近世代数第21讲
近世代数知识点教学文稿

近世代数知识点近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A.1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。
●满射:像集合中每个元素都有原像。
Remark:映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A.●集合到自身的代数运算称为此集合上的代数运算。
1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。
第二章群2.1 半群1.半群=代数运算+结合律,记作(S,)Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。
ii.若半群中的元素可交换,即a b=b a,则称为交换半群。
2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。
ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。
iii.在有单位元的半群中,规定a0=e.3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。
ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。
iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。
4.子半群i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T是S的子半群a,b T,有ab T2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.ii. 加群=代数运算为加法+交换群iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3. 群的性质i. 群满足左右消去律ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii.e是G单位元⇔ e2=eiv.若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用表示。
(完整版)近世代数讲义(电子教案)(1)

《近世代数》课程教案第一章基本概念教学目的与教学要求:掌握集合元素、子集、真子集。
集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。
理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n的剩余类。
教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n的剩余类。
教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n的剩余类.教学措施:网络远程。
教学时数:8学时.教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。
集合中的每个事物叫做这个集合的元素(简称元)。
定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。
(1)集合的要素:确定性、相异性、无序性。
(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素. 若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,. 表示集合通常有三种方法: 1、枚举法(列举法):例:A ={1,2,3,4},B ={1,2,3,…,100}. 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。
近世代数教学课件

并运算 设 A, B是两个集合 . 由 A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
A A
交换律 : A B B A ; A B B A 结合律 : ( A B) C A ( B C ) ; ( A B) C A ( B C) 分配律 : A B C A B A C
A B C A B A C
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为ຫໍສະໝຸດ 素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A
近世代数 第21讲

第21 讲§6. 多项式环(Rings of polynomials )本讲的教学目的和要求:在高等代数中,已经建立了数域F上的多项式环的一般理论,但是在处理某些问题时常会遇到诸如整系数多项式,矩阵系数多项式(譬如 —矩阵)等环上的多项式,它们与数域的多项式相比,有很多本质上的差异故此,有必要讨论环上多项式环的一般理论,这正是本讲的目的.为此对学习本讲,提出如下要求:1、明确代数元和超越元的概念以及什么是R上的关于超越元的多项式歪.(本教材称超越元为半定元—与高等代数中的称呼一致)2、超越元(半定元)的存在性定理和多项式环存在性定理的证明需要弄懂.3、对多元多项式的本质上的理论问题需要清楚.本讲的重点和难点: 本讲是高等代数中多项式环(定义在数域上)的推广,是本章中众多类型中的“另类”.由于环的“型”不同,故研究的方法也不同,这是难点之一。
如何清醒地认识到不能直接用“高代”的理理论直接套用,是关键。
而本讲的重点“存在性定理”的证明。
一、多项式环的定义。
设R 是一个含有单位元1R 的可变换环。
又设R 是0R 的子环且R R∈01,现考察0R 中含R 及任取定元素0R ∈α的最小子环:[]()⎭⎬⎫⎩⎨⎧∈==∑是非负整数n R a a a f R i ii ,αα 显然每个()0100R a a a a f n n ni ii ∈+++==∑=αααα .定义 1. 如上形式的()αf 每个元素都叫做R 上关于α的一个多项式,而每个i a 都叫做该多项式()αf 的系数.下面我们希望能将[]αR 做成一个环.事实上([]αR 是0R 的一个 子环)()()∑∑====∀nj jj mi ii b g a f 0,αααα, 定义规则如下:(当n m )()()()∑=+=+nj j j j b a g f 0ααα, 必定假设021====++n m m a a a .()(),000∑∑∑+====⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⋅m n k k k n j jj m i i i C b a g f ααααα其中∑=+=kj i j i k b a C又 ()()∑∑==-=-=-mi ii mi ii a a f 0ααα可知()()()()()[]ααααααR g f f g f ∈⋅-+,,∴ []α∙R 确定是一个环. (是含R 和α的最小的子环) 定义2. 如果上方得到的环[]αR 叫做R 上的α的多项式环. 显然[]αR 是0R 的一个子环,但R 中每个多项式()αf 的表达形式未必唯一.譬如,设Z R =,而R R =∈=02α. 那么[]2Z中的零元()()2222200+-=+=α. ∴ 0的表达式不唯一.换句话说:上述定义的多项式环中会出一种现象: ()02210=++++=nn a a a a f αααα ,但系数n a a a a ,,,,210 不全为零.这显然与高等代数中多项式的零多项式的定义相矛盾.于是,我们有必要对0R ∈α做如下的讨论.定义3. 设R R ,0和α如前所示,称α为R 的一个未定元(超越元),若在R 中找不到不全为零的元素n a a a ,,,10 使()*=∈∀=++++=∑N n a a a a a n n ni ii ,022100αααα( 即 002100=====⇔=∑=n ni ii a a a a a α) .否则称α为R 上的代数元. 习惯上,记R 上的未定元为x .有上述的理论做“底子”,现可以定义多项式()x f 的问题.定义 4. 设()()0210≠++++=n n n a x a x a x a a f α为环R 上的一元多项式.那么 非负整数n 叫做多项式()a f 的次数.若()0=x f ,记为没有()αf 没有次数。
近世代数课件全21 群的定义.ppt

2019/12/12
二、群的性质及等价判定方法 定理1 群中
1.左逆元也是右逆元(逆元); 2.左单位元也是右单位元(单位元);
aa1 a1a e ae aa1a ea a
做成交换群,称为正有理数乘群.
例3 G {全体整数},对于运算 a b ab
2
1Leabharlann 22124
2
1
2 212 2
结合律不成立,不做成群.
2019/12/12
注意:
(1)对于考察集合是否作成群: 既要考虑元素,又要考虑代数运算;
(2)将群的代数运算叫做乘法,简记
a b a b ab
近世代数 第二章 群论 §1 群的定义
2019/12/12
一、群的定义与例子
定义1设 G 是一个具有代数运算 的非空集合,
并且满足:
Ⅰ. 结合律: a,b,c G, 有
(a b) c a (b c)
Ⅱ. G 中有左单位元 e :a G, e a a Ⅲ. 对 G 中每一个元素 a , 有左逆元
左单位元1, a 1 无逆元,不能做成群;
2019/12/12
(3)对于运算 a b a b 4
a b c a b 4 c a b 4 c 4 a b c 8
a b c a b c 4 a b c 4 4 a b c 8
2019/12/12
定义4
设 G 是一个具有代数运算 的非空集合 ,并且满足结合律,则称 G 关于代数运算
商环与环同态基本定理

3. 设 是环 R 到环 R 的一个同态满射,K 为其同态核,N R.
4. 令 R a bi a,b Q , R 由一切形如
a b
b a
下面我们将说明在商加群 R I 中可以合理地引入一个乘法并使 R I ,, 做
成一环.这个乘法即前面定义的
[a][b] [ab] (或 (a I)(b I) ab I ) 现在我们来证明定义的合理性.设[a] [a' ] 且[b] [b' ] ,则 a a' I 且 b b' I ,于是 ab a'b (a a' )b I ,从而 a'b a'b' a' (b b' ) I ,所 以 [ab] [a'b'] ,即 ab a'b' I .所以定义是合理的. 很容易验证 R I , 是一个环.
习题 9 一个环 的非空子集 叫做 的一个左理想,假如 (i) (ii) 你能不能在有理数域 上的 矩阵环里找到一个不是理想的左理想? 解:考虑有理数域 上的 矩阵
是 的子环, 是 的左理想。
习题二十一
1.设 N 是环 R 到环 R 的同态满射 的核.证明:
是同构映射 N=0.
2. 设 R 是有单位元的整环(可换,无零因子).证明:
第 21 讲
第 三 章 环与域
§6 商环与环同态基本定理
一、 商环的定义与性质
1 商环的构造: 设 为环, 为 的理想.
(1)
近世代数精品课程25页PPT

•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
6பைடு நூலகம்最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
近世代数引论PPT课件

详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21讲
§8 剩余类环、同态与理想 (Residue class ring 、homomorphism and ideal)
一. 剩余类环 在前一讲中已知,
N
是环R 的一个子环,商群N R 已有加法
,定义一个乘法,可以想到乘法定义为:
(*)
))(( N ab N a N a +=++
当N 是环R 的一个理想时,如此定义法则是否为N R 上的代 数运算?
命题3.8.1设I 是环R 的理想,在加法商群}|]{[R a I
R ∈=上
(在前一讲中,用记号I a a +=△
][)引入一个乘法为:
][][][ab b a =⋅
(或I ab I b I a +=++))(()
定义的合理性:设][]['
a a =且I
a a b
b ∈-⇔='
'
].[][且
I b b ∈-'
,I
b a a b a ab ∈-=-∴)('
'
,且
I
b b a b a b a ∈-=-)('
'''',()I R ][]['
''
'b a ab I b a ab =⇒∈-⇒
∴定义是合理的。
可以验证},,{⋅+I R 是一个环。
定义3.8.2.设R 为任意一个环.而I R ,那么},,{⋅+I R 称作R 关于理想I 的剩余类环(也叫商环),其中I R 中每个元素 叫作模I 的剩余类. 例1.设Z
R =为整数环,而使}|6{6Z n n Z I ∈∀==
那么、]}5[],4[],3[],2[],1[],0{[6==Z I
R ,就是我们已经熟悉的“模6
剩
余类环”—这是整数的剩余类环. 二.环同态及同态基本定理 定义3.8.3设21
:R R →ϕ是一个环同态,那么2R 中零元的
完全原象}0)(|{)0(11
=∈=-a R a ϕϕ
叫作ϕ
的核,通常记
ϕ
ϕ
Ker =-)0(1
.
定理3.8.4.设R R −→−ϕ
是一个环同态满射。
令ϕ
Ker I =,
那么(ⅰ)
I R
;(ⅱ)R
I
R ≅。
证明:(ⅰ)对加法而言,ϕ显然是一个加群满同态,由第二章知
I R
(即I 是R 的不变子群)。
.,R r I k ∈∀∈∀那么.00)()()()(I rk r k r rk ∈⇒===ϕϕϕϕ
同理I kr ∈.∴ I R 。
(ⅱ)由第二章知,存在R
I
R ≅Φ:.作为群同构,其中.][I R a ∈∀
),
(])([a a ϕ=Φ下面只需证明:I R b a ∈∀][],[,])([])([])][([b a b a ΦΦ=Φ但
][][)()()(][])][([b a b a ab ab b a ΦΦ===Φ=Φϕϕϕ.
∴ R I
R
→Φ:是环同构.即R I
R
≅Φ
.
定理3.8.5.设R 是一个环而I R ,那么必有环同态
I
R
R →:ϕ.使得ϕ是满同态且I
Ker =ϕ
.称这样的ϕ为
环的自然同态. 证明:令I
R R →:ϕ,其中][)(a a =ϕ,显然ϕ是个满射.
而且R b a ∈∀,.
)()(][][][)(b a b a b a b a ϕϕϕ+=+=+=+
)()(]][[][)(b a b a ab ab ϕϕϕ===
∴I
R
R ~。
I
Ker =ϕ
是显然的.
注意:上述定理1和定理2通称为环和同态基本定理.同时表明:环R 的任何商环I R 都是R 的同态象.而环R 的任何同态象实质上只能是R 的一个商环。
与群同态类似,我们可以和到一些与第二章中平行的结果. 定理3.8.6.设R
R →:ϕ
是环同态映射,那么
(ⅰ)若S 是R 的子环)(S ϕ⇒是R 的子环
(ⅱ)若I 是R 的理想且ϕ为满射)(I ϕ⇒是R 的理想 (ⅲ)若S 是R 的子环)(1
S -⇒ϕ是R 的子环 (ⅳ)若S 是R 的理想)(1
S -⇒ϕ是R
的理想
证明: (ⅰ)S
b a S b a ∈∃⇒
∈∀,)(,ϕ使).(),(b b a a ϕϕ==所以S b a ∈-,于
是()()()()()a b a b a b S S R φφφφφ-=-=-∈⇒<.(子群)
另外 )
(
S ab S ab b a b a ∈∈== )()()()(ϕϕϕϕ ∴)(S ϕ是R
的子环.
(ⅱ)
I R
,∴I 是R 的子环)()
(I i ϕ⇒是R 的子环.须证明吸收
律成立. ϕ是满射
⇒
⎪⎪⎭⎪
⎪⎬⎫
∈∈⇒=∈∃⇒∈∀=∈⇒∈∀I ai I ia IR a a R a R a i i I i I i ,)(,)
()( ϕϕϕ使使
()()()()()()()()()ia i a ia I I R
ai a i ai I φφφφφφφφφ⎫==∈⎪
⇒⎬==∈⎪⎭
(ⅲ))(,1
s b a -∈∀ϕ
∴S
b a ∈)(),(ϕϕ, 而知
S
b a b a ∈-)()(),()(ϕϕϕϕ
∴
⇒⎪⎭
⎪
⎬⎫∈⇒∈=∈-⇒∈-=---)
()()()()()()()(1
1
S ab S b a ab S b a S b a b a ϕϕϕϕϕϕϕϕ
)(1
s -ϕ
是R 的一个子环.
(ⅳ)R
r R r S a S a ∈∴∈∀∈⇒∈∀-)(.,)().(1
ϕϕϕ
S R ,∴S a r S r a ∈∈)()(,)()(ϕϕϕϕ.
于是
)
()()()()()()()()(1
1
1
S S ra S a r ra S ar S r a ar ---⇒⎪⎭
⎪
⎬⎫∈⇒∈=∈⇒∈=ϕϕϕϕϕϕϕϕϕ
满足吸收律. 又由(ⅲ))(1
s -⇒ϕ
是R 的子环.于是1
()s R
φ
- .
注意2.从定理3.8.6.的证明中可知:除了(ⅱ)需要ϕ是满环同态外,其余情况都不需要ϕ是满射这个条件.。