通信系统原理实验报告
通信原理实验报告--信号源实验

通信原理实验报告--信号源实验通信原理实验报告信号源实验一、实验目的本次通信原理实验的目的是深入了解信号源的工作原理和特性,通过实际操作和观察,掌握信号源的产生、调制和分析方法,为后续的通信系统学习和研究打下坚实的基础。
二、实验原理(一)信号源的分类信号源根据其产生信号的方式和特点,可以分为正弦信号源、方波信号源、脉冲信号源等。
正弦信号源是最常见的一种,其输出的信号具有单一频率和稳定的幅度。
(二)信号的调制调制是将原始信号(称为基带信号)加载到高频载波上的过程。
常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
在本次实验中,我们重点研究了幅度调制。
(三)信号的频谱分析通过傅里叶变换,可以将时域信号转换为频域信号,从而分析信号的频谱特性。
频谱分析对于理解信号的频率组成和带宽等特性具有重要意义。
三、实验设备与仪器本次实验使用的设备和仪器包括:信号源发生器、示波器、频谱分析仪、电源等。
信号源发生器用于产生各种类型的信号;示波器用于观察信号的时域波形;频谱分析仪用于分析信号的频谱;电源为实验设备提供稳定的工作电压。
四、实验步骤(一)正弦信号的产生与测量1、打开信号源发生器,设置输出为正弦波,频率为 1kHz,幅度为5V。
2、将信号源的输出连接到示波器的输入通道,观察正弦波的时域波形,测量其幅度和周期,并计算频率。
(二)方波信号的产生与测量1、在信号源发生器上设置输出为方波,频率为2kHz,幅度为3V,占空比为 50%。
2、用示波器观察方波的时域波形,测量其幅度、周期和占空比。
(三)脉冲信号的产生与测量1、设置信号源输出为脉冲波,频率为 5kHz,幅度为 4V,脉冲宽度为10μs。
2、通过示波器观察脉冲波的时域波形,测量其幅度、周期和脉冲宽度。
(四)幅度调制实验1、产生一个频率为 1kHz 的正弦波作为基带信号,幅度为 2V。
2、产生一个频率为 10kHz 的正弦波作为载波信号,幅度为 5V。
通信原理实验报告

实验一、PCM编译码实验实验步骤1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。
2. PCM串行接口时序观察(1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。
分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。
(2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。
分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。
3. PCM编码器(1)方法一:(A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。
(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。
分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。
分析为什么采用一般的示波器不能进行有效的观察。
(2)方法二:(A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。
此时由该模块产生一个1KHz的测试信号,送入PCM编码器。
(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。
分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。
4. PCM译码器(1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。
此时将PCM输出编码数据直接送入本地译码器,构成自环。
通信原理实验报告

通信原理实验报告引言:通信原理是现代通信技术的基础,通过实验可以更深入地理解通信原理的各个方面。
本次实验主要涉及到调制解调和频谱分析。
调制解调是将原始信号转换成适合传输的信号形式,频谱分析则是对信号的频域特性进行研究。
通过这些实验,我们可以进一步了解调制解调原理、频谱分析技术以及其在通信领域中的应用。
实验一:调制解调实验调制解调是将信息信号转换为适合传输的信号形式的过程。
在实验中,我们使用了模拟调制技术。
首先,我们通过声卡输入一个带通信号,并将其调制成调幅信号。
接着,通过示波器观察和记录调制信号的波形,并利用解调器将其还原为原始信号。
实验二:频谱分析实验频谱分析是对信号在频域上的特性进行研究。
在实验中,我们使用了频谱分析仪来观察信号的频谱分布情况。
首先,我们输入一个具有特定频率和幅度的正弦信号,并使用频谱分析仪来观察其频谱。
然后,我们改变信号的频率和幅度,继续观察和记录频谱的变化情况。
实验三:应用实验在实际通信中,调制解调和频谱分析技术有着广泛的应用。
通过实验三,我们可以了解到这些技术在通信领域中的具体应用。
例如,我们可以模拟调制解调技术在调制解调器中的应用,观察和分析不同调制方式下的信号特性。
同样,我们可以使用频谱分析仪来研究和理解不同信号在传输过程中的频谱分布。
这些实验将帮助我们更好地理解通信系统中的调制解调和频谱分析技术,从而为实际应用提供支持。
结论:通过本次实验,我们对通信原理中的调制解调和频谱分析技术有了更深入的了解。
调制解调是将信息信号转换为适合传输的信号形式,而频谱分析则是对信号的频域特性进行研究。
这些技术在通信领域中有着广泛的应用,对于实际通信系统的设计和优化非常重要。
通过实验的学习和实践,我们能够更好地掌握调制解调和频谱分析的原理和应用,从而提高我们在通信领域中的能力和技术水平。
总结:通过本次实验,我们对通信原理中的调制解调和频谱分析技术进行了学习和实践。
通过实验的过程,我们深入了解了这些技术的原理和应用,并通过观察和记录不同信号的波形和频谱特征,加深了我们对通信原理的理解。
通信系统实验报告

通信系统实验报告一、实验目的本次通信系统实验的主要目的是深入了解通信系统的基本原理和关键技术,通过实际操作和测量,掌握通信系统中信号的传输、调制解调、编码解码等过程,并分析系统性能和影响因素。
二、实验原理1、通信系统的组成通信系统一般由信源、发送设备、信道、接收设备和信宿组成。
信源产生原始信息,发送设备对信号进行处理和变换,使其适合在信道中传输,信道是信号传输的媒介,接收设备对接收的信号进行解调、解码等处理,恢复出原始信息,信宿则是信息的接收者。
2、调制解调技术调制是将基带信号变换为适合在信道中传输的高频信号的过程,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
解调则是从已调信号中恢复出原始基带信号的过程。
3、编码解码技术编码用于提高信号传输的可靠性和有效性,常见的编码方式有差错控制编码(如卷积码、Turbo 码等)和信源编码(如脉冲编码调制PCM)。
解码是编码的逆过程。
三、实验设备及材料本次实验使用的设备包括信号发生器、示波器、频谱分析仪、通信原理实验箱等。
四、实验步骤1、搭建通信系统实验平台按照实验指导书的要求,将实验设备连接好,组成一个完整的通信系统。
2、产生基带信号使用信号发生器产生一定频率和幅度的正弦波作为基带信号。
3、调制将基带信号分别进行 AM、FM 和 PM 调制,观察调制后的信号波形和频谱。
4、信道传输将调制后的信号通过信道传输,模拟信道中的噪声和衰减。
5、解调在接收端对已调信号进行解调,恢复出基带信号,并与原始基带信号进行比较。
6、编码解码对基带信号进行编码处理,然后在接收端进行解码,观察编码解码前后信号的变化。
7、性能分析测量调制解调后的信号的误码率、信噪比等性能指标,分析不同调制方式和编码方式对系统性能的影响。
五、实验结果与分析1、调制实验结果(1)AM 调制AM 调制后的信号波形呈现出包络随基带信号变化的特点,频谱中包含载频和上下边带。
在小信号调制时,调幅指数较小,解调后的信号失真较大;在大信号调制时,调幅指数较大,解调后的信号较为接近原始基带信号。
通信原理的实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。
2. 掌握模拟通信和数字通信的基本技术。
3. 熟悉调制、解调、编码、解码等基本过程。
4. 培养实际操作能力和实验技能。
三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。
1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。
模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。
2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。
数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。
五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。
2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。
(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。
2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。
(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。
通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。
三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。
2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。
3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。
4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。
通信原理实验报告_2

通信原理实验报告一、实验目的1、熟悉信号源实验模块提供的信号类别;2、加深对PCM编码过程的理解;3、掌握2ASK、2FSK的调制、解调原理;二、4.通过观察噪声对信道的影响, 比较理想信道与随机信道的区别, 加深对随机信道的理解。
三、实验器材实验模块---信号源双踪示波器模拟信号数字化模块数字调制模块信道模拟模块数字解调模块连接线三、实验原理测试工具---示波器:(1)示波器的输入功能区: 从通道1和通道2输入2、(2)示波器的测量功能区: QuickMeas光标调节和快速测量, 可以测量电压和频率;auto-scale自动触发扫描;在左上角的按钮可以调节扫描时间;在右上角的按钮可以调节水平位置。
3、(3)示波器的控制功能区, Run/Stop可以暂停便于得出波形4、模拟信号数字化(PCM编码)脉冲编码调制(PCM)简称为脉码调制, 它是一种将模拟语音信号变换成数字信号的编码方式。
PCM的原理框图:PCM主要包括抽样、量化与编码三个过程。
抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。
(1)、采样: 利用奈奎斯特定律, fs 2fb,(fs是采样频率, fb是信号的截止频率), 满足这个不等式关系信号才不会重叠, 以致信号不能还原。
(2)、量化: 模拟信号的量化分为均匀量化和非均匀量化。
本实验模块中所用到的PCM编码芯片TP3067是采用近似于A律函数规律的13折线(A=87.6)的压扩特性压扩特性来进行编码的。
A律13折线:(3)、编码所谓编码就是把量化后的信号变换成代码, 其相反的过程称为译码。
当然, 这里的编码和译码与差错控制编码和译码是完全不同的, 前者是属于信源编码的范畴。
本实验采用大规模集成电路TP3067对语音信号进行PCM编、解码。
PCM电路原理图:3.2ASK 调制原理将载波在二进制基带信号1或0的控制下通或断, 即用载波幅度的有无来代表信号中的“1”或者是“0”, 这样就可以得到2ASK 信号, 这种二进制振幅键控方式称为通—断键控(OOK )。
通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。
画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。
,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。
具体程序及图形见附录1(或者直接放在这里,写如下。
)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。
具体参数,图形。
4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。
第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。
1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。
仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。
例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。
fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档四川大学电气信息学院实验报告课程:通信系统原理实验名称:通信系统原理设计性实验课任老师:张奕专业:通信工程年级: 2013级学生姓名:余佩学号: 2013141443050一、实验目的● 理解信源编码和解码的原理、步骤以及方法 ● 复习并更加熟练地掌握汇编语言的编程方法 ● 学习在EMC 开发工具下编程 ● 学习使用EM78P259N 微控制器 ●通过观测示波器了解编码二、编码实验1、双极性不归零码 (1)实验原理"1"码和"0"码都有电流,但是"1"码是正电流,"0"码是负电流,正和负的幅度相等,极性相反,故称为双极性码。
此时的判决门限为零电平,接收端使用零判决器或正负判决器,接收信号的值若在零电平以上为正,判为"1"码;若在零电平以下为负,判为"0"码。
(2)实验流程图开始将Byte2和Byte1暂存于Data_temp2和Data_temp1中并设置编码计数值Data_temp2,7=1? Y 输出正电平输出负电平输出零电平输出零电平结束Data_temp2和Data_temp1分别左移 编码计数值不为0? NYN(3)实验思路需要在单极性不归零码的基础上,在程序的开始和结束时添加调用零电平的程序即可(4)实验程序/*****************************双极性不归零码子程序****************************/ Coding_Bi_NRZ: MOV A,Byte2MOV Data_temp2,A ;将Byte2中的数据暂存于Data_temp2中MOV A,Byte1MOV Data_temp1,A ;将Byte2中的数据暂存于Data_temp1中MOV A,@16MOV temp,A ;Byte2,Byte1中的信息共计16位需要编码输出call pulse_zero;=====输出16位编码=======Bi_NRZ_LOOP:JBS Data_temp2,7CALL Pulse_negative ;Data_temp2.7=0,调用负脉冲子程序JBC Data_temp2,7CALL Pulse_positive ;Data_temp2.7=1,调用正脉冲子程序;信息左移1位:RLC Data_temp1 ; R(n) -> R(n+1), R(7) -> C=Data_temp1.7RLC Data_temp2 ; C=Data_temp1.7 -> R(0), R(n) -> R(n+1), R(7) -> CDJZ temp ; temp-1=0?JMP Bi_NRZ_LOOP ; NO,继续编码输出call pulse_zero;=======================RET ; NRZ编码输出完毕/*****************************************************************************/ (5)实验结果图一 图二(6)调试分析如图一所示,输入十六进制码3456(相应的二进制为0011 0100 0101 0110),再打开示波器,波形如图二所示。
2.传号差分码 (1)实验原理传号差分码的编码规则是用“1”和“0”表示发生电平跳变和电平不跳变,电平跳变用“1”表示,电平不跳变用“0”表示。
(2)实验流程图开始将Byte2和Byte1暂存于Data_temp2和Data_temp1中,设置编码计数值和存放极性的寄存器YP 并置0输出零电平上一位电平与当前位电平是否改变?输出正电平输出负电平temp 左移编码计数值不为0?YNYN输出零电平结束(3)实验思路在双极性码的基础上,添加一个寄存器用于存放上一位编码的极性,再将存放极性的寄存器和存放下一位编码的寄存器进行异或。
若异或结果为1,即电平发生了跳变,则输出正电平;若异或结果为0,同之前比电位没改变,则输出负电平。
每次只能读出一位,所以最后再左移存放极性的寄存器,然后再进行下一次循环。
(4)实验程序/**********************************传号差分码子程序*******************************/Coding_DE_Mark: ;传号差分码子程序;(对存放在Byte2,Byte1中的信息进行编码输出)MOV A,Byte2MOV Data_temp2,A ;将Byte2中的数据暂存于Data_temp2中MOV A,Byte1MOV Data_temp1,A ;将Byte2中的数据暂存于Data_temp1中MOV A,@16MOV temp,A ;Byte2,Byte1中的信息共计16位需要编码输出call pulse_negativeYP==0x24CLR YP;=====输出16位编码=======DE_Mark_LOOP:MOV a,Data_temp2XOR YP,aJBS yp,7CALL Pulse_negative ;Data_temp2.7=0,调用负脉冲子程序JBC yp,7CALL Pulse_positive ;Data_temp2.7=1,调用正脉冲子程序RLC Data_temp1 ; R(n) -> R(n+1), R(7) -> C=Data_temp1.7RLC Data_temp2 ; C=Data_temp1.7 -> R(0), R(n) -> R(n+1), R(7) -> CDJZ temp ; temp-1=0?JMP DE_Mark_LOOP; NO,继续编码输出call pulse_negative;=======================RET ; 传号差分编码输出完毕/*****************************************************************************/ (5)实验结果图三 图四(6)调试分析如图三所示,输入十六进制码55D3(相应的二进制为0101 0101 1101 0011),经过传号差分码编码后的二进制结果为0110 0110 1001 1101。
打开示波器,波形如图四所示。
,理解并学会活用给新寄存器赋值,学会CLR3.空号差分码 (1)实验原理空号差分码的编码规则是用“0”和“1”表示发生电平跳变和电平不跳变。
与传号差分码相反,空号差分码中,电平跳变用“0”表示,电平不跳变用“1”表示。
(2)实验流程图开始将Byte2和Byte1暂存于Data_temp2和Data_temp1中,设置编码计数值和存放极性的寄存器YP1置1输出零电平上一位电平与当前位电平是否改变?输出正电平输出负电平NYtemp左移Y编码计数值不为0?N输出零电平结束(3)实验思路由于空号差分码正电平和负电平的编码规则与传号差分码的正好相反,所以空号差分码的程序段需要在传号差分码的基础上添加一个取反的语句,即MOV A,@0XFF XOR YP1,A,将上一步骤的异或结果取反。
将异或取反后的结果置于寄存器YP1中,输t出emp的最高位再左移temp,然后再进行下一次的循环。
(4)实验程序/******************************空号差分码子程序*************************************/Coding_DE_Space: ;空号差分码子程序;(对存放在Byte2,Byte1中的信息进行HDB3编码输出)MOV A,Byte2MOV Data_temp2,A ;将Byte2中的数据暂存于Data_temp2中MOV A,Byte1MOV Data_temp1,A ;将Byte2中的数据暂存于Data_temp1中MOV A,@16MOV temp,A ;Byte2,Byte1中的信息共计16位需要编码输出call pulse_positiveYP1==0x25MOV A,@0xFFMOV YP1,ADE_Space_LOOP:MOV A,@0xFFXOR YP1,AMOV a,Data_temp2XOR YP1,aJBC yp1,7CALL Pulse_negative ;Data_temp2.7=0,调用负脉冲子程序JBS yp1,7CALL Pulse_positive ;Data_temp2.7=1,调用正脉冲子程序RLC Data_temp1 ; R(n) -> R(n+1), R(7) -> C=Data_temp1.7RLC Data_temp2 ; C=Data_temp1.7 -> R(0), R(n) -> R(n+1), R(7) -> CDJZ temp ; temp-1=0?JMP DE_Space_LOOP ; NO,继续编码输出call pulse_negativeRET/*************************************************************************** **/(5)实验结果图五图六(6)调试分析如图五所示,输入十六进制码4723(相应的二进制为0100 0111 0010 0011),经过空号差分码的编码后,二进制结果为1101 0000 1001 0111。
打开示波器,波形如图六所示。
在设定新的寄存器时,没有掌握好寄存器的定义,将新寄存器先置0了再将立即数存进去,这样就没意义,编码就是要求精简而准确。
4.AMI码(1)实验原理AMI 码属于单极性码的变形,当遇0码时为零电平,当遇1码则存在两种交替转换器极性,这样确保正负极性个数相等。
编码规则:遇到编码为0时就只出现0;消息代码中的1 传输码中的+1、-1交替。
例如:消息代码:1 0 1 1 0 1 0 1 1 1 AMI 码: +1 0 -1 +1 0 -1 0 +1 -1 +1(2)实验流程图开始将Byte2和Byte1暂存于Data_temp2和Data_temp1中,置YP2为0输出零电平Data_temp2=0?输出零电平YP2=0?输出负电平输出正电平YP2为1 YP2为0编码计数值不为0?Data_temp2和Data_temp1左移一位输出零电平结束YNNYYN(3)实验思路输入为0的时候输出为零电平,输入为1的时候为了满足极性交替的规律,需要设置标志位,给标志位计数。
设标志位为1时输出正电平,标志位为0时输出负电平。