分析】作F 点关于BD 的对称点F ,连接EF 交BD 于点P ,则PF =PF ,由两点之间线段最短可知当E 、P 、F 在一条直线上时,EP +FP 有最小值,然后求得EF 的长度即可.【详解】解:作F 点关于BD 的对称点F ,则PF =PF ,连接EF '交BD 于点P .∴EP +FP =EP +F P .由两点之间线段最短可知:当E 、P 、F '在一条直线上时,EP +FP 的值最小,此时EP +FP =EP +F P =EF .∵四边形ABCD 为菱形,周长为12,∴AB =BC =CD =DA =3,AB ∥CD ,∵AF =2,AE =1,∴DF =AE =1,∴四边形AEF D 是平行四边形,∴EF =AD =3.∴EP +FP 的最小值为3.故答案为:3.【点睛】本题主要考查的是菱形的性质、轴对称--路径最短问题,明确当E 、P 、F 在一条直线上时EP +FP 有最小值是解题的关键.18(2023春·上海·八年级专题练习)如图,直线y =x +4与x 轴,y 轴分别交于A和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为.15【答案】(-1,0)【分析】直线y =x +4与x 轴,y 轴分别交于A 和B ,可求出点A ,B 的坐标,点C 、D 分别为线段AB 、OB 的中点,可求出点C 、D 的坐标,作点C 关于x 轴的对称点C ,连接C D 与x 轴的交点就是所求点P 的坐标.【详解】解:直线y =x +4与x 轴,y 轴分别交于A 和B ,∴当y =0,x =-4,即A (-4,0);当x =0,y =4,即B (0,4),∵点C 、D 分别为线段AB 、OB 的中点,∴C (-2,2),D (0,2),如图所示,过点C 关于x 轴的对称点C,∴C (-2,-2),∴直线C D 的解析式为:y =2x +2,当y =0,x =-1,即P (-1,0),故答案为:(-1,0).【点睛】本题主要考查一次函数与最短线段的综合,掌握对称中最短线段的解题方法是解题的关键.19(2023秋·黑龙江鸡西·九年级统考期末)如图,抛物线y =x 2-4x +3与x 轴分别交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则△MAC 周长的最小值是.【答案】32+10【分析】根据“将军饮马”模型,先求出A 1,0 ,B 3,0 ,C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,从而C △MAC =CA +CM +MA =CA +CM +MB ,AC =OA 2+OC 2=10,则△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,从而得到CB =OC 2+OB 2=32,即可得到答案.【详解】解:∵抛物线y =x 2-4x +3与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,16∴当y =0时,0=x 2-4x +3解得x =1或x =3,即A 1,0 ,B 3,0 ;当x =0时,y =3,即C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,即MA =MB ,∴C △MAC =CA +CM +MA =CA +CM +MB ,∵AC =OA 2+OC 2=10,∴△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,∵CB =OC 2+OB 2=32,∴△MAC 周长的最小值为CA +CB =32+10,故答案为:32+10.【点睛】本题考查动点最值问题与二次函数综合,涉及“将军饮马”模型求最值、二次函数图像与性质、解一元二次方程、勾股定理求线段长等知识,熟练掌握动点最值的常见模型是解决问题的关键.20(2023秋·浙江温州·九年级校考期末)如图所示,∠ACB =60°,半径为2的圆O 内切于∠ACB.P 为圆O 上一动点,过点P 作PM 、PN 分别垂直于∠ACB 的两边,垂足为M 、N ,则PM +2PN 的取值范围为.【答案】6-23≤PM +2PN ≤6+23【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示,通过代换,将PM +2PN 转化为PN +12PM =PN +HP =NH ,得到当MP 与⊙O 相切时,MF 取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.【详解】解:作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示:∵PM ⊥AC ,PN ⊥CB ,∴∠PMC =∠PNC =90°,∴∠MPN =360°-∠PMC -∠PNC -∠C =120°,∴∠MPH =180°-∠MPN =60°,∴HP =PM ⋅cos ∠MPH =PM ⋅cos60°=12PM ,∴PN +12PM =PN +HP =NH ,∵MF =NH ,∴当MP 与⊙O 相切时,MF 取得最大和最小,①连接OP ,OG ,OC ,如图1所示:可得:四边形OPMG 是正方形,∴MG =OP =2,在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG +GM =2+23,在Rt △CMF 中,MF =CM ⋅sin60°=3+3,∴HN =MF =3+3,即PM +2PN =212PM +PN =2HN =6+23;②连接OP ,OG ,OC ,如图2所示:可得:四边形OPMG 是正方形,17∴MG =OP =2,由上同理可知:在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG -GM =23-2,在Rt △CMF 中,MF =CM ⋅sin60°=3-3,∴HN =MF =3-3,即PM +2PN =212PM +PN =2HN =6-23,∴6-23≤PM +2PN ≤6+23.故答案为:6-23≤PM +2PN ≤6+23.【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.3三、解答题21(2022春·江苏·九年级专题练习)综合与探究如图,已知抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,交y 轴于点C .(1)求抛物线的解析式,连接BC ,并求出直线BC 的解析式;(2)请在抛物线的对称轴上找一点P ,使AP +PC 的值最小,此时点P 的坐标是;(3)点Q 在第一象限的抛物线上,连接CQ ,BQ ,求出△BCQ 面积的最大值.【答案】(1)y =-x 2+3x +4;y =-x +4(2)32,52(3)8【分析】(1)将A -1,0 ,B 4,0 两点,代入抛物线解析式,可得到抛物线解析式,从而得到C 0,4 ,再设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入,即可求解;(2)连接BC ,PB ,根据题意可得A 、B 关于抛物线的对称轴直线x =32对称,从而得到当P 在直线AB 上三点共线时,AP +CP 的值最小,把x =32代入直线BC 的解析式,即可求解;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,可得QD =-d 2+4d ,从而得到S ΔBCQ =12OB ×QD =-2d -2 2+8,即可求解;【详解】(1)解:(1)∵抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,∴a -b +4=016a +4b +4=0,解得:a =-1b =3 ,18∴抛物线的解析式为y =-x 2+3x +4;∵抛物线与y 轴的交点为C ,∴C 0,4 ,设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入得:4k +b =0b =4 ,解得:k =-1b =4 ,∴直线BC 的解析式为y =-x +4;(2)如图,连接BC ,PB ,∵y =-x 2+3x +4=-x -32 2+74,∴抛物线的对称轴为直线x =32,根据题意得:A 、B 关于抛物线的对称轴直线x =32对称,∴AP =BP ,∴AP +CP =BP +CP ≥BC ,即当P 在直线AB 上时,AP +CP 的值最小,∴当x =32时,y =-32+4=52,∴P 32,52 ,故答案是:32,52 ;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,∴QD =-d 2+3d +4 --d +4 =-d 2+4d ,∵B 4,0 ,∴OB =4,∴S ΔBCQ =12OB ×QD =-2d 2+8d =-2d -2 2+8,当d =2时,S ΔBCQ 取最大值,最大值为8,∴△BCQ 的最大面积为8;【点睛】本题主要考查了二次函数的图像和性质,利用数形结合思想和分类讨论思想是解题的关键.22(2023秋·江苏淮安·八年级统考期末)如图1,直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,过点B 的直线交x 轴负半轴于点C -3,0 .(1)请直接写出直线BC 的关系式:(2)在直线BC 上是否存在点D,使得S △ABD =S △AOD 若存在,求出点D 坐标:若不存请说明理由;(3)如图2,D 11,0 ,P 为x 轴正半轴上的一动点,以P 为直角顶点、BP 为腰在第一象限内作等腰直角三角形△BPQ ,连接QA ,QD .请直接写出QB -QD 的最大值:.19【答案】(1)y =2x +6(2)当D 185,665 或D -185,-65时,S △ABD =S △AOD (3)37【分析】(1)根据直线AB 与y 轴的交点,可求出点B 的坐标,再用待定系数法即可求解;(2)设D (a ,2a +6),分别用含a 的式子表示出出S △AOD ,S △ABD ,由此即可求解;(3)△BPQ 是等腰直角三角形,设P (m ,0)(m >0),可表示出QB ,再证Rt △BOP ≌Rt △PTQ (AAS ),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值,可求得点R 的坐标,根据勾股定理即可求解.【详解】(1)解:∵直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,令x =0,则y =6,∴B (0,6),且C -3,0 ,设直线BC 的解析式为y =kx +b ,∴b =6-3k +b =0,解得,k =2b =6 ,∴直线BC 的解析式为y =2x +6,故答案为:y =2x +6.(2)解:由(1)可知直线BC 的解析式为y =2x +6,直线AB 的解析式为y =-x +6,∴A (6,0),B (0,6),C (-3,0),∴OA =6,BO =6,OC =3,如图所示,点D 在直线BC 上,过点D 作DE ⊥x 轴于E ,∴设D (a ,2a +6),E (a ,0),∴S △ABC =12AC ·OB =12×(6+3)×6=27,S △ADC =12AC ·DE =12×(6+3)×a =92a ,S △AOD =12OA ·DE =12×6×a =3a ,∴S △ABD =S △ABC -S △ADC =27-92a ,若S △ABD =S △AOD ,则27-92a =3a ,当a >0时,27-92a =3a ,解得,a =185,即D 185,665 ;当a <0时,27+92a =-3a ,解得,a =-185,即D -185,-65 ;综上所述,当D 185,665 或D -185,-65时,S △ABD =S △AOD .(3)解:已知A (6,0),B (0,6),D (11,0),设P (m ,0)(m >0),∴在Rt △BOP 中,OB =6,OP =m ,∵△BPQ 是等腰直角三角形,∠BPQ =90°,∴BP =QP ;如图所示,过点Q 作QT ⊥x 轴于T ,20在Rt △BOP ,Rt △PTQ 中,∠BOP =∠PTQ =90°,∠BPO +∠QPA =∠QPA +∠PQT =90°,∴∠BPO =∠PQT ,∴∠BPO =∠PQT∠BOP =∠PTQ BP =QP,∴Rt △BOP ≌Rt △PTQ (AAS ),∴OP =TQ =m ,OB =PT =6,∴AT =OP +PT -OA =m +6-6=m ,∴AT =QT ,且QT ⊥x 轴,∴△ATQ 是等腰直角三角形,∠QAT =45°,则点Q 的轨迹在射线AQ 上,如图所示,作点D 关于直线AQ 的对称点R,连接QR ,BR ,AR ,A (6,0),B (0,6),D (11,0),∵△ATQ 是等腰直角三角形,即∠QAT =45°,根据对称性质,∴∠QAR =45°,∴RA ⊥x 轴,且△DQA ≌△RQA ,∴AR =AD =11-6=5,则R (6,5),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值;∴由勾股定理得:BR =62+(6-5)2=37,故答案为:37.【点睛】本题主要考查一次函数,几何的综合,掌握待定系数法求解析式,将军饮马问题,等腰直角三角形的性质,勾股定理是解题的关键.23(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)△ABC 中,∠B =60°.(1)如图1,若AC >BC ,CD 平分∠ACB 交AB 于点D ,且AD =3BD .证明:∠A =30°;(2)如图2,若AC <BC ,取AC 中点E ,将CE 绕点C 逆时针旋转60°至CF ,连接BF 并延长至G ,使BF =FG ,猜想线段AB 、BC 、CG 之间存在的数量关系,并证明你的猜想;(3)如图3,若AC =BC ,P 为平面内一点,将△ABP 沿直线AB 翻折至△ABQ ,当3AQ +2BQ +13CQ 取得最小值时,直接写出BPCQ的值.【答案】(1)见解析(2)BC =AB +CG ,理由见解析(3)213+33913【分析】(1)过点D 分别作BC ,AC 的垂线,垂足为E ,F ,易得DE =DF ,由∠B =60°,可得DE =DF =32BD ,由AD =3BD ,求得sin A =DE AD=12,可证得∠A =30°;(2)延长BA ,使得BH =BC ,连接EH ,CH ,易证△BCH 为等边三角形,进而可证△BCF ≌△HCE SAS ,可得BF =HE ,∠BFC =∠HEC ,可知∠AEH =∠CFG ,易证得△AEH ≌△CFG SAS ,可得AH =CG ,由BC =BH =AB +AH =AB +CG 可得结论;(3)由题意可知△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,可得CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,可知△ACQ ∽△MCN ,可得MN =32AQ ,由3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM 可知点Q ,N 都在线段BM 上时,3AQ +2BQ+13CQ 有最小值,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,可得CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,可证△CBR ∽△MBT ,得BR CR =BT MT ,设BC =a 由等边三角形的性质,可得CM =32a ,进而可得CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,结合BR CR=BTMT 可得:BQ +213CQ 313CQ =a +334a 34a ,可得BQ CQ =213+33913,由翻折可知,BP =BQ ,可求得BP CQ的值.【详解】(1)证明:过点D 分别作BC ,AC 的垂线,垂足为E ,F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,∴DE =DF ,又∵∠B =60°,∴DE =BD ⋅sin60°=32BD ,则DE =DF =32BD ,又∵AD =3BD ,∴sin A =DE AD =32BD3BD=12,∴∠A =30°;(2)BC =AB +CG ,理由如下:延长BA ,使得BH =BC ,连接EH ,CH ,∵∠ABC =60°,BH =BC ,∴△BCH 为等边三角形,∴CB =CH ,∠BCH =60°,∵CE 绕点C 逆时针旋转60°至CF ,∴CE =CF ,∠ECF =60°,则∠BCH -∠ACB =∠ECF -∠ACB ,∴∠ECH =∠FCB ,∴△BCF ≌△HCE SAS ,∴BF =HE ,∠BFC =∠HEC ,则∠AEH =∠CFG ,∵BF =FG ,∴BF =HE =FG ,又∵E 为AC 中点,∴AE =CE =CF ,∴△AEH ≌△CFG SAS ,∴AH =CG ,∴BC =BH =AB +AH =AB +CG ;(3)∵∠ABC =60°,AC =BC ,∴△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,则CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,∴sin ∠CQN =CN QN =313,cos ∠CQN =CQ QN =213,则∠ACM =∠QCN =90°,∴∠ACM -∠ACN =∠QCN -∠ACN ,则∠ACQ =∠MCN∴△ACQ ∽△MCN ,∴MN AQ =CM CA=32,即:MN =32AQ ,∴3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM即:点Q ,N 都在线段BM 上时,3AQ +2BQ +13CQ 有最小值,如下图,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,则∠BRC =∠BTM =90°,CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,又∵∠CBR =∠MBT ,∴△CBR ∽△MBT ,∴BR CR=BT MT ,∵△ABC 是等边三角形,设BC =a ∴∠ACB =60°,AC =BC =a ,则CM =32a ,∵∠ACM =90°,∴∠MCT =30°,则CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,则由BR CR=BT MT 可得:BQ +213CQ 313CQ =a +334a34a ,整理得:133BQ CQ +23=4+333,得BQ CQ=213+33913,由翻折可知,BP =BQ ,∴BP CQ =BQ CQ=213+33913.【点睛】本题属于几何综合,考查了解直角三角形,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,旋转的性质以及费马点问题,掌握费马点问题的解决方法,添加辅助线构造全等三角形和相似三角形是解决问题的关键.24(2023春·江苏·八年级专题练习)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN 填(“是”或“不是”)“等垂线段”.(2)△ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若DE =2,BC =4,请直接写出PM 与PN 的积的最大值.。

2024年中考数学重难点《几何最值问题》题型及答案解析

2024年中考数学重难点《几何最值问题》题型及答案解析

重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。

考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。

1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。

二次函数中几何的最值问题完整版

二次函数中几何的最值问题完整版

二次函数中几何的最值问题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】二次函数中几何的最值问题一、解答题1、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,0)、B (6,0)、C(0,-2),抛物线y=a+bx+c(a≠0)经过A、B、C三点。

(1)求直线AC的解析式;(2)求此抛物线的解析式;(3)若抛物线的顶点为D,试探究在直线AC上是否存在一点P,使得△BPD的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。

2、如图,已知抛物线y=-+mx+3与x轴交于A,B两点,与y轴交于点C,点B 的坐标为(3,0)。

(1)求m的值及抛物线的顶点坐标;(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标。

3、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值。

4、如图,抛物线y=+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B (5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q 一共有几个并请求出其中某一个点Q的坐标.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=-3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标。

题型六 几何最值(专题训练)(解析版)

题型六 几何最值(专题训练)(解析版)

题型六几何最值(专题训练)1.如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD BD +的最小值是( )【答案】B【详解】如图,作DH ⊥AB 于H ,CM ⊥AB 于M .∵BE ⊥AC ,∴∠AEB=90°,∵tanA=BE AE=2,设AE=a ,BE=2a ,则有:100=a 2+4a 2,∴a 2=20,∴,∴,∵AB=AC ,BE ⊥AC ,CM ⊥AB ,∴(等腰三角形两腰上的高相等))∵∠DBH=∠ABE ,∠BHD=∠BEA ,∴sin DH AE DBH BD AB Ð===,∴BD ,∴BD=CD+DH ,∴CD+DH ≥CM ,∴BD ≥∴BD 的最小值为故选B .2.如图,在Rt ABC D 中,90°Ð=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【答案】B【详解】如图,设⊙O 与AC 相切于点D ,连接OD ,作OP BC ^垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP OF -,∵4AC =,3BC =,∴5AB =∵90OPB °Ð=,∴OP ACP ∵点O 是AB 的三等分点,∴210533OB =´=,23OP OB AC AB ==,∴83OP =,∵⊙O 与AC 相切于点D ,∴OD AC ^,∴OD BC ∥,∴13OD OA BC AB ==,∴1OD =,∴MN 最小值为85133OP OF -=-=,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长,MN 最大值1013133=+=,513+=633,∴MN 长的最大值与最小值的和是6.故选B .3.如图,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF V 沿EF 所在直线翻折,得到'A EF V ,则'A C 的长的最小值是( )A B .3C 1-D 1-【答案】D【详解】以点E 为圆心,AE 长度为半径作圆,连接CE ,当点A'在线段CE 上时,A'C 的长取最小值,如图所示,根据折叠可知:1A'E AE AB 12===.在Rt BCE V 中,1BE AB 12==,BC 3=,B 90Ð=o ,CE \==,A'C \的最小值CE A'E 1=-=.故选D .4.如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将△ABG 绕点B 逆时针旋转60°得到△EBF ,当AG+BG+CG 取最小值时EF 的长( )A .B .C .D .【答案】D【详解】解:如图,∵将△ABG 绕点B 逆时针旋转60°得到△EBF ,∴BE=AB=BC ,BF=BG ,EF=AG ,∴△BFG 是等边三角形.∴BF=BG=FG ,.∴AG+BG+CG=FE+GF+CG .根据“两点之间线段最短”,∴当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长,过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF=180°-120°=60°,∵BC=4,∴BF=2,,在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG ,∴EF=13故选:D .5.如图,Rt ABC △中,AB BC ^,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA °Ð+Ð=,则线段CP 长的最小值为________.【答案】2:【详解】∵∠PAB+∠PBA=90°∴∠APB=90°∴点P 在以AB 为直径的弧上(P 在△ABC 内)设以AB 为直径的圆心为点O ,如图接OC ,交☉O 于点P ,此时的PC 最短∵AB=6,∴OB=3∵BC=4∴5OC ===∴PC=5-3=26.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE=1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G点运动轨迹.CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF=1G E =1,CF=1322CE =,所以CH=52,因此CG 的最小值为52.GA B CDE F27.如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且D D =PAB PCD S S ,则PC PD +的最小值为_____.【答案】【详解】ABCD Q 为矩形,AB DC\=又=V V Q PAB PCDS S \点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上,连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +=====故答案为:8.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是2______.【答案】54.【详解】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=52,∠A=30°,∴PE=12AE=54,∴CQ的最小值为54.故答案为:549.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM ﹣PN 的最大值为 .【答案】2【分析】作以BD 为对称轴作N 的对称点N',连接PN',MN',依据PM ﹣PN =PM ﹣PN'≤MN',可得当P ,M ,N'三点共线时,取“=”,再求得//AN CN BM CM ==31,即可得出PM ∥AB ∥CD ,∠CMN'=90°,再根据△N'CM 为等腰直角三角形,即可得到CM =MN'=2.【解答】解:如图所示,作以BD 为对称轴作N 的对称点N',连接PN',MN',根据轴对称性质可知,PN =PN',∴PM ﹣PN =PM ﹣PN'≤MN',当P ,M ,N'三点共线时,取“=”,∵正方形边长为8,∴AC =2AB =28,∵O 为AC 中点,∴AO =OC =24,∵N 为OA 中点,∴ON =22,∴ON'=CN'=22,∴AN'=26,∵BM =6,∴CM =AB ﹣BM =8﹣6=2,∴//AN CN BM CM ==31∴PM ∥AB ∥CD ,∠CMN'=90°,∵∠N'CM =45°,∴△N'CM 为等腰直角三角形,∴CM =MN'=2,即PM ﹣PN 的最大值为2,故答案为:2.【点评】本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.如图,ABC V 是等边三角形,6AB =,N 是AB 的中点,AD 是BC 边上的中线,M 是AD 上的一个动点,连接,BM MN ,则BM MN +的最小值是________.【答案】【分析】根据题意可知要求BM+MN 的最小值,需考虑通过作辅助线转化BM ,MN 的值,从而找出其最小值,进而根据勾股定理求出CN ,即可求出答案.【解析】解:连接CN ,与AD 交于点M ,连接BM .(根据两点之间线段最短;点到直线垂直距离最短),AD 是BC 边上的中线即C 和B 关于AD 对称,则BM+MN=CN ,则CN 就是BM+MN 的最小值.∵ABC V 是等边三角形,6AB =,N 是AB 的中点,∴AC=AB=6,AN=12AB=3, CN AB ^,∴CN ====即BM+MN的最小值为故答案为:【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.11.如图,在中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .【分析】首先对问题作变式2AD+3BD=233AD BD æö+ç÷èø,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.ABC D A BCD问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.12.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为_____.【答案】2-【解析】【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于E ,点点O 作OF ⊥BC 于F ,交CD 于G ,则OM+ME ≥OF .求出OM ,OF 即可解决问题.【详解】解:取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于E ,点点O 作OF ⊥BC 于F ,交CD 于G ,则OM+ME ≥OF .∵∠AMD=90°,AD=4,OA=OD,∴OM=12AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=,GF,OF=,∴ME≥OF﹣OM=﹣2,∴当O,M,E共线时,ME的值最小,最小值为2.【点睛】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.【答案】【详解】将△BMN 绕点B 顺时针旋转60度得到△BNE ,∵BM=BN ,∠MBN=∠CBE=60°,∴MN=BM ∵MC=NE ∴AM+MB+CM=AM+MN+NE .当A 、M 、N 、E 四点共线时取最小值AE .∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH ⊥AE ,AH=EH ,∠BAH=30°,∴BH=12AB=3,BH=AE=2AH=故答案为14.如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把PBE △沿PE 折叠,得到PBE △,连接CF .若AB =10,BC =12,则CF 的最小值为_____.【答案】8【解析】【分析】点F 在以E 为圆心、EA 为半径的圆上运动,当E 、F 、C 共线时时,此时FC 的值最小,根据勾股定理求出CE ,再根据折叠的性质得到BE =EF =5即可.【详解】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=13,∴CF=CE﹣EF=13﹣5=8.故答案为8.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.15、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为,则BC=_____.-【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC ,AH ⊥BC ,∴∠BAP=∠CAP ,∵PA=PA ,∴△BAP ≌△CAP (SAS ),∴PC=PB ,∵MG=PB ,AG=AP ,∠GAP=60°,∴△GAP 是等边三角形,∴PA=PG ,∴PA+PB+PC=CP+PG+GM ,∴当M ,G ,P ,C 共线时,PA+PB+PC 的值最小,最小值为线段CM 的长,∵AP+BP+CP 的最小值为,∴,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN ⊥AC 于N .则BN=12AB=1,,,∴16.如图所示,30AOB Ð=o ,点P 为AOB Ð内一点,8OP =,点,M N 分别在,OA OB 上,求PMN D 周长的最小值_____.【答案】PMN D 周长的最小值为8【详解】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP 、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN D 周长最小,根据轴对称性质可知1PM PM =,2P N PN =,1212PM N PM M N PN PP \D =++=,且1A O P A O P Ð=Ð,2BO P BO P Ð=Ð,12260POP AOB Ð=Ð=°,128O P O P O P ===,12PPO D 为等边三角形,1218PP OP ==即PMN D 周长的最小值为8.17.在正方形ABCD 中,点E 为对角线AC (不含点A )上任意一点,AB=;(1)如图1,将△ADE 绕点D 逆时针旋转90°得到△DCF ,连接EF ;①把图形补充完整(无需写画法); ②求2EF 的取值范围;(2)如图2,求BE+AE+DE 的最小值.【答案】(1)①补图见解析;②2816EF ££;(2)2+【详解】(1)①如图△DCF 即为所求;②∵四边形ABCD 是正方形,∴BC =AB =,∠B =90°,∠DAE =∠ADC =45°,∴AC AB =4,∵△ADE 绕点D 逆时针旋转90°得到△DCF ,∴∠DCF =∠DAE =45°,AE =CF ,∴∠ECF =∠ACD +∠DCF =90°,设AE =CF =x ,EF 2=y ,则EC =4−x ,∴y =(4−x )2+x 2=2x 2−8x +160(0<x ≤4).即y =2(x −2)2+8,∵2>0,∴x =2时,y 有最小值,最小值为8,当x =4时,y 最大值=16,∴8≤EF 2≤16.(2)如图中,将△ABE 绕点A 顺时针旋转60°得到△AFG ,连接EG ,DF .作FH ⊥AD 于H .由旋转的性质可知,△AEG 是等边三角形,∴AE =EG ,∵DF ≤FG +EG +DE ,BE =FG ,∴AE +BE +DE 的最小值为线段DF 的长.在Rt △AFH 中,∠FAH =30°,AB ==AF ,∴FH =12AF ,AH ,在Rt △DFH 中,DF ==2+,∴BE +AE +ED 的最小值为2.。

几何最值36问(附详解)

几何最值36问(附详解)
【答案】83
C
【解析】如图,取△AEF 的外心 O,连接 OA、OF、OE,
则 OA=OE=OF,且∠FOE=2∠FAE=60°,
∴△OEF 为等边三角形,
过 O 作 OG⊥EF 于点 G,交 AB 于点 H,
F
G
E
设 EF=2x,则 HD=GE=x,AH=4-x,而 OA=2x,
由“斜垂大法”可知 OA≥AH,
Q
∴PQ= 2PF,∴PQ+PD≥DQ=4,
∴ 2PF+PD=PQ+PD≥DQ=4.
F
或由托勒密不等式可得:
P
PF·AD+AF·PD≥AP·DF,而 AD= 2AF= 2DF,
∴ 2PF+PD≥AP=4.
A
B
D
(14)若∠CAE=30°,AD=4,过 E 作 EF∥AD 交 AC 于点 F,求 EF 的最小值;
【答案】2 6+2 2
C
【解析】如图,把△DPC 绕点 D 顺时针旋转 60°至△DQR,连接 PQ,AR,
则 QR=PC,且△PDQ 为等边三角形,
∴PQ=PD,
R
Q
∴PA+PD+PC=PA+PQ+QR≥AR,
P
过 R 作 RS⊥AB 于点 S,
则 RS=12RD=2,DS= 3RS=2 3,
A
D
过点 E 作 EG⊥CF 于 G,过点 A 作 AS⊥CF 于 S,则 EG=12CE,
∴AS+EG≤AE,
∴AE-EG≥AS,
I
H
G
∴ID=3 = 43 3,
∴AI=AD-ID=6-43
∴AS=
3
AI=3
2
D
A
∵AD=6,CD=4,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何最值问题(习题)
例题示范
例 1:如图,折叠矩形纸片ABCD,使点B 落在边AD 上,折痕EF 的两端分别在A B,BC 上(含端点).若A B=6cm,BC=10cm,则AB' 的取值范围是.
B F C
E
A B' D
【思路分析】
1.明确目标,分析定点、动点
要求AB' 的取值范围,即求AB' 的最大值与最小值,定点是A,动点是B' ;
2.分析动点的形成因素,寻找不变特征
动点B' 是由点B 折叠得到的,所以B'E =BE,B'F =BF,因
为AE+BE=6,CF+BF=10,
所以AE +B'E =6,C F +B'F =10(不变特征).先
求AB' 的最大值:
把AE,B'E ,AB' 放在一个三角形中,根据三角形三边关系:两边之和大于第三边,可得:AB' < AE +B'E ,即AB' < 6 ,如果AB' 有最大值,则三角形三个顶点应该共线,即点E 与点A 重合,此时AB'=6 ,由此可得,AB' ≤6,即AB' 的最大值是 6.
再求AB' 的最小值:
转化为求B'D 的最大值,考虑把B'D 放入 Rt△B'DC 中,只需B'C 最大即可,把CF,B'F ,B'C 放在一个三角形中,根据三角形三边关系,类比上面求解AB' 最大值的方法得到
B'C 的最大值为 10,由此得到B'D 的最大值是 8,即AB' 的最小值是 2.
综上,AB' 的取值范围是:2cm≤AB' ≤6cm.
3.作出图形,验证是否符合题意.
B F
C B C(F)
E
A(E)
B' D A B' D
图1图2
巩固练习
1.如图,在△ABC 中,∠BAC=120°,AB=AC=4,点M,N 分别在
边A B,AC 上,将△AMN 沿M N 翻折,点A的对应点为A' ,连接BA' ,则B A' 长度的最小值为.
A
M N
A'
B C
2.如图,在三角形纸片ABC 中,已知∠ABC=90°,AC=5,BC=4.过
点A 作直线l 平行于BC,折叠三角形纸片ABC,使直角顶点
B 落在直线l上的点P处,折痕为M N.当点P在直线l上移动
时,折痕的端点M,N 也随之移动,若限定端点M,N 分别在AB,BC 边上(包括端点)移动,则线段A P 长度的最大值与最小值之差为.
A P l
B N C
3.在锐角△ABC 中,AB=4,BC=5,将△ABC 绕点B按逆时针方
向旋转,得到△A1BC1.若E为线段A B 的中点,则在△ABC绕点
B 按逆时针方向旋转的过程中,线段EC1 长度的最大值是
,最小值是.
C1
B C
4.如图,在△ABC 中,AB=5,AC=12,BC=13,P 为BC 边上任
一点,PE⊥AB 于点E,PF⊥AC 于点F,M 为E F 中点,则线段P M 长度的最小值为.
A
B P C
5.正方形ABCD 的边长为a,P 是BC 边上任意一点(可与B,
C 重合),B,C,
D 三点到射线A P 的距离分别是h1,h2,h3
,设h1+h2+h3=y,则y的最大值是,最小值是
D C
A B
6.如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分
别以AP 和PB 为边作等边△APC 和等边△BPD,则线段
CD 长度的最小值为.
C
A P B
7.如图,在R t△ABC 中,∠ACB=90°,AC=6,BC=4,在△ABC 内
部以A C 为斜边任意作R t△ACD,连接B D,则线段B D 长度的最小值为.
B
C A
8.如图,正方形ABCD 的边长是2,以正方形ABCD 的边AB 为
边,在正方形内作等边三角形A BE,P 为对角线A C 上的一动点,则P D+PE 的最小值为.
A D
B C
9.如图,在菱形ABCD 中,AB=2,∠A=120°,若P,Q,K 分别
为线段BC,CD,BD 上的任一点,则PK+QK 的最小值为
A D
B P C
思考小结
1.几何最值问题的处理思路
①分析定点、动点,寻找不变特征;
②若属于常见模型、结构,调用模型、结构解决问题;
若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.
2.转化原则:
尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标.
3.基本定理:
两点之间,线段最短(已知两个定点)
垂线段最短(已知一个定点、一条定直线)
三角形三边关系(已知两边长固定或其和、差固定)
4.常用模型、结构示例:
①轴对称最值模型
A
l
l
B
求P A+PB 的最小值,求|PA-PB|的最大值,
对称至异侧对称至同侧
B' B
l
M N
固定长度线段MN 在直线l 上滑动,求AM+MN+BN 的最小值,需平移BN(或AM),转化为AM +MB'解决.
②折叠求最值结构
A
M N
A'
B C
求BA′的最小值,转化为求BA′+A′N+NC 的最小值(利用A′N+NC 为定值).
【参考答案】1.4 4
2. 1 3.7,3
4.30 13
5.2a,2a 6.5
7.2
8.2
9.。

相关文档
最新文档