平面向量知识点总结

合集下载

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。


用字母表示向量,如a、b等。

向量的大小可以用模表示,记作|a|。

2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。

加法满足交换律和结合律。

2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。

2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。

数量积满足交换律和分配律。

2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。

3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。

平行向
量的数量积等于两个向量的模的乘积。

3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。

垂直向量的
点积为0。

3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。

4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。

在物理学中,平面向量可以用来表示力的大小
和方向。

以上是关于高中数学平面向量的基本知识点归纳总结。

希望能够对你的学习和理解有所帮助!。

平面向量知识点

平面向量知识点

平面向量知识点
1. 坐标表示:平面向量可以由一个有序数对来表示,分别表示向量在x和y方向上的分量。

2. 向量加法:向量加法满足交换律和结合律,即A + B = B + A,(A+B)+C = A+(B+C)。

3. 向量减法:向量减法A - B 可以看作是A + (-B)。

4. 向量数乘:将向量乘以一个标量k,相当于将向量的大小缩放k 倍且不改变方向。

5. 向量的模长:向量的模长表示向量的大小,用勾股定理求得,A =√
(x^2+y^2)。

6. 向量的单位向量:向量A 的单位向量是A/ A ,即大小为1,方向与A 相同的向量。

7. 向量的夹角:向量A 和向量B 的夹角可以利用内积求得,θ= cos⁻¹(A·B/ A
B )。

8. 内积:向量A 和B 的内积A·B = x₁x₂+ y₁y₂,可以用来判断两个向量是
否垂直、平行,以及求解向量的投影等。

9. 外积:向量A 和B 的外积A×B 表示一个新的向量,其大小为 A B sin θ,方向垂直于A 和B 所在的平面,且符合右手定则。

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

平面向量知识点归纳

平面向量知识点归纳

平面向量知识点归纳一、基本概念平面向量是具有大小和方向的量,通常用带箭头的字母表示,例如A→,其中→表示方向。

平面向量的大小叫做模,记作|A→|或||A||。

二、平面向量的表示平面向量可以用始点和终点坐标表示,记作A→=(A, A),其中A和A分别表示A→在x轴和y轴上的投影。

三、平面向量的运算1. 平面向量的加法平面向量A→和A→的加法定义为A→+A→=A→,其中A→的始点是A→和A→的始点的重合点,终点是A→和A→的终点的重合点。

2. 平面向量的减法平面向量A→和A→的减法定义为A→-A→=A→+(-A→),其中(-A→)表示与A→大小相等,方向相反的向量。

3. 数乘数乘是指一个实数乘以一个向量,记作AA→,其中A是实数。

数乘的结果是一个与原向量方向相同(当A>0)或相反(当A<0),长度为原向量长度的A倍的向量。

4. 平面向量的数量积平面向量A→和A→的数量积定义为A→⋅A→=|A→||A→|cosA,其中A是A→和A→之间的夹角。

5. 平面向量的向量积平面向量A→和A→的向量积定义为A→×A→=|A→||A→|sinAA,其中A是A→和A→之间的夹角,A是一个与A→和A→所在平面垂直的单位向量。

四、平面向量的性质1. 交换律和结合律平面向量的加法满足交换律和结合律,即A→+A→=A→+A→,(A→+A→)+A→=A→+(A→+A→)。

2. 数量积的性质a) A→⋅A→=A→⋅A→;b) A→⋅A→=|A→|^2,其中|A→|^2表示A→的模的平方;c) 若A→⋅A→=0,则A→和A→垂直。

3. 向量积的性质a) A→×A→=−A→×A→;b) A→×A→=A→,其中A→表示零向量;c) 若A→和A→共线,则A→×A→=A→。

五、平面向量的应用平面向量在几何、物理和工程等领域中有广泛的应用,例如:1. 平面向量可以表示物体的位移和力的大小和方向。

平面向量知识点归纳总结

平面向量知识点归纳总结

平面向量是指在平面上具有大小和方向的量。

下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。

●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。

2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。

3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。

●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。

4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。

●向量的减法:a - b = (a₁- b₁, a₂- b₂)。

●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。

5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。

●计算公式为a ·b = a₁* b₁+ a₂* b₂。

●点积满足交换律:a ·b = b ·a。

●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。

6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。

●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。

●矢量积满足反交换律:a ×b = - (b ×a)。

●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。

7.平行向量和共线向量:●平行向量指方向相同或相反的向量。

●共线向量指在同一直线上的向量。

●如果两个向量平行,则它们的叉积为零。

8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。

●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。

平面向量知识点总结归纳

平面向量知识点总结归纳

平面向量知识点总结归纳1、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0 的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式: a b a b a b⑷运算性质:①交换律:a ;②结合律:(a b c a b c ③aCaBbAa b C -AB=B C⑸坐标运算:设a =x y ),b =(x , y ),则a +b =x +x , y +y ).1 2 1 21 12 23、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设a x y ),b =(x , y ),则a b x -x , y -y ).1 12 2 1 2 1 2μ) a a aa b a be b = λa .设A 、B 两点的坐标分别为( x , y ) , ( x , y ) ,则 - x , y - y ).4、向量数乘运算:1122212⑴实数λ 与向量 a 的积是一个向量的运算叫做向量的数乘,记作 λa ① λaa②当λ > 0 时, λa 的方向与a 的方向相同;当λ < 0 时, λa 的方向与a 反;当λ = 0时, λa⑵运算律:① λ (μa a⑶坐标运算:设 ax y , 则λax y ) = (λx ,λ y ) .5、向量共线定理:向量 a a b 共线,当且仅当有唯一一个实数λ ,使设a = x y ), b = ( x , y ) ,其中b ≠ 0 ,则当且仅当 x y - x y= 0 时,向量 a11 2 2 1 22 1b (b ≠ 0 )共线.6、平面向量基本定理:如果e 1 、e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ 、λ ,使 a = e + λ e .(不共12 1 1 2 2线的向量 、 12作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段P P 上的一点, P 、P 的坐标分别是(x , y ) ,1 2⎛ x + λ x 121 1y + λ y ⎫( x , y ) ,当P P = λPP 时,点P 的坐标是 1 2 , 1 + λ λ 2 ⎪ . 2 2 1 2⎝ 1 1+ ⎭ 8、平面向量的数量积: ⑴ a ba ba b 0 ≤ θ ≤ 180 .零向量与任一向量的数量积为 0 .⑵性质:设 ab是非零向量,则① a b a b②当 ab向时,⑷坐标运算:设两个非零向量 a = x y ),b = ( x , y ) ,则a ⋅b = x x + y y . 11221 21 2AB = ( x 1a b a b a b向时, a ba b a ⋅ a = a = a a = a ⋅aa ⋅b ≤ a b⑶运算律:① a b b a λa ⋅ b = λ a ⋅ b = a ⋅ λb(a + b ⋅ c = a ⋅c + b ⋅ ce若a x y ,则a x y2 ,或a x y2 .设a =x y ),b =(x , y ),则a b x x +y y = 0 .1 12 2 1 2 1 2设a 是非零向量,a x y ),b =(x , y ),θ是a 与b 的夹角,则cosθ=1 12 2.aa bx +y y2 1 2x2 +y2 x2 +y21 12 2。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳一.向量的基本概念与基本运算1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律;AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0 =a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。

2平面向量的坐标运算: (1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x,y),则λa =(λx, λy) (4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=(5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱co sθ叫做a 与b 的数量积(或内积) 规定00a ⋅= 2向量的投影:︱b ︱cos θ=||a b a ⋅∈R,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立: ()()2222a b a b a ba b +⋅-=-=-; ()2222a b a a b b ±=±⋅+222a a b b =±⋅+ 6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅ ②对实数的结合律成立:()()()()a b a b a bR λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; (2)消去律不成立a b a c ⋅=⋅不能得到b c =⋅ (3)a b ⋅=0不能得到a =0或b =07两个向量的数量积的坐标运算: 已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠A OB=θ (001800≤≤θ)叫做向量a 与b 的夹角 cosθ=cos ,a ba b a b •<>=•=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题 9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b10两个非零向量垂直的充要条件: a ⊥b ⇔a ·b =O ⇔2121=+y y x x 平面向量数量积的性质。

平面向量知识点总结归纳

平面向量知识点总结归纳

平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。

平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。

一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。

2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。

平行向量的模长相等。

3. 零向量:所有分量都为零的向量称为零向量,用0→表示。

零向量的模长为0。

4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。

二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。

向量加法满足交换律和结合律。

2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。

向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。

3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。

4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。

内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。

5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。

外积的结果是一个向量。

三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。

2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。

3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。

4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。

5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。

四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。

2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)模: ;
(2)方向:当 时, 的方向与 的方向相同,当 时, 的方向与 的方向相反,当 时, ,
注意: .
五、平面向量的数量积
1.两个向量的夹角:对于非零向量 , ,作 , ,则把 称为向量 , 的夹角.
当 时, , 同向;当 时, , 反向;当 时, , 垂直.
2.平面向量的数量积:如果两个非零向量 , ,它们的夹角为 ,我们把数量 叫做 与 的数量积(或内积或点积),记作: ,即 .
2. 的符号与分点 的位置之间的关系
(1) 内分线段 ,即点 在线段 上 ;
(2) 外分线段 时,①点 在线段 的延长线上 ,②点 在线段 的反向延长线上 .
注:若点 分有向线段 所成的比为 ,则点 分有向线段 所成的比为 .
举例16若点 分 所成的比为 ,则 分 所成的比为. 结果: .
3.线段的定比分点坐标公式:
(2)向量的“乘法”不满足结合律,即 ,为什么?
八、向量平行(共线)的充要条件
.
举例14(1)若向量 , ,当 _____时, 与 共线且方向相同.结果:2.
(2)已知 , , , ,且 ,则 .结果:4.
(3)设 , , ,则 _____时, 共线.结果: 或11.
九、向量垂直的充要条件
.
特别地 .
是 、 同向的充要分条件;
当 、 反向时, , 是 、 反向的充要分条件;
当 为锐角时, ,且 、 不同向, 是 为锐角的必要不充分条件;
当 为钝角时, ,且 、 不反向; 是 为钝角的必要不充分条件.
(3)非零向量 , 夹角 的计算公式: ;④ .
举例6(1)已知 , ,如果 与 的夹角为锐角,则 的取值范围是______.结果: 或 且 ;
平面向量知识点小结
一、向量的基本概念
1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.
注意:不能说向量就是有向线段,为什么?提示:向量可以平移.
举例1已知 , ,则把向量 按向量 平移后得到的向量是_____. 结果:
2.零向量:长度为0的向量叫零向量,记作: ,规定:零向量的方向是任意的;
②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;
③平行向量无传递性!(因为有 );
④三点 共线 共线.
6.相反向量:长度相等方向相反的向量叫做相反向量. 的相反向量记作 .
举例2如下列命题:(1)若 ,则 .
(2)两个向量相等的充要条件是它们的起点相同,终点相同.
(1)向量的加减法运算: , .
举例8(1)已知点 , , ,若 ,则当 ____时,点 在第一、三象限的角平分线上. 结果: ;
(2)已知 , ,且 , ,则 .结果: 或 ;
(3)已知作用在点 的三个力 , , ,则合力 的终点坐标是.结果: .
(2)实数与向量的积: .
(3)若 , ,则 ,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.
3.向量 在向量 上的投影: ,它是一个实数,但不一定大于0.
举例5已知 , ,且 ,则向量 在向量 上的投影为______. 结果: .
4. 的几何意义:数量积 等于 的模 与 在 上的投影的积.
5.向量数量积的性质:设两个非零向量 , ,其夹角为 ,则:
(1) ;
(2)当 、 同向时, ,特别地, ;
(3)若 ,则 是平行四边形.
(4)若 是平行四边形,则 .
(5)若 , ,则 .
(6)若 , 则 .其中正确的是. 结果:(4)(5)
二、向量的表示方法
1.几何表示:用带箭头的有向线段表示,如 ,注意起点在前,终点在后;
2.符号表示:用一个小写的英文字母来表示,如 , , 等;
3.坐标表示:在平面内建立直角坐标系,以与 轴、 轴方向相同的两个单位向量 为基底,则平面内的任一向量 可表示为 ,称 为向量 的坐标, 叫做向量 的坐标表示.
(2)函数 的图象按向量 平移后,所得函数的解析式是 ,则 ________.结果: .
十二、向量中一些常用的结论
1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;
2.模的性质: .
(1)右边等号成立条件: 同向或 中有 ;
(2)左边等号成立条件: 反向或 中有 ;
(3)当 不共线 .
3.三角形重心公式
(6)两点间的距离:若 , ,则 .
举例12如图,在平面斜坐标系 中, ,平面上任一点 关于斜坐标系
的斜坐标是这样定义的:若 ,其中 分别为与 轴、 轴同方向的单
位向量,则 点斜坐标为 .
(1)若点 的斜坐标为 ,求 到 的距离 ;
(2)求以 为圆心,1为半径的圆在斜坐标系 中的方程.
结果:(1)2;(2) .
运算形式:若 , ,则向量 叫做 与 的和,即 ;
作图:略.
注:平行四边形法则只适用于不共线的向量.
(2)向量的减法
运算法则:三角形法则.
运算形式:若 , ,则 ,即由减向量的终点指向被减向量的终点.
作图:略.
注:减向量与被减向量的起点相同.
举例7(1)化简:① ;② ;③ .结果:① ;② ;③ ;
举例3(1)若 , , ,则 .结果: .
(2)下列向量组中,能作为平面内所有向量基底的是B
A. , B. , C. , D. ,
(3)已知 分别是 的边 , 上的中线,且 , ,则 可用向量 表示为.结果: .
(4)已知 中,点 在 边上,且 , ,则 的值是.结果:0.
四、实数与向量的积
实数 与向量 的积是一个向量,记作 ,它的长度和方向规定如下:
结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.
三、平面向量的基本定理
定理设 同一平面内的一组基底向量, 是该平面内任一向量,则存在唯一实数对 ,使 .
(1)定理核心: ;(2)从左向右看,是对向量 的分解,且表达式唯一;反之,是对向量 的合成.
(3)向量的正交分解:当 时,就说 为对向量 的正交分解.
(2)若正方形 的边长为1, , , ,则 . 结果: ;
(3)若 是 所在平面内一点,且满足 ,则 的形状为.结果:直角三角形;
(4)若 为 的边 的中点, 所在平面内有一点 ,满足 ,设 ,则 的值为.结果:2;
(5)若点 是 的外心,且 ,则 的内角 为. 结果: .
2.坐标运算:设 , ,则
(2)已知 , ,直线 与线段 交于 ,且 ,则 .结果:2或 .
十一、平移公式
如果点 按向量 平移至 ,则 ;曲线 按向量 平移得曲线 .
说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!
举例18(1)按向量 把 平移到 ,则按向量 把点 平移到点______.结果: ;
举例15(1)已知 , ,若 ,则 .结果: ;
(2)以原点 和 为两个顶点作等腰直角三角形 , ,则点 的坐标是.结果:(1,3)或(3,-1));
(3)已知 向量 ,且 ,则 的坐标是.结果: 或 .
十、线段的定比分点
1.定义:设点 是直线 上异于 、 的任意一点,若存在一个实数 ,使 ,则实数 叫做点 分有向线段 所成的比 , 点叫做有向线段 的以定比为 的定比分点.
举例9设 , ,且 , ,则 的坐标分别是__________. 结果: .
(4)平面向量数量积: .
举例10已知向量 , , .
(1)若 ,求向量 、 的夹角;
(2)若 ,函数 的最大值为 ,求 的值.结果:(1) ;(2) 或 .
(5)向量的模: .
举例11已知 均为单位向量,它们的夹角为 ,那么 =. 结果: .
七、向量的运算律
1.交换律: , , ;
2.结合律: , , ;
3.分配律: , , .
举例13 给出下列命题:① ;② ;③ ;
④ 若 ,则或 ;⑤若 则 ;⑥ ;⑦ ;⑧ ;⑨ .
其中正确的是. 结果:①⑥⑨.
说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);
设 , ,点 分有向线段 所成的比为 ,则定比分点坐标公式为 .
特别地,当 时,就得到线段 的中点坐标公式
说明:(1)在使用定比分点的坐标公式时,应明确 , 、 的意义,即分别为分点,起点,终点的坐标.
(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比 .
举例17(1)若 , ,且 ,则点 的坐标为.结果: ;
7.向量 中三终点 共线 存在实数 ,使得 且 .
举例20平面直角坐标系中, 为坐标原点,已知两点 , ,若点 满足 ,其中 且 ,则点 的轨迹是. 结果:直线 .
规定:零向量与任一向量的数量积是0.
注:数量积是一个实数,不再是一个向量.
举例4(1) 中, , , ,则 _________. 结果: .
(2)已知 , , , , 与 的夹角为 ,则 ____. 结果:1.
(3)已知 , , ,则 ____. 结果: .
(4)已知 是两个非零向量,且 ,则 与 的夹角为____. 结果: .
3.单位向量:长度为一个单位长度的向量叫做单位向量(与 共线的单位向量是 );
4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;
5.平行向量(也叫共线向量):方向相同或相反的非零向量 、 叫做平行向量,记作: ∥ ,
规定:零向量和任何向量平行.
注:①相等向量一定是共线向量,但共线向量不一定相等;
相关文档
最新文档