热学练习题附答案
热力学习题与答案(原件)

材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。
答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P ST G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。
(假设两固相具有相同的晶体结构)。
由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。
根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。
在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。
HPV UGTSTS FPV3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。
第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。
图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。
4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。
热力学习题(答案)

一、9选择题(共21分,每题3分)1、1.1mol理想气体从p-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta<Tb,则这两过程中气体吸收的热量Q1和Q2的关系是[ A ](A) Q1>Q2>0; (B) Q2>Q1>0;(C) Q2<Q1<0; (D) Q1<Q2<0;(E) Q1=Q2>0.2、图(a),(b),(c)各表示连接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程, 图(a)和(b)则为半径不相等的两个圆.那么:[ C ](A) 图(a)总净功为负,图(b)总净功为正,图(c)总净功为零;(B) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为正;(C) 图(a)总净功为负,图(b)总净功为负,图(c)总净功为零;(D) 图(a)总净功为正,图(b)总净功为正,图(c)总净功为负.3、如果卡诺热机的循环曲线所包围的面积从图中的abcda增大为ab’c’da,那么循环abcda与ab’c’da所做的净功和热机效率变化情况是:(A)净功增大,效率提高; [ D ](B)净功增大,效率降低;(C) 净功和效率都不变;(D) 净功增大,效率不变.4、一定量的理想气体分别由图中初态a经①过程ab和由初态a’经②过程初态a’cb到达相同的终态b, 如图所示,则两个过程中气体从外界吸收的热量Q1,Q2的关系为[ B ](A) Q1<0,Q1>Q2 ; (B) Q1>0, Q1>Q2 ;(C) Q1<0,Q1<Q2 ; (D) Q1>0, Q1<Q2 .5、根据热力学第二定律可知: [ D ](A) 功可以全部转换为热,但热不能全部转换为功;(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;(C) 不可逆过程就是不能向相反方向进行的过程;(D) 一切自发过程都是不可逆的.6、对于理想气体来说,在下列过程中,哪个过程系统所吸收的热量、能的增量和对外做的功三者均为负值? [ D ](A) 等容降压过程; (B) 等温膨胀过程; (C) 绝热膨胀过程; (D) 等压压缩过程.7、在下列各种说法中,哪些是正确的? [ B ](1) 热平衡过程就是无摩擦的、平衡力作用的过程.(2) 热平衡过程一定是可逆过程.(3) 热平衡过程是无限多个连续变化的平衡态的连接.(4) 热平衡过程在p-V 图上可用一连续曲线表示. (A) (1),(2); (B) (3),(4); (C) (2),(3),(4); (D) (1),(2),(3),(4).8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比A/Q 等于: [ D ] (A) 1/3; (B) 1/4; (C) 2/5; (D) 2/7.9、在温度分别为 327℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 [ B ] (A) 25% (B) 50% (C) 75% (D) 91.74%10、一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在 [ B ](A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热.二、填空题pV1、有1mol刚性双原子分子理想气体,在等压膨胀过程中对外做功A,则其温度变化ΔT=___ A/R ___;从外界吸收的热量Q p=__7A/2 ___.2、一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷机致冷系数w = T2/(T1-T2),则η与w的关系为_____11Wη=-_____.3.一热机由温度为727℃的高温热源吸热,向温度为527℃的低温热源放热.若热机在最大效率下工作,且每一循环吸热2000J,则此热机每一循环做功__400________J. 4.热力学第二定律的克劳修斯叙述是_热量不能自动地从低温物体传向高温物体开尔文叙述是_不可能把从单一热源吸收的热量在循环过程中全部转变为有用的功,而不引起任何其他物体为生变化_________________________.5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1)pdV=(m/M)RdT表示___等压_________过程;(2)Vdp=(m/M)RdT表示_____等体_________过程;(3)pdV+Vdp=0表示_______等温_______过程.6、如图,温度为T0,2T0,3T0三条等温线与两条绝热线围成三个卡诺循环:(1)abcda;(2)dcefd;(3)abefa,则其效率分别为:η1=___33.3%___;η2=___50% ___;η3=____ 66.7%___.7. 理想气体在如图所示a-b-c 过程中,系统的能增量E =___0__8.已知一定量的理想气体经历p -T 图上所示的循环过程,图中过程1-2中,气体___吸热__(填吸热或放热)。
(完整版)大学物理热学习题附答案

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学物理热学试题题库及答案

大学物理热学试题题库及答案一、选择题:(每题3分)1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为(A) 3 p1.(B) 4 p1.(C) 5 p1.(D) 6 p1.[]2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为:(A) pV / m.(B) pV / (kT).(C) pV / (RT).(D) pV / (mT).[]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为:(A) (1/16) kg.(B) 0.8 kg.(C) 1.6 kg.(D) 3.2 kg.[]4、在标准状态下,任何理想气体在1 m3中含有的分子数都等于(A) 6.02×1023.(B)6.02×1021.(C) 2.69×1025(D)2.69×1023.(玻尔兹曼常量k=1.38×10-23 J·K-1 ) []5、一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高.(B) 将降低.(C) 不变.(D)升高还是降低,不能确定.[]6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是:(A) p1> p2.(B) p1< p2.(C) p1=p2.(D)不确定的.[]7、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.[]8、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ]9、温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ ]10、1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(A) RT 23. (B)kT 23. (C)RT 25. (D)kT 25. [ ] (式中R 为普适气体常量,k 为玻尔兹曼常量)11、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同.(C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. [ ]12、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B .(B) 为(E / V )A >(E / V )B .(C) 为(E / V )A =(E / V )B .(D) 不能确定. [ ]13、两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量(A) 12 J . (B) 10 J(C) 6 J . (D) 5 J . [ ]14、压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为: (A)25pV . (B) 23pV . (C) pV . (D) 21pV . [ ]15、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A) pV Mm 23. (B) pV M M mol 23. (C)npV 23. (D)pV N M M A 23mol . [ ]16、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等. [ ]17、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ). (B) 21(N 1+N 2) (23kT +25kT ). (C) N 123kT +N 225kT . (D) N 125kT + N 223kT . [ ]18、设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为(A) 1 . (B) 1/2 .(C) 1/3 . (D) 1/4 . [ ]19、设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为(A) p v v v ==2/12)( (B) 2/12)(v v v <=p (C) 2/12)(v v v <<p (D)2/12)(v v v >>p [ ]20、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ ]21、 两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等.(B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ ]22、假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的(A) 4倍. (B) 2倍.(C) 2倍. (D) 21倍. [ ]23、 麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示(A) 0v 为最概然速率. (B) 0v 为平均速率. (C) 0v 为方均根速率. (D) 速率大于和小于0v 的分子数各占一半. [ ]24、速率分布函数f (v )的物理意义为:(A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比.(C) 具有速率v 的分子数.(D) 速率分布在v 附近的单位速率间隔中的分子数. [ ]25、若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N .(C) N ,m . (D) N ,T .(E) N ,m ,T . [ ]26、气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大一倍.(B) Z 和λ都减为原来的一半.(C) Z 增大一倍而λ减为原来的一半.(D) Z 减为原来的一半而λ增大一倍. [ ]27、一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B)Z 减小而λ增大.f (v )0(C) Z 增大而λ减小. (D)Z 不变而λ增大. [ ]28、一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大. (B) Z 和λ都减小.(C) Z 增大而λ减小. (D) Z 减小而λ增大. [ ]29、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小,但λ不变. (B) Z 不变,但λ减小.(C) Z 和λ都减小. (D) Z 和λ都不变. [ ]30、 一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 增大,λ不变. (B) Z 不变,λ增大.(C) Z 和λ都增大. (D) Z 和λ都不变. [ ]31、 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ.(C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ ]32、在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . [ ]33、一定量的某种理想气体若体积保持不变,则其平均自由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升高,λ减少而Z 增大.(B) 温度升高,λ增大而Z 减少.(C) 温度升高,λ和Z 均增大.(D) 温度升高,λ保持不变而Z 增大. [ ]34、一容器贮有某种理想气体,其分子平均自由程为0λ,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为 (A)02λ. (B) 0λ. (C)2/0λ. (D) 0λ/ 2. [ ]35、图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么:(A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.(B) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为正.(C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.(D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.36、 关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C) (2)、(4).(D) (1)、(4). [ ]37、如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A) 是平衡过程,它能用p ─V 图上的一条曲线表示. (B) 不是平衡过程,但它能用p ─V 图上的一条曲线表示.(C) 不是平衡过程,它不能用p ─V 图上的一条曲线表示.(D) 是平衡过程,但它不能用p ─V 图上的一条曲线表示. [ ]38、在下列各种说法 V 图(a) V 图(b) V 图(c)(1) 平衡过程就是无摩擦力作用的过程.(2) 平衡过程一定是可逆过程.(3) 平衡过程是无限多个连续变化的平衡态的连接.(4) 平衡过程在p-V图上可用一连续曲线表示.中,哪些是正确的?(A) (1)、(2).(B) (3)、(4).(C) (2)、(3)、(4).(D) (1)、(2)、(3)、(4).[]39、设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.(3) 一滴墨水在水杯中缓慢弥散开.(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).[]40、在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的.(3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的.中,哪些是正确的?(A) (1)、(4).(B) (2)、(3).(C) (1)、(2)、(3)、(4).(D) (1)、(3).[]41、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态(A) 一定都是平衡态.(B) 不一定都是平衡态.(C) 前者一定是平衡态,后者一定不是平衡态.(D) 后者一定是平衡态,前者一定不是平衡态.[]42、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程(A) 一定都是平衡过程.(B) 不一定是平衡过程.(C) 前者是平衡过程,后者不是平衡过程.(D) 后者是平衡过程,前者不是平衡过程.[]43、如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A→D 绝热过程,其中吸热量最多的过程(A) 是A →B.(B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
热学试题及答案

热学模拟试题一一、 填空题1.lmol 的单原子分子理想气体,在1atm 的恒定压强下,从0℃加热到100℃, 则气体的内能改变了_____J .(普适气体常量R=8.31J ·mol -1·k -1)。
2.右图为一理想气体几种状态变化过程的p-v 图,其中MT 为等温线,MQ 为绝热线,在AM,BM,CM 三种准静态过程中: (1) 温度升高的是___ 过程; (2) 气体吸热的是______ 过程. 3.所谓第二类永动机是指 _______________________________________ ;它不可能制成是因为违背了___________________________________。
4.处于平衡状态下温度为T 的理想气体,kT 23的物理意义是 ___________________________.(k 为玻尔兹曼常量).5.图示曲线为处于同一温度T 时氦(原子量 4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中:曲线(a)是______ 分子的速率分布曲线; 曲线(b)是_________气分子的速率分布曲线; 曲线(c)是_________气分子的速率分布曲线。
6.处于平衡态A 的一定量的理想气体,若经准静态等体过程变到平衡态B ,将从外界吸收热量416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸收热量582J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中气体对外界所作的功为_____________________。
7. 一定量的某种理想气体在等压过程中对外作功为200J .若此种气体为单原子分子气体,则该过程中需吸热__________J ;若为双原子分子气体,则需吸热_____________J 。
8.一定量的理想气体,在p —T 图上经历一个如图所示的循环过程(a→b→c→d→a),其中a→b,c→d 两个过程是绝热过程,则该循环的效率η=_________________。
大学物理热学练习题及答案

大学物理热学练习题及答案第一题:一个物体的质量是1 kg,温度从20°C升高到30°C,如果物体的比热容是4200 J/(kg·°C),求物体吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 1 kg × 4200 J/(kg·°C) × (30°C - 20°C)= 1 kg × 4200 J/(kg·°C) × 10°C= 42,000 J所以物体吸收的热量为42,000 J。
第二题:一块金属材料的质量是0.5 kg,它的比热容是400 J/(kg·°C),经过加热后,材料的温度升高了60°C。
求该金属材料所吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 0.5 kg × 400 J/(kg·°C) × 60°C= 12,000 J所以金属材料吸收的热量为12,000 J。
第三题:一个热容为300 J/(kg·°C)的物体,吸收了500 J的热量后,温度升高了多少摄氏度?解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
将已知数据代入公式:500 J = m × 300 J/(kg·°C) × Δθ解方程得:Δθ = 500 J / (m × 300 J/(kg·°C))= 500 J / (m/(kg·°C)) × (kg·°C/300 J)= (500/300) °C≈ 1.67°C所以温度升高了约1.67°C。
《热学》期末复习用 各章习题+参考答案

(
29 × 10 3
)
485������
(4) 空气分子的碰撞频率为
√2������ ������
√2
6 02 × 10 × 22 4 × 10
3 3
×
(3
7 × 10−10)
× 485
(5) 空气分子的平均自由程为
7 9 × 109
������
485 7 9 × 109
6 1 × 10 8������
(������ + ������ )������������ ������ ������������ + ������ ������������
(4)
联立方程(1)(2)(3)(4)解得
������ + ������
������
2
������ ������ ������ (������ ������ + ������ ������ ) (������ + ������ )
������ (������ + ∆������) ������
������
������
(������ + ∆������) ������
������
ln
������������ ������
ln ������
������ + ∆������
ln
Hale Waihona Puke 133 101000ln
2
2
+
20 400
269
因此经过 69 × 60 40 后才能使容器内的压强由 0.101MPa 降为 133Pa.
1-7 (秦允豪 1.3.6) 一抽气机转速������ 400������ ∙ ������������������ ,抽气机每分钟能抽出气体20������.设 容器的容积������ 2 0������,问经过多长时间后才能使容器内的压强由 0.101MPa 降为 133Pa.设抽 气过程中温度始终不变.
热学练习题及答案

热学练习题一、选择题1.一定量的理想气体,在温度不变的条件下,当容积增加大时,分子的平均碰撞次数Z和平均自由程λ的变化情况是()A .Z减小,λ不变; B. Z减小,λ增大;C .Z增大,λ减小;D .Z不变λ增大2.若理想气体的体积为V,压强为P,温度为T,一个分子的质量为m ,则该理想气体分子数为:()A. PV/mB. PV/(KT)C. PV/(RT)D. PV/(mT)3.对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量,内能的增量和对外作的功三者均为负值?()A.等容降压过程。
B.等温膨胀过程。
C. 绝热膨胀过程。
D.等压压缩过程。
4.气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体分子的平均速率变为原来的几倍?()A. 522 B. 512 C. 322 D. 3125.两种不同的理想气体,若它们的最可几速率相等,则它们的()A 平均速率相等,方均根速率相等。
B平均速率相等,方均根速率不相等。
C平均速率不相等,方均根速率相等。
D平均速率不相等,方均根速率不相等。
6.一定量的理想气体,在容积不变的条件下,当温度降低时,分子的平均碰撞次数Z 和平均自由程λ的变化情况是( ) A Z 减小,但λ不变。
B Z 不变,但λ减小。
C Z 和λ都减小。
D Z 和λ都不变。
7.1mol 刚性双原子分子理想气体,当温度为T 时,其内能为( )A 23RTB 23KTC 25RTD 25KT (式中R 为摩尔气体常量,K 为玻耳兹曼常量)8.一物质系统从外界吸收一定的热量,则( )A 系统的内能一定增加。
B 系统的内能一定减少。
C 系统的内能一定保持不变。
D 系统内能可能增加,也可能减少或保持不变。
9.某理想气体分别进行了如图所示的两个卡诺循环:Ⅰ (abcda)和Ⅱ(a ′b ′c ′d ′a ′),且两条循环曲线所围面积相等。
设循环Ⅰ的效率为η,每次循环在高温热源处吸收的热量为Q ,循环Ⅱ的效率为η′,每次循环在高温热源处吸收的热量为Q ′,则( )A η<η′,Q < Q ′B η<η′,Q > Q ′C η>η′,Q < Q ′D η>η′,Q > Q ′10.气缸有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2倍,问气体分子的平均速率变为原来的几倍?( )A 522B 512C 722D 71211.定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热学高考试题(90-06年)1.(90年)用销钉固定的活塞把水平放置的容器分隔成A、B两部分,其体积之比V A∶V B=2∶1,如图所示.起初A中有温度为127C、压强为1.8×105帕的空气,B中有温度27℃、压强为1.2×105帕的空气.拔出销钉,使活塞可以无摩擦地移动(不漏气).由于容器壁缓慢导热,最后气体都变到室温27℃,活塞也停住,求最后A中气体的压强.2.(92年)如下左图所示,一个上下都与大气相通的直圆筒,内部横截面的面积S=0.01米2,中间用两个活塞A与B封住一定质量的理想气体,A、B都可沿圆筒无摩擦地上、下滑动,但不漏气,A的质量可不计、B的质量为M,并与一倔强系数k=5×103牛/米的较长的弹簧相连。
已知大气压强p0=1×105帕,平衡时,两活塞间的距离l0=0.6米。
现用力压A。
使之缓慢向下移动一定距离后,保持平衡。
此时,用于压A的力F=5×102牛。
求活塞A向下移的距离。
(假定气体温度保持不变。
)2.解:活塞A受压向下移动的同时,活塞B也向下移动。
已知达到平衡时,F=5×102牛。
设A向下移动的距离为l,B向下移动的距离为x,由于气体温度不变,由玻意耳定律得:①当气体的压强为p0时,弹簧受B的作用而有一定的压缩量,当气体的压强变为p0+F/S时,弹簧增加的压缩量就是B向下移动的距离x,由胡克定律: F=kx②由①、②两式消去x,代入数字,得: ι=0.3米3.(93年)一个密闭的气缸,被活塞分成体积相等的左右两室,气缸壁与活塞是不导热的,它们之间没有摩擦.两室中气体的温度相等,如图所示.现利用右室中的电热丝对右室中的气体加热一段时间.达到平衡后,左室的体积变为原来体积的3/4,气体的温度T1=300K,求右室气体体的温度.3.解设加热前,左室气体的体积为V0,温度为T0,压强为p0.加热后,气体的体积为V1,温度为T1,压强为p1,则有:由题意知,加热前右室气体的体积、压强和温度也分别为V0、p0和T0,若加热后变为V2、p2和T2,则有4.(94年)如图19-17所示,可沿气缸壁自由活动的活塞将密封的圆筒形气缸分隔成A、B两部分。
活塞与气缸顶部有一弹簧相连。
当活塞位于气缸底部时弹簧恰好无形变。
开始时B内充有一定量的气体,A内是真空。
B部分高度为L1=0.10米.此时活塞受到的弹簧作用力与重力的大小相等。
现将整个装置倒置,达到新的平衡后B部分的高度L2等于多少?设温度不变。
4.解:设开始时B中压强为p1,气缸倒置达到平衡后B中压强为p2.分析活塞受力得:p1S=kL1+Mg, ①p2S+Mg=kL2, ②其中S为气缸横截面积,M为活塞质量,k为弹簧的倔强系数.由题给条件有:kL1=Mg, ③玻意耳定律, p1L1=p2L2, ④解得 L2=2L1=0.2米. ⑥5.(95年)一个质量可不计的活塞将一定量的理想气体封闭在上端开口的直立圆筒形气缸内,活塞上堆放着铁砂,如图14所示.最初活塞搁置在气缸内壁的固定卡环上,气体柱的高度为H0,压强等于大气压强p.现对气体缓慢加热,当气体温度升高了△T=60K时,活塞(及铁砂)开始离开卡环而上升.继续加热直到气柱高度为H1=1.5H0.此后,在维持温度不变的条件下逐渐取走铁砂,直到铁砂全部取走时,气柱高度变为H2=1.8H0,求此时气体的温度.(不计活塞与气缸之间的摩擦)5.第一种解法:设气体最初温度为T0,则活塞刚离开卡环时温度为T0+△T,压强P1.由等容升温过程得(T0+△T)÷T0=P1÷P0 ①设气柱高度为H1时温度为T1,由等压升温过程得T1÷(T0+△T)=H1÷H0②设气柱高度为H2时温度为T2,由等温膨胀过程(T2=T1)得P0÷P1=H1÷H2③由①和③两式求得(T0+△T)÷T0=H2÷H1④解得:T0=H1÷(H2-H1) ⑤由②和④两式得:T1÷T0=H2÷H0或T1=(H2÷H0)×T0⑥将⑤式代入⑥式,并利用T2=T1得:T2=T1=(H1×H2×△T)÷[H0×(H2-H1)]代入数字得:T2=540K评分标准:全题12分.求得①、②、③式各给3分.正确求得⑦式给2分,结果正确再给1分(若利用①、②、③式得出正确结果而未写⑦式,也给这3分).第二种解法:设气体最初温度为T,则活塞刚离开卡环时温度为T0+△T0.设气柱高度为H1时温度为T1,高度为H2时温度为T2.由等压升温过程得:H0÷(T0+△T)=H1÷T1①由联系初态和终态的气态方程得:H0÷T0=H2÷T2②利用T1=T2,由①、②两式解得:T2=(H1×H2×△T)÷[H0×(H2-H1)] ③代入数值得T2=540K6.(97年)图中竖直圆筒是固定不动的,粗筒横截面积是细筒的4倍,细筒足够长。
粗筒中A、B两轻质活塞间封有空气,气柱长l=20厘米。
活塞A上方的水银深H=10厘米,两活塞与筒壁间的摩擦不计。
用外力向上托住活塞B,使之处于平衡状态,水银面与粗筒上端相平。
现使活塞B缓慢上移,直至水银的一半被推入细筒中,求活塞B上移的距离。
设在整个过程中气柱的温度不变,大气压强p0相当于75厘米高的水银柱产生的压强。
6.解:在以下的计算中,都以1厘米汞柱产生的压强作为压强的单位。
设气体初态的压强为p1,则有p1=p0+H①设S为粗圆筒的横截面积,气体初态的体积V1=Sl。
设气体末态的压强为P2,有P2=P0 +1/2H+(1/2HS)/ (1/4)S ②设末态气柱的长度为l',气体体积为 V2=Sl'由玻意耳定律得 P1V1=P2V2 ③活塞B上移的距离d为 d=l-l'+H/2 ④代入数据解得 d=8厘米⑤7.(98年)活塞把密闭气缸分成左、右两个气室,每室各与U形管压强计的一臂相连。
压强计的两臂截面处处相同。
U形管内盛有密度为ρ=7.5×102kg/m3的液体。
开始时左、右两气室的体积都为V0=1.2×10-2m3,气压都为p0=4.0×103Pa,且液体的液面处在同一高度,如图所示。
现缓缓向左推进活塞,直到液体在U形管中的高度差h=40cm。
求此时左、右气室的体积V1、V2。
假定两气室的温度保持不变。
计算时可以不计U形管和连接管道中气体的体积。
取g=10m/s2。
7.解:以p1、V1表示压缩后左室气体的压强和体积,p2、V2表示这时右室气体的压强和体积。
p0、V0表示初态两室气体的压强和体积,则有p1V1=p0V0 ①p2V2=p0V0 ②V1+V2=2V0 ③p1-p2=△p=ρgh ④解以上四式得:V12-2(p0+△p)V0V1/△p+2p0V02/△p=0 ⑤解方程并选择物理意义正确的解得到V1=V0(p0+△P )/△p代入数值,得V1=8.0×10-3m3 ⑥V2=2V0-V1=1.6×10-2m3⑦8.(99年)如图,气缸由两个横截面不同的圆筒连接而成.活塞A、B被轻质刚性细杆连接在一起,可无摩擦移动.A、B的质量分别为m A=12kg,m B=8.0kg,横截面积分别为S A=4.0×10-2m2,S B=2.0×10-2m2.一定质量的理想气体被封闭在两活塞之间.活塞外侧大气压强P0=1.0×105Pa.(1)气缸水平放置达到如图1所示的平衡状态,求气体的压强.(2)已知此时气体的体积V1=2.0×10-2m3.现保持温度不变,将气缸竖直放置,达到平衡后如图2所示.与图1相比,活塞在气缸内移动的距离l为多少?取重力加速度g=10m/s2.8.参考解答:(1)气缸处于图1位置时,设气缸内气体压强为P1,对于活塞和杆,力的平衡条件为p0S A+p1S B=p1S A+p0S B①解得 p1=p0=1.0×105Pa ②(2)气缸处于图2位置时,设气缸内气体压强为p2,对于活塞和杆,力的平衡条件为p0S A+p2S B+(m A+m B)g=p2S A+p0S B③设V2为气缸处于图2位置时缸内气体的体积,由玻意耳定律可得p1V1=p2V2 ④由几何关系可得 V1-V2= l (S A-S B) ⑤由以上各式解得 l =9.1×10-2m ⑥9.(00年)一横截面积为S的气缸水平放置,固定不动,气缸壁是导热的。
两个活塞A和B将气缸分隔为1、2两气室,达到平衡时1、2两气室体积之比为3:2,如图所示,在室温不变的条件下,缓慢推动活塞A,使之向右移动一段距离d。
求活塞B向右移动的距离。
不计活塞与气缸壁之间的摩擦。
9.参考解答:因为缸水平放置,又不计活塞的摩擦,故平衡时两气室内的压强必相等。
设初态时气室内压强为po,气室1、2的体积分别为;在活塞A向右移动d的过程中活塞B向右移动的距离为x;最后气缸内压强为p,因温度不变,分别对气室1和2的气体运用玻意耳定律,得气室1①气室2②由①、②两式解得③由题意,,得④。