人教A版高中数学必修5第二章等差数列前n项和同步练习

合集下载

人教新课标A版 高中数学必修5 第二章数列2.3等差数列的前n项和 同步测试A卷

人教新课标A版 高中数学必修5 第二章数列2.3等差数列的前n项和 同步测试A卷

人教新课标A版高中数学必修5 第二章数列2.3等差数列的前n项和同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016高二上·友谊开学考) 已知数列{an}的通项公式是an=﹣4n+78,{an}的前n项和为Sn ,则Sn达到最大值时,n的值是()A . 17B . 18C . 19D . 202. (2分)已知为等差数列,,,以表示的前项和,则使得达到最大值的是()A . 21B . 20C . 19D . 183. (2分) (2018高一下·蚌埠期末) 等差数列满足,,则其前5项和()A . 9B . 15C . 25D . 504. (2分)阅读右边的程序框图,若输入的n是100,()则输出的变量S和T的值依次是()A . 2500,2500B . 2550,2500C . 2500,2550D . 2550,25505. (2分) (2019高三上·牡丹江月考) 已知等差数列的前项和为,若,则()A . 3B . 9C . 18D . 276. (2分)已知等差数列满足,,则它的前10项和()A . 85B . 135C . 957. (2分)如果等差数列中,,那么()A . 14B . 21C . 28D . 358. (2分) (2016高二下·咸阳期末) 在等差数列中,有,则此数列的前13项之和为()A . 24B . 39C . 52D . 1049. (2分)(2019·齐齐哈尔模拟) 设等差数列的前项和为,且,,则的公差为()A . 1B . 2C . 3D . 410. (2分)已知等差数列{an}中,a3+a7﹣a10=0,a11﹣a4=4,记Sn=a1+a2+…+an ,则S13=()A . 52B . 56D . 7811. (2分) (2018高二上·新乡月考) 以分别表示等差数列的前项和,若,则的值为()A . 7B .C .D .12. (2分) (2018高一下·北京期中) 在超市中购买一个卷筒纸,其内圆直径为4cm,外圆直径为12cm,一共卷60层,若把各层都视为一个同心圆,令 =3.14,则这个卷筒纸的长度(精确到个位)为()A . 17mB . 16mC . 15mD . 14m13. (2分) (2018高二下·保山期末) 《算法统宗》是中国古代数学名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有八節竹一莖,为因盛米不均平;下頭三節三生九,上梢三節貯三升;唯有中間二節竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根8节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端3节可盛米3升.要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升.由以上条件,要求计算出这根八节竹筒盛米的容积总共为()升.A . 9.0B . 9.1C . 9.214. (2分)(2019·南昌模拟) 《莱茵德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把120个面包分给5个人,使每人所得成等差数列,且使较多的三份之和的是较少的两份之和,则最少的一份面包个数为()A . 46B . 12C . 11D . 215. (2分) (2017高二上·揭阳月考) 已知等差数列{an}满足a1+a2+a3+…+a101=0,则有()A . a1+a101>0B . a2+a100<0C . a3+a99=0D . a51=51二、填空题 (共5题;共5分)16. (1分) (2016高二上·曲周期中) 已知Sn是等差数列{an}的前n项和,且S6>S7>S5 ,给出下列五个命题:①d<1;②S11>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a6|>|a7|.其中正确命题有________.17. (1分) (2017高三上·盐城期中) 在等差数列{an}中,若,则数列{an}的前6项的和S6=________.18. (1分) (2016高三上·平罗期中) 设Sn是等差数列{an}(n∈N+)的前n项和,且a1=1,a4=7,则S5=________.19. (1分) (2016高一下·枣强期中) 已知数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2),则它的前n 项和Sn=________.20. (1分)等差数列{an}的前n项和为,且记,如果存在正整数M ,使得对一切正整数n ,≤M都成立,则M的最小值是________.三、解答题 (共5题;共25分)21. (5分) (2016高二上·济南期中) 已知数列{an}是等比数列,首项a1=2,a4=16(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}是等差数列,且b3=a3 , b5=a5 ,求数列{bn}的通项公式及前n项的和.22. (5分) (2017高一下·禅城期中) 在等比数列{an}中,a2=3,a5=81.(Ⅰ)求an;(Ⅱ)设bn=log3an ,求数列{bn}的前n项和Sn .23. (5分) (2016高二上·水富期中) 等比数列{an}中,a1=2,a4=16.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若a3 , a5分别为等差数列{bn}的第4项和第16项,试求数列{bn}的前项和Sn .24. (5分) (2020高二上·吉林期末) 已知数列是一个等差数列,且,。

人教A版高中数学必修五同步检测第2章2.3第2课时等差数列的前n项和(习题课).docx

人教A版高中数学必修五同步检测第2章2.3第2课时等差数列的前n项和(习题课).docx

人教 A 版高中数学必修 5 同步检测第二章数列2.3等差数列的前n 项和第 2 课时等差数列的前n项和(习题课)A基巩固一、1.一个等差数列共有 2n+1 ,其奇数的和512,偶数的和 480,中 ()A.30 B.31 C.32 D .33解析:中 a n+1.S 奇=(a1+a2n+1)2·(n+1)=(n+1)a n+1=512.S 偶=a2+a2n2· n=n·a n+1=480.所以 a n+1= S 奇-S 偶=512-480=32.答案: C12.等差数列 {a n}的公差 d=2且 S100=145, a1+a3+a5+⋯+a99的 ()A.52.5 B.72.5 C.60 D.85解析: a1+a3+a5+⋯+a99=x,a2+a4+⋯+a100=y, x+y=S100=145,y-x=50d=25.解得 x=60,y=85.答案: C.n 是等差数列{a n 的前n 和,若S3=1,S6()3S}S63S12A.3B.1C.1D.1解析: S3,S6- S3,S9-S6,S12-S9,构成一个新的等差数列,因 S3= 1,S6-S3=3-1=2,所以 S9-S6=3,S12-S9=4.所以 S12=S3+(S6-S3)+(S9-S6)+(S12-S9)=1+2+3+ 4=10.所以S6=3.S1210答案: A4.若数列 {a n}的前 n和是 S n=n2-4n+2,|a1|+|a2|+⋯+ |a10|等于 ()A.15 B.35 C.66 D .100解析:易得 a n=-1,n=1,2n-5,n≥2.|a1|=1,|a2|= 1,|a3|=1,令a n>0 2n- 5>0,所以 n≥3.所以 |a1|+|a2|+⋯+|a10|=- (a1+a2)+ a3+⋯+a10=2+(S10-S2)=2+[(102-4×10+2)- (22-4×2+2)]=66.答案: C5.把正整数以下列方法分:(1),(2,3),(4,5,6),⋯,其中每都比它的前一多一个数,S n表示第 n 中所有各数的和,那么 S21等于 ()A.1 113 B.4 641 C .5 082 D.53 361解析:因第 n 有 n 个数,所以前20 一共有 1+ 2+3+⋯+20=210 个数,于是第 21 的第一个数211,一共有 21 个21×20数, S 21=21×211+2×1=4 641.答案: B二、填空6.已知数列 {a n } 足 a 1+2a 2+3a 3+⋯+ na n =n 2,数列 {a n }的通 公式 ________.解析: a 1+2a 2+3a 3+⋯+na n =n 2,当 n ≥2 , a +2a +3a +⋯+(n - 1) ·a - = (n -1)2,123n 12n -1所以 na n =2n -1,所以 a n =n.当 n =1 , a 1=1,符合上式,2n -1所以数列 {a n }的通 公式 a n = n .2n -1答案: a n=n7. S n 等差数列 {a n }的前 n 和,若 a 4=1,S 5=10, 当S n 取得最大 , n 的 ________.a 4=a 1+3d =1,解析:由d =10,S 5=5a 1+5×42a 1=4,解得d =- 1.所以 a 5= a 1+4d =0,所以 S 4=S 5 同 最大.所以 n =4 或 5.答案: 4 或 5.若等差数列 {a n }的前 n 和n∈*),若a 2∶a 3=5∶2,8S (n N人教 A 版高中数学必修 5 同步检测S 3 3(a 1+a 3) 3a 2 3 5 3解析: S 5=5(a 1+a 5)=5a 3=5×2=2.答案: 3∶2三、解答题 .设等差数列 n 的前 n 项和为n ,已知 a 3= 12,且 S 12>0, 9 {a } SS 13<0.(1)求公差 d 的范围;(2)问前几项的和最大,并说明理由.解: (1)因为 a 3=12,所以 a 1=12-2d ,因为 S 12>0,S 13<0,12a 1+66d >0, 24+7d > 0,所以即13a 1+78d <0, 3+d <0,24所以- 7 <d <- 3.(2)因为 S 12>0,S 13<0,a 1+a 12>0, a 6+a 7> 0,所以所以a 1+a 13<0.a 7<0.所以 a 6> 0,又由 (1)知 d <0.所以数列前 6 项为正,从第 7 项起为负.所以数列前 6 项和最大.2S 2n10.在数列 {a n }中, a 1= 1,a n =2S n -1(n ≥2),求数列 {a n }的通项公式.解:因为 a n = S n -S n - 1,2S 2n所以 S n -S n -1=2S n - 1,即 (S n -S n - 1)(2S n -1)=2S 2n ,即 S n -1- S n =2S n S n -1, 即 1 - 1=2,S n S n -11 11=1,所以 S n 为等差数列,且 S 1=a 1 11 .所以 S n=1+2(n -1),即 S n=- 12n所以 a n = S n - S n - 1 = 11 -22n -1-2n -3=(2n -1)( 2n -3)(n ≥2),-2又 a 1=1≠(2×1-1)( 2×1-3),1(n =1),所以 a n =-2(n ≥ 2).(2n -1)( 2n -3)B 级 能力提升1.设等差数列 {a n }的前 n 项和为 S n ,S m -1=- 2,S m =0,S m +1=3,则 m 等于 ()A .3B .4C . 5D .6解析: a m =S m -S m -1=2,a m + 1= S m +1-S m =3,所以公差 d =a m+1-a m =1,由 S = m (a 1+a m ) =0,得 a =- 2,所以 a =- 2+(m -1) ·1m 2 1 m= 2,解得 m =5.答案: C2.若数列 {a n }是等差数列,首项 a 1>0,a 2 003+a 2 004>0,a 2 003·a 2004<0,则使前 n 项和 S n >0 成立的最大自然数n 是________.解析:由条件可知数列单调递减,故知a 2 003>0,a 2 004<0,故 S 4 006=4 006( a 1+a 4 006)=2 003 ·(a 2 003+a 2 004 ) > ,24 007(a 1+a 4 007)=4 007×a 2 004 <0, S 4 007=2故使前 n 项和 S n >0 成立的最大自然数 n 是 4 006.答案: 4 0063.数列 {a n }的各项都为正数,且满足S n =(a n +1)24(n ∈ N *),求数列的通项公式 a n .解:法一 (消 S n ) :由 S n =(a n +1)24(n ∈N *),得 4a n +1=4(S n +1-S n )=(a n + 1+1)2-(a n +1)2化简得 (a n +1+a n )(a n + 1-a n -2)= 0,因为 a n >0,所以 a n + 1-a n =2,又 4S 1=4a 1=(a 1+1)2 得 a 1= 1,故 {a n }是以 1 为首项, 2 为公差的等差数列,所以 a n =2n - 1.法二 (消 a n ):由上可知 2 S n = a n +1,所以 2 S n = S n -S n - 1+1(n ≥2),化简可得 ( S n -1)2=S n -1,( S n + S n - 1-1)( S n - S n -1-1)=0,又 S 1=1,{a n }的各项都为正数,所以 S n - S n - 1= 1.所以 S n =n ,从而 S n =n 2,所以 a n =S n - S n -1=2n -1(n ≥2),a 1=1 也适合,故 a n =2n -1.。

2020年高中数学 人教A版 必修5 同步作业本《等差数列的前n项和》(含答案解析)

2020年高中数学 人教A版 必修5 同步作业本《等差数列的前n项和》(含答案解析)

2020年高中数学 人教A 版 必修5 同步作业本《等差数列的前n 项和》一、选择题1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( )A .12B .24C .36D .482.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6633.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .294.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n-4=130,则n=( )A .12B .14C .16D .185.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( ) A .1 B .-1 C .2 D.126.若数列{a n }满足:a 1=19,a n +1=a n -3(n∈N *), 则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9二、填空题7.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.8.一个等差数列前12项的和为354,其中项数为偶数的项的和与项数为奇数的项的和之比为32∶27,则公差d=________.9.已知数列{a n }的通项公式为a n =2n-30,S n 是{|a n |}的前n 项和,则S 10=________.10.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则满足S n <0的n 的最大值为________.三、解答题11.等差数列{a n}中,a10=30,a20=50.(1)求数列的通项公式;(2)若S n=242,求n.12.设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式.(2)设数列{b n}的通项公式为b n=a na n+t,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.13.设数列{a n }的前n 项和为S n ,点⎝ ⎛⎭⎪⎫n ,S n n (n∈N *)均在函数y=3x-2的图象上. (1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,求数列{b n }的前n 项和T n .答案解析1.答案为:B ;解析:由S 10=10(a 1+a 10)2,得a 1+a 10=S 105=1205=24.2.答案为:B ;解析:因为a 1=2,d=7,2+(n-1)×7<100,所以n<15,所以n=14,S 14=14×2+12×14×13×7=665.3.答案为:B ;解析:钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.所以钢管总数为:1+2+3+…+n=n (n +1)2. 当n=19时,S 19=190.当n=20时,S 20=210>200.所以n=19时,剩余钢管根数最少,为10根.4.答案为:B ;解析:因为S n -S n-4=a n +a n-1+a n-2+a n-3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n=14.5.答案为:A ;解析:S 9S 5=92(a 1+a 9)52(a 1+a 5)=9×2a 55×2a 3=9a 55a 3=95×59=1.6.答案为:B ;解析:因为a n +1-a n =-3,所以数列{a n }是以19为首项,-3为公差的等差数列,所以a n =19+(n-1)×(-3)=22-3n.设前k 项和最大,则有⎩⎪⎨⎪⎧a k ≥0,a k+1≤0, 所以⎩⎪⎨⎪⎧22-3k≥0,22-3(k +1)≤0,所以193≤k ≤223,因为k∈N *,所以k=7.故满足条件的n 的值为7.7.答案为:2n ;解析:设等差数列首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3×22d =12,即⎩⎪⎨⎪⎧a 1+5d =12,a 1+d =4,所以⎩⎪⎨⎪⎧a 1=2,d =2,所以a n =a 1+(n-1)d=2n.8.答案为:5;解析:S 12=354,所以S 奇=354×2732+27=162,S 偶=354×3232+27=192, 所以S 偶-S 奇=30=6d ,所以d=5.9.答案为:190;解析:a n =2n-30,令a n <0,得n <15,即在数列{a n }中,前14项均为负数,所以S 10=-(a 1+a 2+a 3+…+a 10)=-102(a 1+a 10)=-5[(-28)+(-10)]=190.10.答案为:19;解析:因为a 10<0,a 11>0,且a 11>|a 10|,所以a 11>-a 10,a 1+a 20=a 10+a 11>0,所以S 20=20(a 1+a 20)2>0.又因为a 10+a 10<0,所以S 19=19×(a 10+a 10)2=19a 10<0, 故满足S n <0的n 的最大值为19.11.解:(1)设数列{a n }的首项为a 1,公差为d.则⎩⎪⎨⎪⎧a 10=a 1+9d =30,a 20=a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2. 所以a n =a 1+(n-1)d=12+(n-1)×2=10+2n.(2)由S n =na 1+n (n -1)2d 以及a 1=12,d=2,S n =242, 得方程242=12n +n (n -1)2·2,即n 2+11n-242=0, 解得n=11或n=-22(舍去).故n=11.12.解:(1)设等差数列{a n }的公差为d ,因为a 5+a 13=34,S 3=9.所以⎩⎪⎨⎪⎧a 1+4d +a 1+12d =34,a 1+a 1+d +a 1+2d =9,整理得⎩⎪⎨⎪⎧a 1+8d =17,a 1+d =3,解得⎩⎪⎨⎪⎧a 1=1,d =2. 所以a n =1+(n-1)×2=2n -1,S n =n×1+n (n -1)2×2=n 2. (2)由(1)知b n =2n -12n -1+t ,所以b 1=11+t ,b 2=33+t ,b m =2m -12m -1+t, 若b 1,b 2,b m (m≥3,m ∈N)成等差数列,则2b 2=b 1+b m ,所以63+t =11+t +2m -12m -1+t, 即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)·(1+t)(3+t),整理得(m-3)t 2-(m +1)t=0,因为t 是正整数,所以(m-3)t-(m +1)=0,m=3时显然不成立,所以t=m +1m -3=m -3+4m -3=1+4m -3, 又因为m≥3,m ∈N ,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t ,使得b 1,b 2,b m (m≥3,m ∈N)成等差数列. 即当t=5时,b 1,b 2,b 4成等差数列;当t=3时,b 1,b 2,b 5成等差数列;当t=2时,b 1,b 2,b 7成等差数列.13.解:(1)依题意,得S n n=3n-2,即S n =3n 2-2n. 当n≥2时,a n =S n -S n-1=(3n 2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a 1=1也适合.即a n =6n-5.(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1, 故T n =b 1+b 2+…+b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1=12⎝ ⎛⎭⎪⎫1-16n +1.。

【同步练习】人教A版2018年 高中数学必修5 等差数列前n项和 同步练习(含答案解析)

【同步练习】人教A版2018年 高中数学必修5 等差数列前n项和 同步练习(含答案解析)

2018年高中数学必修5 等差数列前n项和同步练习基本公式:【例1】已知等差数列的前项和为,若,,求:(1)数列的通项公式;(2).【例2】已知公差不为0的等差数列的前n项和成等差数列,且成等比数列.(1)求数列的通项公式;(2)若成等比数列,求n及此等比数列的公比.【例3】在数列中,,且.求数列的通项公式;【例4】已知n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.等差数列前n 项和公式 [A 组 基础巩固]1.等差数列{a n }中,d=2,a n =11,S n =35,则a 1等于( ) A .5或7 B .3或5 C .7或-1 D .3或-12.已知等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 为( ) A .7 B .6 C .3 D .23.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( ) A .138 B .135 C .95 D .234.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( ) A .12 B .13 C .14 D .155.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( ) A .9 B .8 C .7 D .66.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.7.等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n=________. 8.等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________. 9.在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10; (2)已知S 7=42,S n =510,a n -3=45,求n.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15, (1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值.[B 组 能力提升]1.S n 是等差数列{a n }的前n 项和,a 3+a 6+a 12为一个常数,则下列也是常数的是( ) A .S 17 B .S 15 C .S 13 D .S 72.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m=( ) A .3 B .4 C .5 D .63.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于________.4.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项和为180,S n =324(n>6),则数列的项数n=________,a 9+a 10=________.5.等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n .6.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .等差数列前n 项和公式性质与应用[课时作业] [A 组 基础巩固]1.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .112.数列{a n }为等差数列,若a 1=1,d=2,S k +2-S k =24,则k=( ) A .8 B .7 C .6 D .53.记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6=( )A .16B .24C .36D . 484.设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }的前8项和为( ) A .128 B .80 C .64 D .565.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( ) A .160 B .180 C .200 D .2206.有两个等差数列{a n },{b n },它们的前n 项和分别为S n 和T n .若S n T n =2n +1n +2,则a 8b 7等于________.7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是________.8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________.9.设正项数列{a n }的前n 项和为S n ,并且对于任意n ∈N *,a n 与1的等差中项等于S n ,求数列{a n }的通项公式.10.已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.[B 组 能力提升]1.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) A .13项 B .12项 C .11项 D .10项2.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m=( ) A .38 B .20 C .10 D .93.已知等差数列{a n },{b n }的前n 项和分别为A n ,B n ,且满足A n B n =2n n +3,则a 1+a 2+a 12b 2+b 4+b 9=________.4.数列{a n }的通项公式a n =ncos n π2,其前n 项和为S n ,则S 2 016等于________.5.已知数列{a n },a n ∈N *,S n 是其前n 项和,S n =18(a n +2)2.(1)求证{a n }是等差数列;(2)设b n =12a n -30,求数列{b n }的前n 项和的最小值.参考答案【例1】解: (1)(2)【例2】解:(1)设数列的公差为d 由题意可知,整理得,即,所以;(2)由(1)知,又,公比.【例3】解:,,即().【例4】解:(I )由a n 2+2a n =4S n +3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n 2+2(a n+1﹣a n )=4a n+1,即2(a n+1+a n )=a n+12﹣a n 2=(a n+1+a n )(a n+1﹣a n ), ∵a n >0,∴a n+1﹣a n =2,∵a 12+2a 1=4a 1+3,∴a 1=﹣1(舍)或a 1=3,则{a n }是首项为3,公差d=2的等差数列,∴{a n }的通项公式a n =3+2(n ﹣1)=2n+1: (Ⅱ)∵a n =2n+1,∴b n ===(﹣),∴数列{b n }的前n 项和T n =(﹣+…+﹣)=(﹣)=.等差数列前n 项和公式 [A 组 基础巩固]1.解析:由题意,得⎩⎪⎨⎪⎧a n =11,S n =35,即⎩⎪⎨⎪⎧a 1+2n -111,na 1+n n -12×2=35.解得⎩⎪⎨⎪⎧n =5,a 1=3,或⎩⎪⎨⎪⎧n =7,a 1=-1.答案:D2.解析:由S 2=4,S 4=20,得2a 1+d=4,4a 1+6d=20,解得d=3. 答案:C3.解析:由a 2+a 4=4,a 3+a 5=10,可知d=3,a 1=-4.∴S 10=-40+10×92×3=95.答案:C4.解析:由S 5=5a 3=25,∴a 3=5.∴d=a 3-a 2=5-3=2.∴a 7=a 2+5d=3+10=13. 答案:B5.解析:当n=1时,a 1=S 1=-8;当n ≥2时,a n =S n -S n -1=(n 2-9n)-[(n -1) 2-9(n -1)]=2n -10. 综上可得数列{a n }的通项公式a n =2n -10.所以a k =2k -10.令5<2k -10<8,解得k=8. 答案:B6.解析:∵n ≥2时,a n =a n -1+12,且a 1=1,所以数列{a n }是以1为首项,以12为公差的等差数列,所以S 9=9×1+9×82×12=9+18=27.答案:277.解析:⎩⎪⎨⎪⎧a 1+9d =10a 1+18d =100,∴d=10,a 1=-80.∴S n =-80n +n n -12×10=0,∴-80n +5n(n -1)=0,n=17.答案:178.解析:因为a 1+a 13=a 2+a 12=2a 7,又a 2+a 7+a 12=24,所以a 7=8.所以S 13=13a 1+a 132=13×8=104.答案:1049.解:(1)由已知条件得:⎩⎪⎨⎪⎧a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧a 1=3,d =4.∴S 10=10a 1+10×10-12d=10×3+10×92×4=210.(2)S 7=7a 1+a 72=7a 4=42,∴a 4=6.∴S n =n a 1+a n 2=n a 4+a n -32=n 6+452=510.∴n=20. 10.解:(1)设{a n }的首项,公差分别为a 1,d.则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d =-15,解得a 1=-9,d=3,∴a n =3n -12.(2)S n =n a 1+a n 2=12(3n 2-21n)=32⎝ ⎛⎭⎪⎫n -722-1478,∴当n=3或4时,前n 项的和取得最小值为-18.[B 组 能力提升]1.解析:∵a 3+a 6+a 12为常数,∴a 2+a 7+a 12=3a 7为常数,∴a 7为常数.又S 13=13a 7,∴S 13为常数. 答案:C2.解析:a m =S m -S m -1=2,a m +1=S m +1-S m =3,∴d=a m +1-a m =1,由S m =a 1+a m m2=0,知a 1=-a m =-2,a m =-2+(m -1)=2,解得m=5.答案:C3.解析:由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92a 1+a 952a 1+a 5=95×59=1.答案:14.解析:由题意,可知a 1+a 2+…+a 6=36 ①,a n +a n -1+a n -2+…+a n -5=180 ②,由①+②,得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36.又S n =n a 1+a n2=324,∴18n=324,∴n=18,∴a 1+a 18=36,∴a 9+a 10=a 1+a 18=36.答案:18 365.解:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=-32n 2+2052n -⎣⎢⎡ -32n -12+⎦⎥⎤2052n -1=-3n +104,a 1=S 1=101也适合上式,所以a n =-3n +104,令a n =0,n=3423,故n ≥35时,a n <0,n ≤34时,a n >0,所以对数列{|a n |},n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =-32n 2+2052n ,当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=a 1+a 2+…+a 34-a 35-…-a n=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =32n 2-2052n +3 502,所以T n=⎩⎪⎨⎪⎧-32n 2+2052n n ≤34,32n 2-2052n +3 502n ≥35.6.解:设等差数列{a n }的公差为d ,则S n =na 1+12n(n -1)d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d=-2+12(n -1),∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n ·n -12×12=14n 2-94n.等差数列前n 项和公式性质与应用[课时作业] [A 组 基础巩固] 1.解析:a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5a 1+a 52=5a 3=5.答案:A2.解析:∵S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d=2a 1+(2k +1)d=2×1+(2k +1)×2=4k +4=24,∴k=5. 答案:D3.解析:设数列{a n }的公差为d ,则S n =n 2+n n -12d ,∴S 4=2+6d=20,∴d=3,∴S 6=3+15d=48.答案:D4.解析:设数列{a n }的前n 项和为S n ,则S 8=8a 1+a 82=8a 2+a 72=83+132=64.答案:C5.解析:∵{a n }是等差数列,∴a 1+a 20=a 2+a 19=a 3+a 18.又a 1+a 2+a 3=-24,a 18+a 19+a 20=78,∴a 1+a 20+a 2+a 19+a 3+a 18=54.∴3(a 1+a 20)=54.∴a 1+a 20=18.∴S 20=20a 1+a 202=180.答案:B6.解析:由{a n },{b n }是等差数列,S n T n =2n +1n +2,不妨设S n =kn(2n +1),T n =kn(n +2)(k ≠0),则a n =3k +4k(n -1)=4kn -k ,b n =3k +2k(n -1)=2kn +k.所以a 8b 7=32k -k 14k +k =3115.答案:31157.解析:由已知得3a 3=105,3a 4=99,∴a 3=35,a 4=33,∴d=-2,a n =a 4+(n -4)(-2)=41-2n , 由⎩⎪⎨⎪⎧a n ≥0a n +1<0,得n=20.答案:20 8.解析:S 奇=a 1+a 3+a 5+a 7+a 9=15,S 偶=a 2+a 4+a 6+a 8+a 10=30,∴S 偶-S 奇=5d=15,∴d=3. 答案:39.解:由题意知,S n =a n +12,得:S n =a n +124,∴a 1=S 1=1,又∵a n +1=S n +1-S n =14[(a n +1+1)2-(a n +1)2],∴(a n +1-1)2-(a n +1)2=0.即(a n +1+a n )(a n +1-a n -2)=0,∵a n >0,∴a n +1-a n =2,∴{a n }是以1为首项,2为公差的等差数列.∴a n =2n -1.10.解:(1)设等差数列{}a n 的公差为d ,则a n =a 1+(n -1)d.由a 1=1,a 3=-3可得1+2d=-3,解得d=-2.从而a n =1+(n -1)×(-2)=3-2n.(2)由(1)可知a n =3-2n.所以S n =n[13-2n ]2=2n -n 2.进而由S k =-35可得2k -k 2=-35,即k 2-2k -35=0.解得k=7或k=-5.又k ∈N *,故k=7为所求结果.[B 组 能力提升]1.解析:∵a 1+a 2+a 3=34,①a n +a n -1+a n -2=146,②又∵a 1+a n =a 2+a n -1=a 3+a n -2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③S n =a 1+a n n 2=390.④将③代入④中得n=13.答案:A2.解析:由等差数列的性质,得a m -1+a m +1=2a m ,∴2a m =a 2m .由题意得a m ≠0,∴a m =2.又S 2m -1=2m -1a 1+a 2m -12=2a m 2m -12=2(2m -1)=38,∴m=10.答案:C3.解析:a 1+a 2+a 12b 2+b 4+b 9=3a 1+12d 13b 1+12d 2=a 5b 5=a 1+a 92b 1+b 92=9×a 1+a 929×b 1+b 92=A 9B 9=2×99+3=32.答案:324.解析:由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N , 故S 2 016=504×2=1 008.答案:1 0085.解:(1)证明:当n=1时,a 1=S 1=18(a 1+2)2,解得a 1=2.当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,即8a n =(a n +2)2-(a n -1+2)2,整理得,(a n -2)2-(a n -1+2)2=0,即(a n +a n -1)(a n -a n -1-4)=0.∵a n ∈N *,∴a n +a n -1>0,∴a n -a n -1-4=0,即a n -a n -1=4(n ≥2). 故{a n }是以2为首项,4为公差的等差数列. (2)设{b n }的前n 项和为T n ,∵b n =12a n -30,且由(1)知a n =2+(n -1)×4=4n -2,∴b n =12(4n -2)-30=2n -31,故数列{b n }是单调递增的等差数列.令2n -31=0,得n=1512,∵n ∈N *,∴当n ≤15时,b n <0;当n ≥16时,b n >0,即b 1<b 2<…<b 15<0<b 16<b 17<…,当n=15时,T n 取得最小值,最小值为T 15=-29-12×15=-225.。

人教A版高中数学必修五同步练测:2.3等差数列的前n项和(含答案解析)

人教A版高中数学必修五同步练测:2.3等差数列的前n项和(含答案解析)

高中数学学习材料金戈铁骑整理制作2.3 等差数列的前n 项和(人教A 版必修5)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题3分,共27分)1.已知数列{}n a 为等差数列,公差2d =-,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.242.若11a =,2d =,224k k S S +-=,则k =( ) A.8 B.7 C.6 D.53.等差数列{}n a 的前n 项和为n S ,若1a =12,4S =20,则6S =( ) A.16 B.24 C.36 D.484.等差数列{}n a 的前n 项和为n S ,已知11m m a a -++-2ma =0,21m S -=38,则m =( )A.38B.20C.10D.95.数列{}n a 是等差数列,12324a a a ++=-,1819a a ++2078a =,则此数列的前20项和等于( )A.160B.180C.200D.2206.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,2811a a a ++是一个定值,则下列各数中也为定值的是( )A.7SB.8SC.13SD.15S7.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A.138B.135C.95D.238.已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( ) A.24 B.26 C.27 D.289.已知等差数列{}n a 的前n 项和为n S ,若1OB a OA=200a OC +且,,A B C 三点共线(该直线不过点O ),则200S =( )A.100B.101C.200D.201二、填空题(每小题4分,共16分)10.在等差数列{}n a 中,10a >,d =12,n a =3,n S =152,则1a = ,n = . 11. 设等差数列的前n 项和为n S ,若972S =,则249a a a ++= .12.已知等差数列{}n a 的前n 项和为18,若3S =1,n a 123n n a a --++=,则n = .13.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 . 三、解答题(共57分)14.(8分)在等差数列{}n a 中:(1)已知51058a a +=,4950a a +=,求10S ; (2)已知742S =,510n S =,345n a -=,求n .15.(8分) 已知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的项构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?16.(8分)已知等差数列{}n a , (1)若271221a a a ++=,求13S ; (2)若1575S =,求8a .17.(9分)已知在正整数数列{}n a 中,前n 项和n S 满足:n S =18(n a +2)2.(1)求证:{}n a 是等差数列;(2)若n b =12n a -30,求数列{}n b 前n 项和的最小值.18.(12分)设等差数列}{n a 的前n 项和为n S ,且4S =-62, 6S =-75,求:(1)}{n a 的通项公式及前n 项和n S ;(2)|1a |+|2a |+|3a |+…+|14a |.19.(12分)已知数列{}n a 的前n 项和278n S n n =--. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .2.3 等差数列的前n和(人教A版必修5)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9答案二、填空题10. 11. 12. 13.三、解答题14.15.16.17.18.19.2.3 等差数列的前n项和(人教A版必修5)答案1.B 解析:由1011S S =,得1111100a S S =-=,111(111)0(10)(2)20a a d ⨯=+-=+--=.2.D 解析:∵ 212111(1)2(21)21(21)24424k k k k S S a a a kd a k d a k d k k ⨯⨯+++-=+=++++=++=++=+=,∴ 5k =.3.D 解析:设等差数列{}n a 的公差为d ,∵ 1a =12,4S =4×12+4×32d =2+6d =20,∴ d =3,故6S =6×12+6×52×3=48,故选D.4.C 解析:由等差数列的性质,得112m m m a a a -++=,∴ 22m m a a =.由题意得0m a ≠,∴ 2m a =.又21m S -=121(21)()2(21)22m m m a a a m --+-==2(21)m -=38,∴ m =10.5.B 解析:∵ {}n a 是等差数列,∴ 120219318a a a a a a +=+=+.又12324a a a ++=-,18192078a a a ++=,∴ 12021931854a a a a a a +++++=. ∴ 1203()54a a +=.∴ 12018a a +=.∴ 20S =12020()2a a +=180. 6.C 解析:由已知28111173183(6)3a a a a d a d a ++=+=+=为定值,则13S =11313()2a a +=137a 也为定值,故选C. 7.C 解析:设等差数列{}n a 的首项为1a ,公差为d ,则24354,10.a a a a +=⎧⎪⎨+=⎪⎩①②②-①,得2d =6,∴ d =3.∴ 2411113242434a a a d a d a d a ⨯+=+++=+=+=.∴ 14a =-.∴ 10S =10×(-4)+10×92×3=-40+135=95.故选C.8.B 解析:设该等差数列为{}n a ,由题意得123421a a a a +++=,12367n n n n a a a a ---+++=. 又∵ 1213243n n n n a a a a a a a a ---+=+=+=+,∴ 14()216788n a a +=+=,∴ 122n a a +=, ∴ n S =1()2n n a a +11286n ==,∴ 26n =. 9.A 解析:∵ 1200OB a OA a OC =+,且,,A B C 三点共线, ∴ 12002001a a S +=,=1200200()2a a +100=.二、填空题10.23 解析:由题意,得1113(1)21511=(1),222a n na n n ⎧=+-⨯⎪⎪⎨⎪+⨯-⨯⎪⎩,解得12,3.a n =⎧⎨=⎩ 11.24 解析:∵ }{n a 是等差数列,972S =,599,S a ∴=58a =.∴2492945645()()324a a a a a a a a a a ++=++=++==. 12.27 解析:由题意得1()182n n n a a S +==. 由121233,1,n n n a a a a a a --++=⎧⎨++=⎩得13()4n a a +=,即1n a a +=43,故n =136362743na a ==+. 13.3 解析:1357915S a a a a a 奇=++++=,24681030S a a a a a 偶=++++=,∴ 515S S d 偶奇-==,∴ 3d =.14.(1)解法一:由已知条件得510149121358,21150,a a a d a a a d +=+=⎧⎨+=+=⎩解得13,4.a d =⎧⎨=⎩∴ 10110S a =+10(101)2d ⨯-⨯103⨯=+1092⨯4210⨯=. 解法二:由已知条件得51011049110458,250,a a a a d a a a a d +=++=⎧⎨+=++=⎩∴ 11042a a +=,∴ 10S =11010()2a a ⨯+542210⨯==.解法三:由51049()()25850a a a a d +-+==-,得4d =; 由4950a a +=,得121150a d +=,∴ 13a =. 故10103S ⨯=+10942102⨯⨯=. (2)解:7S =177()2a a +4742a ==,∴ 46a =. ∴ n S =()()()14345510222-+++===6n n n a a n a a n .∴ 20n =.15.解:设新数列为{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则即3=2+4d ,∴ 14d =,∴ 172(1)44n n b n +=+-⨯=. 1(43)7(1)114n n a a n n -+=+-⨯=+=又,∴ 43n n a b -=.即原数列的第n 项为新数列的第(4n -3)项.(1)当n =12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项; (2)由4n -3=29,得n =8,故新数列的第29项是原数列的第8项. 16.解:(1)∵ 21211372a a a a a +=+=,271221a a a ++=, ∴ 7321a =,即7a =7. ∴ 13S =11313()2a a +=71322a ⨯=91. (2)∵ 15S =11515()2a a +=81522a ⨯=75,∴ 8a =5. 17.(1)证明:由21(2)8n n S a =+,得2111(2)8n n S a --=+(n ≥2).当n ≥2时,n a =n S -1n S -=182(2)n a +-1821(2)n a -+,整理,得11()(4)0n n n n a a a a --+--=.∵ 数列{}n a 为正整数数列,∴ 10,n n a a +≠- ∴ 14n n a a --=,即{}n a 为等差数列.(2)解:∵ 1S =1821(2)a +,∴ 1a =1821(2)a +,解得1a =2.∴ n a =2+4(n -1)=4n -2.∴ n b =12n a -30=12(4n -2)-30=2n -31.令n b <0,得n <312. ∴ 15S 为前n 项和的最小值,即151215S b b b =+++=2(1+2+…+15)-15×31=-225. 18.解:设等差数列的首项为1a ,公差为d ,依题意得⎩⎨⎧-=+-=+,,75156626411d a d a解得120,3.=⎧⎨=⎩-a d(1)2)23320(2)(,233)1(11-+-=+=-=-+=n n n a a S n d n a a n n n 234322n n =-.(2){}120,3,n a d a n =-=∴的项随着的增大而增大.1Z 202300,32303(1)230,(),7,337+≤≥-≤+-≥∴≤≤∈=k k a a k k k k k 设且得且数.即第项及之前均为负∴ 123141278914||||||||()()a a a a a a a a a a ++++=-+++++++1472147S S =-=.19.解:(1)当n =1时,11a S ==-14; 当n ≥2时,1n n n a S S -=-=2n -8, 故n a =14(1),28(2).n n n -=⎧⎨-≥⎩(2)由n a =2n -8可知:当n ≤4时,n a ≤0;当n ≥5时,0n a >. ∴ 当1≤n ≤4时,278n n T S n n =-=-++;当n ≥5时,22444()2782(20)732n n n T S S S S S n n n n ⨯=-+-=-=----=-+.∴ n T =2278(14),732(5).n n n n n n ⎧-++≤≤⎪⎨-+≥⎪⎩。

、高二数学 人教A版 必修5 第2章 2.3等差数列前n项和 教材同步培优练习及答案(教师版)

、高二数学 人教A版 必修5  第2章 2.3等差数列前n项和 教材同步培优练习及答案(教师版)

(时间:120分钟 满分:150分)一、选择题(60分)1. 等差数列 ,4,1,2-的前n 项和为 ( B ) A.()4321-n n B. ()7321-n n C. ()4321+n n D. ()7321+n n 2. 已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是( C ) A.5 B.4 C. 3 D.23. 在等差数列{}n a 中,若1264=+a a ,S n 是数列{}n a 的前n 项和,则9S 的值为 ( B ) A. 48 B. 54 C. 60 D. 664. 设S n 是等差数列{}n a 的前n 项和,若3163=S S ,则=126S S( A )A.103 B. 31 C. 8 D. 915. 在等差数列{}n a 中,已知1254=+a a ,那么它的前8项之和8S 等于 ( D ) A. 12 B. 24 C. 36 D. 486. 设{}n a 是公差为2的等差数列,若5097741=++++a a a a ,则99963a a a a ++++ 的值为( D ) A. 78 B. 82 C. 148 D. 1827. 在等差数列{}n a 中,35,2,11===n n S d a ,则1a 等于 ( D ) A. 5或7 B. 3或5 C. 7或1- D. 3或1-8. 设数列{}n a 是递增的等差数列,前三项之和为12,前三项的积为48,则它的首项是( B ) A. 1 B. 2 C. 4 D. 89. 等差数列{}n a 中,162,16,1041===n S a a ,则n 等于( B ) A. 11 B. 9 C. 9或18 D. 1810. 数列{}n a 是等差数列,它的前n 项和可以表示为( B ) A. C Bn An S n ++=2 B. Bn An S n +=2 C. C Bn An S n ++=2()0≠a D. Bn An S n +=2()0≠a11. 已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( C )A .55B .70C .85D .10012. 设{}n a 是公差为正数的等差数列,若80,15321321==++a a a a a a ,则111213a a a ++=( B )A . 120B . 105C . 90D .75 二、填空题(16分)13. 等差数列{}n a 中,4,184==S S ,则=+++20191817a a a a 9 。

2020_2021学年高中数学第二章数列2.3.1等差数列的前n项和同步作业含解析新人教A版必修52

2020_2021学年高中数学第二章数列2.3.1等差数列的前n项和同步作业含解析新人教A版必修52

等差数列的前n项和(30分钟60分)一、选择题(每小题5分,共30分)1.已知等差数列{a n}的前10项和为30,a6=8,则a100=( )A.100B.958C.948D.18【解析】选C.设等差数列{a n}的公差为d,由已知解得所以a100=-42+99×10=948.2.已知等差数列{a n}的公差为3,且a1+a3=8,则数列{a n}的前4项的和S4的值为( ) A.10B.16C.22D.35【解析】选C.因为等差数列{a n}的公差为3,且a1+a3=8,所以2a1+2×3=8,所以a1=1,所以S4=4×1+×3=22.3.(2019·某某高二检测)已知等差数列的前n项和S n,且S3=S5=15,则S7=() A.4B.7C.14D.【解析】选B.等差数列的前n项和为S n,且S3=S5=15,所以a4+a5=0,所以2a1+7d=0.再根据S3=3a1+3d=15,可得a1=7,d=-2,则S7=7a1+d=49+21×(-2)=7.4.(2019·某某高一检测)在等差数列{a n}中,若a3+a4+a5+a6+a7=45,则S9=() A.45B.162C.81D.【解析】选C.因为在等差数列{a n}中,a3+a4+a5+a6+a7=5a5=45,所以a5=9.所以S9==9a5=81.5.等差数列{a n}的前n项和为S n,若=,则下列结论中正确的是( )A.=2B.=C.=D.=【解析】选C.由已知S n=a n,S n-1=a n-1(n≥2),两式相减可得a n=a n-a n-1(n≥2),化简得=(n≥2),当n=3时,=.6.数列{a n}的前n项和S n=2n2+n(n∈N*),则a n=( )A.2n-1B.2n+1C.4n-1D.3n+2【解析】选C.因为数列{a n}的前n项和S n=2n2+n,所以当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1,当n=1时,a1=S1=3,符合上式,所以综上a n=4n-1.二、填空题(每小题5分,共10分)7.设等差数列{a n}的前n项和为S n,S3=6,S4=12,则S6=________.【解析】方法一:设数列{a n}的首项为a1,公差为d,由S3=6,S4=12,得解得所以S6=6a1+15d=30.方法二:因为{a n}为等差数列,可设前n项和S n=An2+Bn,由S3=6,S4=12得解得即S n=n2-n,所以S6=36-6=30.答案:308.设等差数列{a n}的前n项和为S n,若S8=32,则a2+2a5+a6=__________.【解析】因为S8=32,所以=32.可得a4+a5=a1+a8=8,则a2+2a5+a6=2(a4+a5)=2×8=16.答案:16三、解答题(每小题10分,共20分)9.在各项为正的等差数列{a n}中,已知公差d=2,a n=11,S n=35,求a1和n.【解析】由题意得即解得或(舍去)故10.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ.(2)是否存在λ,使得{a n}为等差数列?并说明理由.【解析】(1)由a n a n+1=λS n-1知,a n+1a n+2=λS n+1-1,两式相减得,a n+1(a n+2-a n)=λa n+1,又因为a n+1≠0,所以a n+2-a n=λ.(2)存在.由a1=1,a1a2=λa1-1,得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.所以a n+2-a n=4,由此可得,{a2n-1}是首项为1,公差为4的等差数列,a2n-1=1+(n-1)·4=4n-3; {a2n}是首项为3,公差为4的等差数列,a2n=3+(n-1)·4=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得{a n}为等差数列.(45分钟75分)一、选择题(每小题5分,共25分)1.已知等差数列{1-3n},则公差d等于( )A.1B.3C.-3D.n【解析】选C.因为a n=1-3n,所以a1=-2,a2=-5,所以d=a2-a1=-3.2.设等差数列{a n}的前n项和为S n,若S17=255,a10=20,则数列{a n}的公差为( ) A.3B.4C.5D.6【解析】选C.根据等差数列的求和公式,可得S17=×17=17a9=255,可得a9=15,又a10=20,所以d=a10-a9=20-15=5.3.等差数列中,S n是前n项和,若a3+a8=5,S9=45,则S11=( )A.0B.10C.20D.25【解析】选A.设等差数列的首项为a1,公差为d,因为,所以,即,解得,则S11=25×11-×5=0.故选A.4.已知等差数列{a n}中,a2=6,a5=15,若b n=a2n,则数列{b n}的前5项和等于( ) A.30B.45C.90D.186【解析】选C.因为所以故所以a n=a1+(n-1)d=3n,故b n=a2n=6n,则因此{b n}的前5项和为S5=5×6+×6=90.5.(2019·定州高一检测)记等差数列{a n}的前n项和为S n,若a5=3,S13=91,则S11=( ) A.36B.72C.55D.110【解析】选C.因为S13==13a7=91,所以a7=7,因为a5=3,所以a5+a7=10,因为a1+a11=a5+a7=10,所以S11==55.二、填空题(每小题5分,共20分)6.(2019·全国卷Ⅲ)记S n为等差数列{a n}的前n项和,a1≠0,a2=3a1,则=________.【解析】设该等差数列的公差为d,因为a2=3a1,所以a1+d=3a1,故d=2a1(a1≠0,d≠0),所以====4.答案:47.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为________.【解析】(1)当n=1时,a1=S1=12-8=-7.(2)当n>1时,由S n=n2-8n得:S n-1=(n-1)2-8(n-1)=n2-10n+9,两式相减,得:a n=2n-9,n=1也符合,由a n=2n-9>0,得:n>4.5,所以,满足a n>0的n的最小值为5.答案:58.已知数列{a n}的前n项和S n=n2-2n+3,则a n=________.【解析】当n=1时,a1=S1=2,当n≥2,a n=S n-S n-1=n2-2n-(n-1)2+2(n-1)=2n-3,故a n=答案:9.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,天坛圆丘的地面由扇环形的石板铺成(如图所示),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是________.【解析】因为最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则每圈的石板数构成一个以9为首项,以9为公差的等差数列,所以a n=9n,当n=9时,第9圈共有81块石板,所以前9圈的石板总数S9=(9+81)=405.答案:405三、解答题(每小题10分,共30分)10.等差数列{a n}的前n项和记为S n,已知a10=30,a20=50.(1)求通项a n.(2)令S n=242,求n.【解析】(1)由a n=a1+(n-1)d,a10=30,a20=50,得方程组解得所以a n=2n+10.(2)由S n=na1+·d,S n=242,得方程12n+×2=242,解得n=11或n=-22(舍去),即n=11.11.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(1)若S5=5,求S6及a1.(2)求d的取值X围.【解析】(1)由题意知S6=-=-3,a6=S6-S5=-8,所以解得a1=7. 综上,S6=-3,a1=7.(2)因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2+9da1+10d2+1=0,所以(4a1+9d)2=d2-8,所以d2≥8.故d的取值X围为d≤-2或d≥2.12.(2017·某某高考)对于给定的正整数k,若数列{a n}满足a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”.(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【证明】(1)因为是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列是“P数列”.(2)数列既是“P数列”,又是“P数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n),④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2+a3+a3+2d′+a3+3d′=4(a3+d′),即a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,因为a3=a2+d′,所以a1+a2+a2+2d′+a2+3d′=4(a2+d′), 即a1=a2-d′,所以数列{a n}是等差数列.。

最新人教A版高中数学必修五2.3《等差数列前n项和》同步测试题(含解析)

最新人教A版高中数学必修五2.3《等差数列前n项和》同步测试题(含解析)

2. 3《等差数列前n 项和》11、等差数列Λ,4,1,2-地前n 项和为 ( ) A. ()4321-n n B. ()7321-n n C. ()4321+n n D.()7321+n n2、已知等差数列{}n a 满足099321=++++a a a a Λ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a3、在等差数列{}n a 中,已知1254=+a a,那么它地前8项之和8S 等于 ( ) A. 12 B. 24 C. 36 D. 484、设{}n a 是公差为2地等差数列,若5097741=++++a a a a Λ,则99963a a a a ++++Λ地值为 ( ) A. 78 B. 82 C. 148 D. 1825、在等差数列{}n a 中,35,2,11===n n S d a ,则1a 等于 ( )A. 5或7B. 3或5C. 7或1-D. 3或1-6、设数列{}na 是递增地等差数列,前三项之和为12,前三项地积为48,则它地首项是( )A. 1B. 2C. 4D. 87、一个三角形地三个内角C B A ,,地度数成等差数列,则B 地度数为 ( )A. ο30B. ο45C. ο60D. ο90 8、等差数列{}n a 中,162,16,1041===n S a a ,则n 等于 ( )A. 11B. 9C. 9或18D. 189、数列{}na 是等差数列,它地前n 项和可以表示为 ( )A. C Bn An S n ++=2B. Bn An Sn +=2 C. C Bn An S n ++=2()0≠a D. Bn An S n +=2()0≠a10、=+++++1008642Λ 。

11、等差数列{}na 中,1011=a ,则=21S 。

12、等差数列{}n a 中,4,184==S S,则=+++20191817a a a a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 若数列{}n a 的前4项分别为0,则下列各式中可作为{}n a 的通项公式的是( )①(1)12n n a ⎡⎤=-+⎣⎦;②n a =)0()n n a n =⎪⎩为偶数为奇数,.A.①②③B.①②C.②③D.①2. 下面三个结论:①数列若用图象表示,从图象上看都是一群孤立点. ②数列的项数是无限的. ③数列通项的表示式是唯一的. 其中正确的是( ) A.①②B.①C.②③D.①②③3.数列通项是n a =,当其前n 项和为9时,项数n 是( )A.9B.99C.10D.1004. 在数列{}n a 中,已知前n 项和278n S n n =-,则100a 的值为()A.69200B.1400C.1415D.13855. 等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =()A.36B.72C.18D.1146. 首项为24-的等差数列,从第10项起开始为正数,则公差d 的取值范围是( )A.83d >B.3d >C.833d <≤ D.833d <≤ 7. 已知等差数列{}n a 共有21n +项,所有奇数项之和为132,所有偶数项之和为120,则n 等于()A.9 B.10C.11D.不确定8. 若两个等差数列{}n a 和{}n b 的前n 项和分别是n n S T ,,已知73n n S n T n =+,则55a b 等于( ) A.7B.23 C.278D.2149. ABC △中,a b c ,,分别为A B C ∠∠∠,,的对边,如果a b c ,,成等差数列,30B ∠=o,ABC △的面积为32,那么b =( )B.1D.2+10. 已知{}n a 满足,对一切自然数n 均有1n n a a +>,且2n a n n λ=+恒成立,则实数λ的取值范围是()A.0λ>B.0λ<C.0λ=D.3λ>-11. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +=.12. 若数列{}n a 满足132()3n n a a n *++=∈N ,且10a =,则7a = . 13. 一个凸多边形内角成等差数列,其中最小角为120o,公差为5o,则多边形的边数是 .14.等差数列{}n a 中,已知12310a a a a p ++++=L ,98n n n a a a q --+++=L ,则其前n 项和n S = .15.设{}n a 是首项为1的正项数列,且2211(1)0(123)n n n n n a na a a n +++-+==g L ,,, ,则它的通项公式是n a = .16. 等差数列的前n 项和为n S ,若1284S =,20460S =,求28S .17. 已知数列{}n a 的前n 项的和为212443n S n n =++,求这个数列的通项公式.18. 等差数列{}n a 的前n 项和记为n S ,已知10203050a a ==,.(1) 求通项n a ;(2)若242n S =,求n .19. 设等差数列{}n a 的前n 项和为n S ,已知312a =,且121300S S ><,.(1) 求公差d 的范围;(2) 该数列前几项的和最大?说明理由.20. 已知数列{}n a 各项均不为0,且满足关系式1133n n n a a a --=+(2)n ≥.(1)求证数列1n a ⎧⎫⎨⎬⎩⎭为等差数列; (2)当112a =时,求数列{}n a 的通项公式.21. 已知数列{}n a 的前n 项和210()n S n n n *=-∈N ,数列{}n b 的每一项都有n n b a =,求{}n b 的前n 项和n S '.22、△ABC的内角A 、B 、C 的对边分别为a 、b 、c ,且(a ﹣c )2=b 2﹣ac .(1)求B 的大小;(2)若b=2,且sinA 、sinB 、sinC 成等差数列,求△ABC 的面积.23、已知正项数列{a n }的前n 项和为S n ,满足,(n ∈N *),且a 1=1(I )求a n ;(II )设数列前n 项和为T n ,求T n .24、已知正项等差数列{a n }的前n 项和为S n ,且满足a 1+a 5=27a 23,S 7=63.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }满足b 1=a 1且b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .25、已知函数222(sin cos )1()cos sin x x f x x x+-=-,方程()f x =(0,)+∞上的解按从小到大的顺序排成数列{}n a (*)n N ∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设23(41)(32)nn a b n n =--,数列{}n b 的前n 项和为n S ,求n S 的表达式.一、选择题1. A2. B.3. B.4. D.5. B.6. D.7. B.8. D.9. B.10. C.二、填空题11.180 12. 4 13.9 14. ()20n p q + 15. 1n三、解答题16. 解:(方法1)设等差数列{}n a 的首项为1a ,公差d ,则11(1)2n S na n n d =+-. 122084460S S ==,∵,11112121184212020194602a d a d ⎧+⨯⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩∴.解得1154a d =-=,.2115(1)42172n S n n n n n =-+-⨯=-∴,22822817281092S =⨯-⨯=∴.(方法2)由已知不妨设2n S an bn =+,221212802020460a b a b ⎧+=⎪⎨+=⎪⎩∴,27a b ==-,∴,2217n S n n =-∴,22822817281092S =⨯-⨯=∴.17. 59,1,1265, 1.12n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩18. 解:(1)201050302201010a a d--===-,1019a a d =+,13092a =+⨯∴,112a =∴.1(1)122(1)210n a a n d n n =+-=+-=+∴.(2)242n S =,1(1)2422n n na d -+=g ,(1)1222422n n n -+⨯=,2112420n n +-=∴,11n =或22-(舍)故11n =.19. 解:(1)1111211120213121302212a d a d a d ⨯⎧+>⎪⎪⨯⎪+<⎨⎪+=⎪⎪⎩,,. 整理,得1111266013780212a d a d a d +>⎧⎪+<⎨⎪+=⎩,,. 解之得:2437d -<<-. (2)解法一:由0d <可知,{}n a 为一个递减函数列.因此,在112n ≤≤中,必存在一个自然数n ,使得n a ≥0,10n a +<,此时对应的n S 就是1212S S S L ,,,中的最大值.由于12671376()0130S a a S a =+>⎧⎨=<⎩于是70a <,从而60a >.因此6S 最大.20. 解:(1)111311133n n n n a a a a ---+==+, 11113n n a a -∴-=是常数, ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列.(2)35n a n =+.21.15. 解:∵数列{}n a 的前n 项和210()n S n n n *=-∈N ,9(1)112(2)n n a n n =⎧=⎨-⎩,.∴ ≥即112()n a n n *=-∈N . 又n n b a =∵,而567000a a a ><<L ,,,. (15)(6)n n n a n b a n ⎧=⎨-⎩ ≤≤∴ ≥,2210(5)1050(6)n n n n n S n n n n **⎧-∈⎪'=⎨-+∈⎪⎩N N ,,,.≤∴ ≥22、解:(Ⅰ)由(a ﹣c )2=b 2﹣ac ,可得a 2+c 2﹣b 2=ac…∴…∵B ∈(0,π)∴…(Ⅱ)∵b=2,,∴由余弦定理得b 2=4=a 2+c 2﹣ac=(a +c )2﹣3ac…又∵sinA 、sinB 、sinC 的值成等差数列,∴SinA +SinC=2 SinB 由正弦定理得a +c=2b=4,∴4=16﹣3ac ,解得ac=4.… 由,得,∴△ABC 的面积.…23、解:(1)由,则4S n =a n +12+2a n +1+1,当n ≥2时,4S n ﹣1=a n 2+2a n +1,4a n =4S n ﹣4S n ﹣1=(a n +12+2a n +1+1)﹣(a n 2+2a n +1),整理得:(a n +a n ﹣1)(a n ﹣a n ﹣1﹣2)=0, 由a n ≠0,则a n ﹣a n ﹣1=2,则数列{a n }是以a 1=1为首项,d=2为公差的等差数列,a n =1+2(n ﹣1)=2n ﹣1,∴a n =2n ﹣1;(2)数列的通项公式数列==(﹣),T n =(1﹣)+(﹣)+…+(﹣),=(1﹣+﹣+…+﹣),=(1﹣),=,即数列前n 项和T n =,24、(1)法一:(等差数列的基本量)设正项等差数列{a n }的首项为a 1,公差为d ,易知a n >0,则⎩⎪⎨⎪⎧a 1+a 1+4d =27(a 1+2d )27a 1+21d =63,解得⎩⎨⎧a 1=3d =2,∴a n =2n +1.法二:(等差数列的性质)∵{a n }是等差数列且a 1+a 5=27a 23,∴2a 3=27a 23,又a n >0,∴a 3=7. ∵S 7=7(a 1+a 7)2=7a 4=63,∴a 4=9,∴d =a 4-a 3=2,∴a n =a 3+(n -3)d =2n +1.(2)∵b n +1-b n =a n +1且a n =2n +1,∴b n +1-b n =2n +3,当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=(2n +1)+(2n -1)+…+5+3=n (n +2),当n =1时,b 1=3满足上式,故b n =n (n +2). ∴1b n=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =1b 1+1b 2+…+1b n -1+1b n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2).25、解:(Ⅰ)222(sin cos )12sin cos sin 2()tan 2cos sin cos 2cos 2x x x x xf x x x x x x+-====-, …………2分等差数列前n 项和由()f x =0x >得2,3x k ππ=+∴()26k x k Z ππ=+∈ ………4分方程()f x =(0,)+∞的解从小到大依次排列构成首项为6π, 公差为2π的等差数列∴(32)(1)626n n a n πππ-=+-=. ………………6分 (Ⅱ)23(32)(41)(32)62(21)(21)n n b n n n n ππ-=⋅=---+111()42121n n π=--+, 111111(1)()()(1)4335212142142n n S n n n n πππ⎡⎤=-+-++-=-=⎢⎥-+++⎣⎦L .……12分。

相关文档
最新文档