超声波的定义及特性
超声波的特性及在医学诊断中的应用价值

超声波的特性及在医学诊断中的应用价值【摘要】超声波是一种高频声波,具有穿透力强、无辐射危害等特性,在医学诊断中起着重要作用。
本文首先介绍了超声波的基本概念和在医学诊断中的重要性,接着探讨了超声波的特性、在医学诊断中的应用、超声波成像技术以及在心脏病学和妇科学中的具体应用。
结论部分展望了超声波在医学诊断中的前景,并对超声波技术未来的发展进行了展望。
通过本文的阐述,读者可以更加深入了解超声波在医学诊断中的重要性和多样化的应用场景,进一步认识到超声波技术在提高诊断准确性、降低医疗风险等方面的巨大价值。
【关键词】关键词:超声波,医学诊断,特性,应用,成像技术,心脏病学,妇科学,前景,展望。
1. 引言1.1 超声波的基本概念超声波是一种机械振动波,其频率高于人类能听到的声音频率,通常超过20千赫兹。
超声波在空气中传播速度约为343米/秒,而在人体组织中传播速度约为1540米/秒。
超声波具有穿透力强、不易被吸收和散射、对人体无辐射危害等特点。
在医学领域,超声波通过超声探头产生,通过人体组织的传播和反射,最后被接收和解释,用于诊断和治疗。
超声波的基本工作原理是利用高频声波在人体组织中的传播和反射特性。
当超声波遇到不同密度的组织时,会产生不同程度的反射或穿透,这些信息会被接收器捕捉并转化成图像,医生可以根据这些图像来判断患者的病情。
超声波可以用于检查器官的结构、形状、大小、位置以及功能情况,对于很多疾病的筛查和诊断具有重要意义。
超声波技术的发展为医学诊断提供了更多的手段和可能性,它已经成为现代医学中不可或缺的重要工具之一。
通过超声波检查,医生可以更早地发现疾病,提高治疗效果,减少病人的痛苦和医疗成本。
超声波的应用不断拓展,为医学诊断带来了新的曙光。
1.2 超声波在医学诊断中的重要性超声波技术在医学诊断中起着至关重要的作用,其非侵入性、无放射性和高分辨率的特点使其成为医学领域不可或缺的工具。
通过超声波技术,医生能够实时观察人体内部组织和器官的结构、形态以及功能情况,帮助医生做出准确的诊断和治疗方案。
超声及其应用PPT课件

方向性强
超声波的波束狭窄,方向性好 ,能量集中,穿透能力强。
传播速度慢
在同一种介质中,超声波的传 播速度比普通声波慢。
超声波的产生与传播
01
02
03
超声波的产生
超声波通常由压电效应产 生,通过高频电信号驱动 压电晶体,产生机械振动 并发出超声波。
超声波的传播
超声波在介质中传播时, 会受到介质的吸收、散射 和干涉等影响,导致能量 衰减和波形畸变。
05 超声的未来发展与挑战
超声技术的研究前沿与热点
医学影像
高分辨率、高穿透深度 的超声成像技术,用于 早期发现病变和精准诊
断。
生物效应
研究超声对细胞和组织 的生物效应,探索无损、
无创的治疗方法。
超声药物传递
利用超声的物理效应, 实现药物的定向传输和
释放。
实时监测
开发实时、动态的超声 监测技术,用于手术导
超声波的波长是指相邻两个波峰之间 的距离,与频率成反比。
02 超声设备与技术
超声设备的基本构成
超声探头
用于产生超声波和接收回 声信号,是超声设备的核 心部件。
信号处理系统
对回声信号进行处理、分 析和显示,生成超声图像。
电源和控制系统
提供设备所需电源和控制 信号,确保设备正常工作。
超声成像技术
二维超声成像
安全性与可靠性
加强超声技术的安全性和可靠性研究, 确保其在医疗领域的应用安全有效。
THANKS FOR WATCHING
感谢您的观看
应用领域
超声波无损检测在航空航天、汽车、电子、化工等领域得到广泛应用,是保证产品质量和 安全的重要手段之一。
超声在环境监测中的应用
超声波技术原理

具有直线传播、反射、折射、干涉等特性,可在固体、液体 和气体中传播。
超声波的分类
按频率分类
可分为低频超声波(20-200千赫兹)、中频超声波(200-2000千赫兹)和高 频超声波(2000-20000千赫兹)。
按波形分类
可分为纵波、横波、表面波和板波等。
超声波的传播特性
传播速度
在同一种介质中,超声波的传播速度与普通声波 相同,但在不同介质中传播速度会有所不同。
应用范围
广泛应用于腹部、妇产科、心血管、颅脑等领域,如B超、彩色多 普勒超声等。
工业清洗与加工
工业清洗
超声波技术利用空化作用和声波振动,对物体表面和内部的污垢进 行高效清洗。
加工原理
通过换能器将高频电信号转换为超声波振动,在液体中产生空化效 应,形成局部高压、高温的液体射流,对物体表面进行清洗。
应用范围
设备成本
超声波设备通常较为昂贵,尤 其是一些高精度的设备,限制 了其在一些领域的应用。
操作难度
超声波技术的操作需要专业知 识和技能,对操作者的要求较 高,也增加了其应用的难度。
未来发展方向
智能化
高分辨率化
随着人工智能和机器学习技术的发展,超 声波技术将更加智能化,能够实现自动识 别、自动诊断等功能。
广泛应用于机械、电子、化工、航空航天等领域的清洗和加工,如清 洗电路板、去除焊接残留物等。
05
超声波技术的挑战与未来发展
技术挑战
信号干扰
超声波在传播过程中容易受到环 境噪声和其他电磁信号的干扰,
影响信号的准确性和稳定性。
穿透能力和分辨率
超声波的穿透能力和分辨率之 间存在一定的矛盾,难以同时 实现高穿透力和高分辨率。
超声波具有较强的穿透性

轴向分辨力和侧向分辨力
其他分辨力:
细微分辨力(频带宽、数字化声束) 对比分辨力(灰阶级数) 时间分辨力(帧数即单位时间成像速度)
5-2、穿透性
超声波具有较强的穿透性,它能达到人体组织 一定的深度,故可探测病变的性质与范围。与频率 有关: f高,波长短,穿透力弱; f低,波长长,穿透力强; 故浅表扫查用高频,腹部脏器用低频;
4、 超声波的吸收与衰减
声衰减定义:
超声波在传播过程中,能量随传播距离的增加而减少 的现象称为超声衰减。
衰减量=频率×深度 频率高,衰减重 原因:吸收损耗、声束扩散、散射和折射
超声衰减的程度与声波的频率、传播距 离、介质的结构特性和温度等因素有关。
多;
故:1、在同一介质中,频率越高,衰减越
声轴线上的弛张期峰值负压除以声脉冲频宽的中心频率 平方根值。) (3)诊断用超声可引起细胞畸变,染色体、组织学影响。 (4)HIFU:声功率为KW/cm2 –热凝固、空化—破坏,用 于肿瘤消融与机械震荡碎石治疗。 (5)超声在物理治疗学应用广泛(W级)
3
四、人体组织对入射超声的作用
脉冲式超声通常可分为4种超声声强: ①空间平均时间平均声强; ②空间平均时间峰值声强; ③空间峰值时间平均声强;
超声影像中一对主要矛盾体:穿透力与分辨力
这两者都与超声波频率有关,f越高,则穿 透力降低,而分辨力提高。
所以:a医学超声诊断仪的适用频率是3~15MHZ
b浅表脏器检查选用高频探头,深部脏器 检查选用低频探头
6.多普勒效应
声源与接收体(人体组织)之间的相对运动引起声波 频率发生改变的现象,频率的变化称为频移fd
探头
称为负性频移
V =血流速度 C =声速 cosθ=血流与探头间夹角
超声波物理

第二节 超声场 超声场是指超声在弹性介质中传播时,超声能量在空间分布状态的描述。常用声强分布或声压分布来描述。
一、圆形单晶片声源的超声场 1、超声场轴线上声压的分布 在圆形单晶片声源的超声场中,轴线上近场区声压分布并不是均匀的,有极大值和极 小值随声程x的变化而变化。范围在0~2P0。其分布规律可用公式7-14来表达。 极大值和极小值沿声程x的分布如图7-3。晶体直径d越大,频率越高,则近场声压分布就越不均匀。 在圆形晶片的远场区,声压呈单值变化。 2、超声场的角分布 圆形活塞辐射器的声压分布除了在中心轴线上的分布不均匀以外,在中心轴的声压分布也是不 均匀的。其特点是中心部分出现一个主瓣,在主瓣两边出现许多付瓣,这个现象被称为换能器的指向性。如图7-4
二、声束的聚焦 在超声诊断中,探头辐射的声束宽度是限制横向分辨率的主要原因。为了减小声束宽度,常采用的方法之一是使用 声聚焦探头。 在超声治疗中,可使声束在聚焦区域有最大的强度,以集中治疗肿瘤组织等,而聚焦区以外的正常组织不被破坏。 1、超声聚焦原理 超声束可以像光束一样,利用透镜使之聚焦。在声程x大于晶片半径a及焦距f大于晶片半径a的情 况下,聚焦声束轴线上的声压幅值可以近似为:
c是声速,为声波的圆频率
声压的有效值为pe则pe
pm 2
3、声强 声传播时也伴随着能量的传播.用单位时间内通过垂直于声波传播方向的单位面积的能量(声波的能 量流密度)表示.声强的单位是瓦/平方米.声强的大小与声速成正比,与声波的频率的平方、振幅的平方成正 比.超声波的声强大是因为其频率很高,炸弹爆炸的声强大是因为振幅大. 声音强度由振动幅度的大小决定,
平方米 ) ,或Pa(帕斯卡)。超声在介质中传播,介质的密度随之做周期性变化,介质中的压强也就
超声波特性

2.1 超声波的定义波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。
声波是一种弹性机械波。
人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。
在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。
2.2超声波的物理特性当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ₁为反射横波,L ₁为反射纵波,L ₂为折射纵波,S ₂为折射横波。
L图2.1超声波的反射、折射及其波形转换这些物理现象均遵守反射定律、折射定律。
除了有纵波的反射波折射波以外,还有横波的反射和折射。
因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。
在理想介质中,超声波的波动方程描述方法与电磁波是类似的。
描述简谐声波向X 正方向传播的质点位移运动可表示为:()cos()A A x t kx ω=+ (2.1)0()ax A x A e -= (2.2)式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。
衰减系数与声波所在介质和频率关系:2af α= (2.3)式(2.3)中,a 为介质常数,f 为振动频率。
2.2.1超声波的衰减从理论上讲,超声波衰减主要有三个方面:(1) 由声速扩展引起的衰减在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。
(2) 由散射引起的衰减由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。
超声波知识点

超声波知识点超声波是一种纵波,其波长比可见光短得多,因此不能用肉眼观察。
它的频率很高,超过了人类可听到的上限。
超声波具有射线性、直线传播、不弥散等特点,因此得到了广泛应用。
本文将从超声波的定义、性质、应用等方面进行介绍。
一、超声波的定义所谓超声波,是指波长小于20微米的音波,频率大于20KHz 的纵波。
通俗地说,超声波就是一种声波,但它的频率比人类可听到的声音高得多。
它可以在空气中传播,但其强度会随着距离的增加而迅速衰减。
二、超声波的性质1.射线性超声波能够像光线一样在介质之间直线传播。
这是因为超声波在介质中传播时,会遵循折射定律。
2.干涉和衍射超声波也有干涉和衍射的现象。
当超声波在两个不同的方向上传播时,它们会互相干涉,使得波峰和波谷互相抵消。
当超声波经过一个孔隙时,仍然能够衍射,形成衍射条纹。
3.频散和色散超声波在介质中的传播速度会随着频率的变化而变化,这被称为频散。
当超声波经过不同介质时,其传播速度也会发生变化,这被称为色散。
4.特定驻波的形成当两个相同频率的超声波在介质中相遇时,它们会形成特定的驻波模式。
这种模式的分布受到介质特性、波源频率及其辐射模式的影响。
5.多次反射类似于光学中的镜面反射,超声波在遇到不同介质的界面时也会发生反射。
如果界面是光滑平整的,超声波就能够产生良好的回波信号。
三、超声波的应用1.医学领域医学上最常见的应用是超声波诊断。
超声波在人体组织中的传播速度和吸收率与组织的密度和结构有关。
通过向人体内部发射超声波,医生可以获得计算机轴扫超声等设备提供的有关人体内部器官的图像信息,以此来诊断疾病。
2.材料测试超声波可以被用来测试材料的结构和性能。
以声速为基础,能够获得测量参数,如材料的密度、弹性、硬度等。
3.环境表面检测超声波可以被用来探测水下物体,如船体、港口建筑等。
它也可以被用来测试地下结构,如油藏、煤层、水文构造等。
4.声像技术声像技术是通过声波的反射或散射来绘制材料或物体的内部结构。
超声波的特性及在医学诊断中的应用价值

超声波的特性及在医学诊断中的应用价值1. 引言1.1 介绍超声波的基本概念超声波是一种机械波,其频率高于人类听觉范围内的声波,一般定义为超过20kHz。
超声波在空气中传播速度约为343米/秒,传播速度比空气中的声速更快,这使得超声波在医学诊断中具有独特的应用优势。
超声波是通过超声波探头发出的脉冲波,当波束遇到组织界面时,一部分波将被反射回探头,探头接收反射波并将其转化为电信号,再通过计算机处理形成影像。
超声波的基本特性包括频率、波长、速度、反射、穿透等。
在医学诊断中,超声波可以用于检查人体各种器官和组织的结构、形态及功能。
其应用场景包括但不限于产前检查、心脏病、脑部疾病、乳腺病、泌尿系统疾病等。
超声波在医学诊断中具有无辐射、实时性、价格低廉等优势,但也存在穿透深度有限、分辨率较低等局限性。
超声波在医学诊断中扮演着不可替代的重要角色,随着技术的不断发展,超声波技术将会在未来医学领域中发挥更大的作用。
1.2 阐述超声波在医学诊断中的重要性超声波在医学诊断中扮演着非常重要的角色,由于其高频振动和穿透力强的特性,能够在人体组织中产生明显的反射或散射,从而形成图像,让医生能够清晰地观察到人体内部的结构和病变情况。
与传统的X光检查相比,超声波检查不需要使用放射线,避免了对人体的辐射损伤,尤其适用于孕妇和婴幼儿等对辐射敏感的人群。
超声波检查具有无创伤性、无痛苦、无辐射、操作简便、成本低廉等优势,被广泛应用于医学诊断中。
在心脏病、腹部疾病、妇科疾病、乳腺疾病等方面,超声波检查均具有很高的诊断准确性和临床应用价值。
随着技术的不断创新和发展,超声波在医学诊断中的应用范围也在不断扩大,被越来越多的医院和临床医生所重视和采用。
超声波在医学诊断中的重要性不可忽视,对于提高医疗诊断的准确性和有效性起着关键作用。
2. 正文2.1 超声波的特性超声波是一种高频声波,它的频率超过人类能够听到的范围,通常在20kHz以上。
超声波具有以下特性:1. 能够传播在各种介质中:超声波可以在空气、水、固体等不同介质中传播,因此在医学诊断中可以通过不同组织的反射来获取影像信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③ 声强的单位 瓦/厘米2
1瓦=1焦耳/秒
4.声压级和声强级 (1)声强级LI
LI = 10lg(I/I0) 分贝(dB) 称LI为:I相对于I0的声强级,I0为I的参考值。 (2)声压级LP
由I=P2/ρc , I0=P02/ρc可得: LI = 10lg(I/I0) = 10lg(P2/P02) = 20lg(P/P0) 定义: LP = 20lg(P/P0) 分贝(dB) 称LP为:P相对于P0的声压级,P0为P的参考值。
(3)人体组织按声阻抗率大致可分成三类
① 体液及软组织:
Z≈1.5×105
瑞利
② 气体及充气的肺组织:Z≈0.0004-0.26×105 瑞利
③ 骨及钙化了的组织: Z≈5.57-8.3×105 瑞利
(4)关于声阻抗名称
声阻抗是“机-电类比”中,与电阻抗相类比而称的。 “机-电类比”是用电学的理论、手段研究声学问题的方 法。因为许多声学系统与相应的电学系统有相同的微分 方程
重要声速参数
① 人体软组织中: c≈1540 m/S
在人体各种软组织中,声速都很接近,可按此估算。
② 人体骨组织中: c≈4000 m/S ③ 空气(22℃)中: c≈ 345 m/S
2.波长、周期和频率 (1) 波长λ
声波中两个相邻同相位点之间的距离称波长,用λ 表示。
纵波:指两个相邻密集点(或稀疏点)之间的距离。 横波:指两个相邻波峰(或波谷)之间的距离。 (或:在一个波周期时间内,波所传播的距离称波长。)
a Pr
Pr Pi
a Pt
Pt Pi
a Ir
Ir Ii
a It
It Ii
注意:
这里 均为在 界面上 的波参 数之比
(2)求解思路 根据界面平衡条件:
① 在界面上两边的总压力应该相等; ② 界面上两边质点的速度应该连续。得
Pi Pr Pt
v ico i s v rco r sv tco t s
(1) (2)
又根据声阻抗率定义,Z
P v
,即 v
P Z
(2)式变为 Z P i1coisZ P r1corsZ P t2cots(3)
联解(1)、(3)两式,可求得
aPr , aPt , aIr , aIt
aPr P Pri Z Z2 2c co ossii Z Z1 1c co osstt
aPt P Pti Z2co2sZ 2icoZ s1 ciost
② 平面波声压瞬时值 P=ρcv 式中:ρ—介质密度,c—声速,v—质点振动速度
③ 声压最大值(即振幅) Pm=ρcVm=ρcω0 A
④ 声压有效值 P=Pm/
2
(2)声强I
① 定义
单位时间内通过垂直于传播方向上单位面积的超 声能量称为超声强度。简称声强,用I表示。
② 平面波声强计算式
I=P2/ρc=Pm2/2ρc=PmVm/2 =ρcVm2 /2=ρcω02A2/2
一、按质点振动方向和波传播方向的关系分类
1. 横波 质点振动方向垂直于波的传播方向的波。 由介质的切变弹性引起,亦称切变波。 横波仅在固体中传播。
2. 纵波 质点振动方向平行于波的传播方向的波。 由介质的压缩弹性引起,亦称疏密波或压缩波。 纵波能在固体、液体和气体中传播。
由于人体软组织无切变弹性,横波在人体软组织 中不能传播,而只能以纵波的方式传播,所以纵波是 超声诊断和治疗的常用波型。
(2)周期T
声波传播一个波长距离所需的时间称周期,用T表示。 等于声波中质点在平衡位置往返振动一次所需的时间。
(3)频率f
任一点在单位时间内通过的波数称频率,用f表示。等 于介质中的质点在单位时间内振动的次数。
(4)波长、周期、频率与声速之间的关系
λ=c/f=cT
T=1/f
(5)单位
声速c的单位为:m/S
这是当f=1kHz时,人耳能听觉的最小声强,国际通用。
5. 声阻抗率Z (1)定义 声场中某点的声压与该质点振动速度之比称声阻抗率 Z=P/v 对于平面波,可求得: Z=P/v=ρc 在水和空气中,还可得:Z=P/v=ρc=(Bρ)1/2 式中:ρ—介质密度,c —声速,B—体积弹性系数 (2)说明 ① Z只与介质本身声学特性有关,又称特性阻抗; ② Z的单位是瑞利,1瑞利=1g/cm2·S; ③ 声阻抗率越大,超声纵波速度越快。
三、超声波(最突出)的特性
1. 方向性好——用于探测、诊断。 2. 能量大 ——用于清洗、灭菌、手术。
第二节 超声波的产生
超声波产生的基本条件:① 振源;② 介质。
一、单自由度振动系统的数学描述
1. 位移: ξ= Acos(ω0t-φ) 式中:A ——振幅,即最大位移 ω0 =2πf0 ——角频率 f0 ——固有频率 φ——初相角
① aPt aPr 1,即:
② aIt aIr 1,即:
Pt Pr 1 Pi Pi Pt Pr Pi Pt Pi Pr
It Ir 1 Ii Ii It Ir Ii
二、按波阵面的形状分类
1. 波面与波阵面 • 波 面: 波传播时,某一时刻介质中各同相位 振动点组成的面。波面有无数个。 • 波阵面:波传播方向上最前面的那个波面。
2. 按波阵面的形状分类
1) 平面波:波阵面为平面的波。 2) 球面波:波阵面为球面的波。 3) 柱面波:波阵面为柱面的波。 3. 约定 • 为方便,超声在人体内传播,均视为平面波。 • 遇到小障碍物而散射的超声,均视为球面波。
二、声波按频率的分类及医用超声的范围
1. 声波按频率(f)的分类
简单的分类:
f<16 Hz
称:次声波
16 Hz≤f≤20 kHz 称:可听声波
f>20 kHz
称:超声波
2. 医学超声仪的频率范围:200 kHz-40 MHz 3. 超声诊断仪的频率范围: 1 MHz-10 MHz
相应的波长: 1.5mm-0.15mm
aIrIIri P P ri 2Z Z2 2c co oss ii Z Z1 1c co oss tt2
aIt IIti P P ti2Z Z1 2Z2c4 oZ s2Z i1 cZ o1 s2 c osit2
(3)超声波垂直入射界面时的力学特性
介质1 介质2
Pr, Ir Pi, Ii
③、④、⑤式中,第一项x同向波,第二项x反向波, 如无反向波(反射波),则A2=0
P = P0cos(ωt-kx ) = P0cos[ω( t-x/c )] 该式表明:在离声源x处的振动,要在声源振动 的一个时延x/c后才发生。
二、波参数
1. 声速c
声波在单位时间内传播的距离称声速,用c表示。 声速c与质点振动速度v是不同的。c与以下因素有关:
第五节 超声波的传播特性
超声波的传播特性有:波的反射、折射、透射、衍射和 散射等。两波相遇时遵循叠加原理。
一、反射和折射
条件及约定: ① 声波类型:平面波 ② 界面条件:光滑平面,且足够大(相对于波长) ③ 字母、下标的意义 P-声压,I-声强,c-声速,Z-声阻抗,θ-夹角 1-介质1,2-介质2, i-入射,r-反射,t-折射 如:Pi-入射声压,Z1-介质1的声阻抗
第一章 医学超声学基础
第一节 超声波的定义及特性
波,根据其性质可分为两大类:
波类型 传播条件 传播能量 传播速度
波实例
电磁波 真空、介质 机械波 介质
电磁能 机械能
约3×108 无线电波、光波、
m/s
X、γ射线
几百至几千 水波、地震波、
m/s
声波
一、声波的定义
弹性介质中质点机械振动状态的传播过程。 其实是机械振动能量的传播过程。
1.传播的几何特性
界面
介质1,c1,Z1
介质2,c2,Z2
入射波
Ii,Pi
θi θr
It,Pt θt
反射波
Ir,Pr
折射波
① 反射定律: θi=θr
② 折射定律:
sini c1 sintr c2
与光学定律同, 因声、光同为波
③ 发生全反射的条件 在c1<c2的情况下 当θi=θc=sin-1(c1/c2)时,即sinθi=c1/c2 θt=sin-1((c2/c1)sinθi) =sin-1((c2/c1)·(c1/c2) =90° ———— 折射波沿界面传播
二、机械波产生的过程
连续弹性介质中,某一质点的振动,通过弹 性力的作用,传递给与它相邻的质点,后者也振 动,并继续传递……能量传播,形成机械波。
三、超声波的产生及传播
由超声换能器产生振动,引起接触剂的振动, 接触剂的振动又引起人体皮肤、脂肪及内脏的振 动,超声波能量就这样进入了人体。
第三节 超声波的分类
(3)说明
① 对同一声波量,相对于同一参考声波量,恒有LI = LP ② 超声诊断仪回波信号动态范围LD =10lg(Imax/Imin)>100dB,
即:Imax/Imin=1010(100亿)倍,或Pmax/Pmin=105(10万)倍。 ③ 如未指明参考声强,默认值I0=10-16 W/cm2,
反射波 i r t0
入射波
界面
透射波
aPr
Z2 Z2
Z1 Z1
aPt
2Z2 Z2 Z1
其中: Z2 2c2
2
aI r
Z2 Z2
Z1 Z1
aIt
4Z2Z1 Z2 Z1 2
,Z1 1c1
显然有:① ②
③
原因是:
a Pt a Pr 1
a It a Ir 1
a Ir
a2 Pr
(1)c与波类型有关。横波c>纵波c。
(2)在流体与气体介质中(平面纵波):c B/