18.2.2 菱形的判定(2)
18.2.2:菱形(解析)

初中八年级数学下册第十八章:平行四边形——18.2.2:菱形(解析)一:知识点讲解知识点一:菱形的定义➢ 定义:有一组邻边相等的平行四边形叫做菱形➢ 菱形的定义也是菱形的一种判定方法➢ 菱形必备的两个条件:一是平行四边形;二是一组邻边相等例1:如下图所示,在△ABC 中,CD 平分∠ACB ,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由。
解:是。
知识点二:菱形的性质➢ 性质:菱形具有平行四边形的一切性质➢ 边:菱形的四条边都相等在菱形ABCD 中,AB =BC =CD =DA➢ 对角线:菱形的对角线互相垂直,并且每一条对角线平分一组对角在菱形ABCD 中,对角线AC 、BD 交于O 点,则AC ⊥BD ,∠ADB =∠CDB , ∠ABD =∠CBD ,∠BAC =∠DAC ,∠ACB =∠ACD➢ 对称性:菱形是轴对称图形,对称轴是两条对角线所在的直线例2:在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( B )A. AB ∥DCB. AC =BDC. AC ⊥BDD. OA =OC知识点三:菱形的面积➢ 菱形的面积=底⨯高➢ 若a ,b 表示菱形的两条对角线长,则ab S 21= ➢ 对角线互相垂直的四边形的面积都可以用两条对角线乘积的一半来表示例3:如下图所示,菱形ABCD 的边长为5,对角线AC =6,则菱形ABCD 的面积为 24 。
知识点四:菱形的判定➢ 边:✧ 一组邻边相等的平行四边形是菱形在平行四边形ABCD 中,若AB =AD ,则平行四边形ABCD 是菱形✧ 四条边都相等的四边形是菱形在四边形ABCD 中,∵AB =BC =CD =DA ,∴四边形ABCD 是菱形➢ 对角线:对角线互相垂直的平行四边形是菱形在平行四边形ABCD 中,∵AC ⊥BD ,∴平行四边形ABCD 是菱形例4:如下图,平行四边形ABCD 的对角线AC 的垂直平分线与AD 、BC 、AC 分别交于点E 、F 、O ,求证:四边形AFCE 是菱形解:略。
人教版八下数学18.2.2菱形 课时2 菱形的判定教案+学案

人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 菱形课时2菱形的判定教案【教学目标】知识与技能目标1.理解并运用菱形的定义和两个判定定理进行有关的推理论证和计算.2.了解菱形的现实应用和常用判别条件.过程与方法目标1.从菱形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会菱形的性质与判定的区别与联系.2.让学生经历探索菱形判定定理的过程,理解并掌握菱形的判定方法,积累几何学习的经验,培养学生的观察能力、动手能力,发展合情推理和演绎推理能力.情感、态度与价值观目标1.让学生在探究过程中加深对菱形的理解,养成主动探索的学习习惯.2.通过菱形与矩形判定方法的类比,进一步体会类比的思想方法的作用. 【教学重点】菱形的定义和判定定理的运用.【教学难点】探究菱形的判定条件并合理利用它进行论证和计算.【教学过程设计】一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角.这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究知识点一:菱形的判定【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形例 1如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.解析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.证明:∵BE=2DE,EF=BE,∴EF=2DE.∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形例 2如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:(1)AC⊥BD;(2)四边形ABCD是菱形.解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD 即可;(2)首先证得四边形ABCD是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE∥BF,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB.∵BD平分∠ABC,∴∠CBD=∠ABD.∵AE∥BF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA =CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD 是菱形.方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.【类型三】 利用“四条边相等的四边形是菱形”判定四边形是菱形例 3 如图,已知△ABC ,按如下步骤作图:①分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于P ,Q 两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过C 作CF ∥AB 交PQ 于点F ,连接AF .(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解析:(1)由作图知PQ 为线段AC 的垂直平分线,从而得到AE =CE ,AD =CD .然后根据CF ∥AB 得到∠EAC =∠FCA ,∠CFD =∠AED ,利用“AAS ”证得两三角形全等即可;(2)根据(1)中全等得到AE =CF .然后根据EF 为线段AC 的垂直平分线,得到EC =EA ,FC =F A .从而得到EC =EA =FC =F A ,利用“四边相等的四边形是菱形”判定四边形AECF 为菱形.证明:(1)由作图知PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD .∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED .在△AED 与△CFD 中,⎩⎨⎧∠EAC =∠FCA ,∠AED =∠CFD ,AD =CD ,∴△AED ≌△CFD (AAS);(2)∵△AED ≌△CFD ,∴AE =CF .∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =F A ,∴EC =EA =FC =F A ,∴四边形AECF 为菱形.方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.知识点二:菱形的判定的应用【类型一】 菱形判定中的开放性问题例 4如图,平行四边形ABCD 中,AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).解析:∵AD ∥BC ,∴∠F AD =∠AFB .∵AF 是∠BAD 的平分线,∴∠BAF =∠F AD ,∴∠BAF =∠AFB ,∴AB =BF .同理ED =CD .∵AD =BC ,AB =CD ,∴AE =CF .又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC ⊥EF .方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.【类型二】 菱形的性质和判定的综合应用例 5 如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .(1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由. 解析:(1)首先利用“SSS ”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF 中,⎩⎨⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,⎩⎨⎧BC =CD ,∠BCF =∠DCF ,CF =CF , ∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°, ∴∠EFD =∠BCD .方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.三、教学小结本节课你有哪些收获?学生归纳小结菱形的判定方法:(1)菱形的定义:有一组邻边相等的平行四边形是菱形.(2)菱形的判定定理:对角线互相垂直的平行四边形是菱形.(3)菱形的判定定理:四条边相等的四边形是菱形四、学习检测1.下列说法正确的是( )A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形解析:根据菱形的定义与判定定理直接辨别各选项正确与否.由菱形的定义,可知一组邻边相等的平行四边形叫做菱形,因此,选项B正确.故选B.2.已知平行四边形ABCD,下列条件:①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.其中能使平行四边形ABCD是菱形的有( )A.①③B.②③C.③④D.①②③解析:对角线互相垂直的平行四边形是菱形,一组邻边相等的平行四边形是菱形,因此①③都可以判定平行四边形ABCD是菱形.故选A.3.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形解析:根据菱形的判定定理(四条边相等的四边形是菱形)即可判定,由题中图的作法可知AD=AB=DC=BC,∴四边形ABCD是菱形.故选B.4.一个平行四边形的一条边长是3,两条对角线的长分别是4和2,这是一个特殊的平行四边形吗?为什么?求出它的面积解析:先根据题意画出相应的图形,如图.根据平行四边形的对角线互相平分,可求出OB及OA的长,由勾股定理的逆定理可得∠BOA为直角,进而得AC⊥BD.根据“对角线互相垂直的平行四边形是菱形”可得平行四边形ABCD为菱形.根据菱形的面积等于对角线乘积的一半可求得菱形ABCD的面积.解:这是一个菱形.理由如下:如图,▱ABCD中,AC=4,BD=2,AB=3,∴OA=AC=2,OB=BD=.∵OA2+OB2=22+()2=9,而AB2=32=9,∴OA2+OB2=AB2.∴△AOB是直角三角形,∠AOB=90°.∴AC⊥BD.∴▱ABCD是菱形(对角线互相垂直的平行四边形是菱形).S菱形ABCD=AC·BD=×4×2=4.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时1 矩形的性质1.菱形的判定有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形.2.菱形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时1矩形的性质学案【学习目标】1.理解矩形的概念,知道矩形与平行四边形的区别与联系;2.会证明矩形的性质,会用矩形的性质解决简单的问题;3.掌握直角三角形斜边中线的性质,并会简单的运用.【学习重点】理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用.【学习难点】会会用这些菱形的判定方法进行有关的证明和计算.【自主学习】一、知识回顾1.菱形的定义是什么?性质有哪些?2.根据菱形的定义,可得菱形的第一个判定方法是什么?用数学语言如何表示?有一组邻边_____的______________是菱形.数学语言:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形二、自主探究知识点1:对角线互相垂直的平行四边形是菱形想一想前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相_________的平行四边形是菱形.证一证已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC ⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形.∴OA____OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA______BC.∴四边形ABCD是________.要点归纳:菱形的判定定理:对角线互相_______的____________是菱形.几何语言描述:∵在□ABCD中,AC⊥BD,∴□ABCD是菱形.【典例探究】例1如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.【跟踪练习】在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CD知识点2:四条边相等的四边形是菱形活动1已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?AC的长为半径作弧,小刚:分别以A、C为圆心,以大于12两条弧分别相交于点B , D,依次连接A、B、C、D四点.想一想根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?猜想:四条边__________的四边形是菱形.证一证已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证明:∵AB=BC=CD=AD;∴AB=CD , BC=AD.∴四边形ABCD是___________.又∵AB=BC,∴四边形ABCD是__________.要点归纳:菱形的判定定理:四条边都______的四边形是菱形.几何语言描述:∵在四边形ABCD中,AB=BC=CD=AD,∴四边形 ABCD是________.【典例探究】例2如图,在△ABC中, AD是角平分线,点E,F分别在AB,AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.例3 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.方法总结:四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.例4如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH 是菱形.【跟踪练习】1.如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?2.如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?3.如上图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?4.在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?探究点3:菱形的性质与判定的综合运用【典例探究】例4如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.【跟踪练习】如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.三、知识梳理内容菱形的判定定义法:有一组邻边相等的平行四边形是菱形.判定定理:对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形.运用定理进行计算和证明四、学习过程中我产生的疑惑【学习检测】1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.2.一边长为5cm平行四边形的两条对角线的长分别为24cm和26cm,那么平行四边形的面积是_____________.3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°4.下列图形中,不一定为菱形的是()A.四条边相等的四边形B.用两个能完全重合的等边三角形拼成的四边形C.一组邻边相等的平行四边形D.有一个角为60度的平行四边形D(解析:根据菱形的判定定理作答即可.)3.如图所示,△ABC中,E,F,D分别是AB,AC,BC上的点,且DE∥AC,DF∥AB.要使AEDF是一个菱形,在不改变图形的前提下,你需添加的一个条件是.AE=AF(解析:(答案不唯一)添加AE=AF或DE=DF或AD是∠BAC的平分线或AE=ED,AF=FD等都可以.)4.木工师傅在做菱形的窗格时,总是保证四条边框一样长,你能说出其中的道理吗?解:四条边相等的四边形是菱形.5.已知菱形的周长为24,一条对角线长为8,求菱形的面积.解:由题意知菱形的边长为6,故另一条对角线长为4,故菱形的面积为×8×4=16.4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE ∥BD.求证:四边形O CED是菱形.6.如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD 于点G.求证四边形ACGF是菱形.证明:∵AF∥CD,FG∥AC,∴四边形ACGF为平行四边形,∵CE是△ABC外角∠ACD的平分线,∴∠ACF=∠FCG,∵AF∥CG,∴∠AFC=∠FCG,∴∠ACF=∠AFC,∴AF=AC,∴▱ACGF为菱形.5. 如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE ∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.8.如图所示,在△ABC中,∠BAC=90°,AD⊥BC,BE,AF分别是∠ABC,∠DAC的平分线,BE和AD交于G,试说明四边形AGFE的形状.解:四边形AGFE是菱形.理由如下:由∠BAC=90°,AD⊥BC,易得∠BAD=∠C,∵∠AGE=∠ABG+∠BAG,∠AEB=∠EBD+∠C,又∵∠ABG=∠EBC,∴∠AGE=∠AEG.∴AE=AG.由AF是∠DAC的平分线,易知AF⊥GE且AF平分GE.同理可得BE⊥AF且BE平分AF.∴AF与GE垂直且互相平分,从而可知四边形AGFE是菱形.6.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.9.如图(1),在△ABC和△EDC中,AC=CE=CB=DC,∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC分别交于M,H.(1)求证CF=CH;(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形,并证明你的结论.(1)证明:∵△ABC和△EDC都是等腰直角三角形,且AC=CE=CB=CD,∴∠A=∠D=45°.∵∠ACB=∠DCE=90°,∴∠ACB-∠ECB=∠DCE-∠ECH,即∠ACF=∠DCH,在△AFC 和△DHC 中, ⎪⎩⎪⎨⎧∠=∠=∠=∠,,,DCH ACF DC AC D A ∴△AFC ≌△DHC (ASA),∴CF =CH. (2)解:菱形,证明如下:∵∠BCE =45°,∴∠ACF =∠BCE =∠DCH =45°,即∠ACD =135°, 又∠A =∠D =45°,∴在四边形ACDM 中,∠AMD =360°-∠ACD ∠A -∠D =135°, ∴∠ACD =∠AMD ,∴四边形ACDM 是平行四边形.又AC =CD ,∴四边形ACDM 是菱形.。
新人教部编版初中八年级数学18.2.2 第2课时 菱形的判定

证一证
已知:如图,四边形ABCD是平行四边形,对角线AC
与BD相交于点O ,AC⊥BD.
求证:□ABCD是菱形.
证明: ∵四边形ABCD是平行四边形.
B
∴OA=OC.
O
又∵AC⊥BD,
A
C
∴BD是线段AC的垂直平分线.
D
∴BA=BC.
∴四边形ABCD是菱形(菱形的定义).
长冲中学数学组-“四学一测”活力课堂
长冲中学数学组-“四学一测”活力课堂
长冲中学活力课堂
典例精析
例3 如图,在△ABC中, AD是角平分线,点E、F分别在 AB、 AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.
证明: ∵ ∠1= ∠2,
又∵AE=AC,AD=AD, ∴ △ACD≌ △AED (SAS).
A
21 F
求证:四边形ABCD是菱形.
证明:∵ OA=4,OB=3,AB=5,
D
∴ AB2=OA2+OB2,
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
B
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
长冲中学数学组-“四学一测”活力课堂
长冲中学活力课堂
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、 BC分别交于点E、F,求证:四边形AFCE是菱形.
A
FD BE C
请补充完整的 证明过程
分析:易知四边形ABCD是平行四边形,只需证一 组邻边相等或对角线互相垂直即可进一步判断. 由题意可知BC边上的高和CD边上的高相等, 然后通过证△ABE≌△ADF,即得AB=AD.
长冲中学数学组-“四学一测”活力课堂
18.2.2菱形的性质和判定

18.2.2 菱形的性质一、学习目标理解并掌握菱形的定义及性质,会用这些性质进行有关的论证和计算,会计算菱形的面积. 二、学习内容1、菱形的定义:有一组邻边相等的平行四边形叫做菱形. 几何符号语言:∵四边形ABCD 是平行四边形,AB=BC∴四边形ABCD 是菱形2、菱形的性质:作为特殊的平行四边形,菱形具有平行四边形的所有性质,另外还有以下性质:(1)菱形的四条边相等.几何符号语言:∵四边形ABCD 是菱形,∴AB=BC=CD=AD(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.几何符号语言:∵四边形ABCD 是菱形,∴AC ⊥BD ,AC 平分∠BAD 和∠BCD ,BD 平分∠ABC 和∠ADC.3、菱形的周长=边长×4; 菱形的面积=底×高=21对角线×对角线三、例1 如图,菱形花坛ABCD 的边长为20cm ,∠ABC=60°.沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.例2 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证∠AFD=∠CBE .四、学以致用1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 . 2.已知菱形的两条对角线分别是6cm 和8cm ,则菱形的周长为_________,面积为__________. 3.如图,四边形ABCD 是菱形,对角线AC=8cm ,DB=6cm ,DH ⊥AB 于点H.求DH 的长.4.已知:如图,菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF .求证:∠AEF=∠AFE .AB CDA B C D OA BCDOA BCD OHBCDO18.2.2 菱形的判定一、学习目标理解并掌握菱形的定义及两个判定方法,会用这些判定方法进行有关的论证和计算. 二、学习内容:菱形的判定1、定义法:有一组邻边相等的平行四边形是菱形. 几何符号语言:∵四边形ABCD 是平行四边形,AB=BC∴四边形ABCD 是菱形2、对角线互相垂直的平行四边形是菱形.几何符号语言:∵四边形ABCD 是平行四边形,AC ⊥BD∴四边形ABCD 是菱形 3、四边相等的四边形是菱形几何符号语言:在四边形ABCD 中,∵AB=BC=CD=AD∴四边形ABCD 是菱形三、例 如图,ABCD 的对角线AC ,BD 相交于点O ,且AB=5,AO=4,BO=3.求证ABCD 是菱形.四、学以致用1、如图,AD 是△ABC 的角平分线.DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F.求证:四边形AEDF 是菱形.2、如图,O 是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,DE 和CE 相交于E.求证:四边形OCED 是菱形.3、如图,ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.4、如图,在菱形ABCD 中,∠ABC 与∠BAD 的度数比为1:2,周长是48cm . 求:(1)两条对角线的长度;(2)菱形的面积.AB CDOA B CDO。
18.2.2 菱形判定

• 作业: • 书P60—6 P61—10 册P47-49页
作业:已知:AD是△ABC的角平分 线,DE∥AC交AB于E,DF∥AB交AC 于 F, 求证:四边形AEDF是菱形。
A
12
3
F
E B
D
C
菱形的判定
复习与回顾:
1.菱形的定义:
有一组邻边相等的平行四边形叫做 菱形。
2.菱形的性质: 菱 边 角 对角线 形 对角线互相平 对边平行 对角相 性 分、 互相 垂直 四边相等 等,邻 质 且平分每一组 角互补 对角
根据菱形的定义,可得菱形的判定方法1:
有一组邻边相等的平行四边 形叫做菱形. D A 符号语言: ∵ ABCD 且AB=AD,
B C
∴ ABCD 是菱形. 菱形还有其他的判定方法吗?
类比学习平行四边形和矩形的判 如何证明 定过程,研究菱形性质定理的逆命 题,你能找到菱形判定的其他方法 吗? 四边形 四条边都相等的 定 1: 四条边相等的四边形是菱 猜想: 形。 已知:在四边形 ABCD 中, 符号语言: 有三条边相等的四边形是菱形吗? AB=BC=CD=DA ∵四边形ABCD 求证:四边形 AB=BC=CD=AD ABCD是菱形
A
∴四边形ABCD是菱形
B
C D
判定2: 猜想:对角线互相垂直的平行四边 形是菱形. 已知:在 ABCD 中,AC⊥BD 对角线互相垂直的四边形是菱形 符号语言: 求证: ABCD 是菱形 吗? A ∵□ABCD AC⊥BD B D
∴ □ ABCD是菱形
C
小结:
菱形的判定方法:
四条边相等
四边形
菱形
A O B C
思考: 书P58练习2、3
把两张等宽的纸条交叉重叠在 一起,你能判断重叠部分ABCD 的形状吗?
18.2.2《菱形的判定》教案

b.掌握菱形的性质:对角线互相垂直平分,且每一条对角线平分一组对角;
c.熟练运用三种菱形的判定方法:
-一组邻边相等的平行四边形是菱形;
-对角线互相垂直平分且相等的四边形是菱形;
-四边相等的四边形是菱形。
教学过程中,教师应通过实例演示、练习题强化等方法,使学生深刻理解这些核心内容。
c.四边相等的四边形是菱形。
本节课将围绕这些内容展开教学,使学生掌握菱形的判定方法,并能运用所学知识解决实际问题。
二、核心素养目标
本节课的核心素养目标包括:
1.培养学生的几何直观与空间观念,通过观察和分析菱形的性质,提高学生对几何图形的认识和理解;
2.培养学生的逻辑推理能力,使学生掌握菱形判定的逻辑推理过程,并能运用判定方法解决相关问题;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“菱形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
b.对于判定方法的区分,教师要引导学生通过比较、分析,了解不同判定方法的使用场景。例如,判定方法1适用于已知平行四边形的一组邻边相等的情况;判定方法2适用于已知四边形的对角线互相垂直平分且相等的情况;判定方法3适用于已知四边形四边相等的情况。
c.在解决实际问题时,学生需要学会根据题目给出的条件,选择合适的判定方法。教师可以设置一些综合性较强的练习题,让学生在实际操作中学会灵活运用不同判定方法,提高解决问题的能力。
18.2.22菱形的判定2

A E
3 12
F D C
B
(2011甘肃兰州,27,12分)已知:如图所示的一张矩 形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点 C重合,再展开,折痕EF交AD边于点E,交BC边于点F, 分别连结AF和CE。 (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF 的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC· AP? 若存在,请说明点P的位置,并予以证明;若不存在,请 说明理由。 A E
(4)若∠BAO=∠DAO,则□ABCD是 菱 形。
D
O A B
C
一个平行四边形的一条边长为9, 两条对角线长是12和6√ 5 ,这是一个 特殊的平行四边形吗?为什么?求出 它的面积。
思考:
请你动脑筋
把两张等宽的纸条交叉重叠在一起,你 能判断重叠部分ABCD的形状吗?
A D B C
A
D
F
BECຫໍສະໝຸດ 已知:如图,AD平分∠BAC, DE∥AC交AB于E,DF∥AB交AC于 F.求证:四边形AEDF是菱形.
A E
3 12
F D C
B
已知:如图,□ ABCD的对角线AC的垂 直平分线与边AD,BC分别交于E,F. 求证:四边形AFCE是菱形
A O B E
D
F
C
如图,已知在□ABCD中,AD=2AB,E、 F在直线AB上,且AE=AB=BF, 证明:CE⊥DF.
A
E B G C
F D
如图:将菱形ABCD沿AC方向平移至A1B1C1D1, A1D1交CD于E,A1B1交BC于F,请问四边形 A1FCE是不是菱形?为什么? D D1
人教初中数学八下 18.2.2 菱形课件2 【经典初中数学课件汇编】

∴ 152+82=172
∴这个三角形是直角三角形
24
课堂练习
判断由线段a、b、c组成的三角形是不是直角三角形: (1)a=15,b=8,c=17; (2)a=m2-n2,b=m2+n2,c=2mn(m>n,m、n是正整数)
解;(1)∵a2 = 225, (2)∵a2 = (m2 - n2 )2 = m4 - 2m2n2 + n4,
a2 + b2 = c2
那么这个三角形是直角三角形。且边 C所对的角为直角。
勾股定理
互逆命定题理
如果直角三角形两直角边分别为a,b,
斜边为c,那么 a2 + b2 = c2
22
勾股定理的逆命题证明
已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2
求证:△ ABC是直角三角形
证明:画一个△A’B’C’,使∠ C’=900,B’C’=a, C’A’=b
思维训练
6、△ABC三边a,b,c为边向外作 正方形,正三角形,以三边为 直则径作是半直圆角,三若角S形1+吗S2?=S3成立,
C
S2
A
b
ca
S1
B
S3
C
S2 b
S1
a
c
A
B
S3
பைடு நூலகம்
32
知识运用:
8如图:在正方形ABCD中,E是BC的中点,F是CD上一点,
1
且CF= 4 CD.猜想△AEF的形状,并证明你的结论.
解: △AEF是直角三角形;
D
FC
理由:设正方形ABCD的边长是a,则:
B E C E 1 a,C F 1 a, D F 3 a,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2.2菱形的判定(2)
1.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )
A.一组邻边相等的四边形是菱形
B.四边相等的四边形是菱形
C.对角线互相垂直的平行四边形是菱形
D.每条对角线平分一组对角的平行四边形是菱形
2.(2014·崇左)下列说法正确的是( )
A.对角线相等的平行四边形是菱形
B.有一组邻边相等的平行四边形是菱形
C.对角线互相垂直的四边形是菱形
D.有一个角是直角的平行四边形是菱形
3.(2013·海南)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是( )
A.AB=BC
B.AC=BC
C.∠B=60°
D.∠ACB=60°
4.菱形具有而一般平行四边形不具有的性质是()
A.对角相等
B.对边相等
C.对角线互相垂直
D.对角线相等
5.能够判别一个四边形是菱形的条件是()
A.对角线相等且互相平分
B.对角线互相垂直且相等
C.对角线互相平分
D.一组对角相等且一条对角线平分这组对角
6.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()
A.168 cm2
B.336 cm2
C.672 cm2
D.84 cm2
7.用一把刻度尺来判定一个四边形零件是菱形的方法是__________.
8.(2013·潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件____________________,使ABCD成为菱形.(只需添加一个即可)
9.(2013·雅安)如图,在□ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.
10.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若AB=AC,求证:四边形BFCE是菱形.
11.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足__________条件时,四边形EFGH是菱形.
12.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.
13.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?
14.菱形ABCD的周长为20 cm,两条对角线的比为3∶4,求菱形的面积.
15.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.
参考答案
1.B
2.B
3.B 3.测量四条边是否相等,若相等则是菱形
4.C
5.D
6.B
7.OA=OC或AD=BC或AD∥BC或AB=BC 8.③
9.证明:(1)∵四边形ABCD是平行四边形,
∴AD=BC,∠A=∠C.
又∵AE=CF,
∴△ADE≌△CBF.
(2)∵四边形ABCD是平行四边形,
∴AB=CD.
∵AE=CF,∴BE=DF.
∴四边形DEBF是平行四边形.
∵DF=BF,
∴四边形DEBF是菱形.
10.证明:(1)∵CE∥BF,
∴∠ECD=∠FBD,∠DEC=∠DFB.
又∵D是BC的中点,∴BD=DC.
∴△BDF≌△CDE(AAS).
(2)由(1)知:△BDF≌△CDE,
∴DE=DF,DB=DC.
∴四边形BFCE是平行四边形.
又∵AB=AC,BD=DC,
∴AD⊥BC.
∴四边形BFCE是菱形.
11.AB=CD
12.四边形AEDF是菱形,AE=E D.
13.□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC
14.24 cm2 15. 9.6 cm。