_广西柳州市2017-2018学年七年级下学期数学期末考试试卷(含答案解析)

合集下载

2016-2017年广西柳州市七年级(下)期末数学试卷(解析版)

2016-2017年广西柳州市七年级(下)期末数学试卷(解析版)

2016-2017学年广西柳州市七年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在﹣1,,,0.7中,无理数是()A.﹣1B.C.D.0.72.(3分)8的立方根为()A.±2B.2C.4D.±43.(3分)如图,与∠1是同位角的是()A.∠2B.∠3C.∠4D.∠54.(3分)若m>n,下列不等式一定成立的是()A.m﹣2>n+2B.2m>2n C.﹣>D.m2>n25.(3分)下列命题是真命题的是()A.同位角相等B.有且只有一条直线与已知直线垂直C.垂线段最短D.直线外一点到这条直线的垂线段,叫做点到直线的距离6.(3分)下面调查中,适合采用全面调查的事件是()A.对全国中学生心理健康现状的调查B.谋批次汽车的抗重击能力的调查C.春节联欢会晚会收视率的调查D.对你所在的班级同学的身高情况的调查7.(3分)估算的值介于()A.5到6之间B.6到7之间C.7到8之间D.8到9之间8.(3分)如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为()A.36°B.44°C.46°D.54°9.(3分)若方程组的解为,则点P(a,b)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限10.(3分)平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如果用(7,1)表示七年级一班,那么八年级五班可表示成.12.(3分)计算:=.13.(3分)某市有6500名九年级学生参加数学毕业考试,为了了解这些学生毕业考试的数学成绩,从6500份数学答卷中随机抽取了300份进行统计分析,在这个问题中,样本容量是.14.(3分)已知方程2x+y﹣5=0,用含x的代数式表示y=.15.(3分)若不等式组无解,则m的取值范围是.16.(3分)如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…则点A2017的坐标为.三、解答题(本题共7题,满分52分)17.(6分)解方程组:.18.(6分)解不等式组,并把解集在数轴上表示出来.19.(6分)已知,点A(4,3),B(3,1),C(1,2).(1)在平面直角坐标系中分别描出A,B,C三点,并顺次连接成△ABC;(2)将△ABC向左平移6个单位,再向下平移5个单位得到△A1B1C1;画出△A1B1C1,并写出点A1,B1,C1的坐标.20.(8分)某学校为了了解八年级500名男生体能的情况,从中随机抽取了部分男生进行1分钟跳绳次数测试,将数据整理后,绘制成如下不完整的频数分布表和频数分布直方图:请根据图表信息回答下列问题:(1)这次参加测试的男生共人,表中a=,b=.(2)请补全频数分布直方图;(3)如果1分钟跳绳次数x在120(含120次)以上的为“合格”,请估计该校八年级男生跳绳次数为“合格”的人数.21.(8分)如图,已知AB∥CD,BC∥ED,请你猜想∠B与∠D之间具有什么数量关系,并说明理由.22.(8分)小李新家装修,在装修客厅时,购进彩色地砖和单色地砖共80块,共花费4000元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也铺设这两种型号的地砖共30块,且采购地砖的费用不超过1600元,那么彩色地砖最多能采购多少块?23.(10分)如图1,在平面直角坐标系中,OA=7,OC=18,将点C先向上平移7个单位,再向左平移4个单位,得到点B,连接AB,BC.(1)填空:点B的坐标为;(2)如图2,BF平分∠ABC交x轴于点F,CD平分∠BCO交BF于点D,过点F作FH ⊥BF交BC的延长线于点H,试判断DC与FH的位置关系,并说明理由;(3)若点P从点C出发以每秒2个单位长度的速度沿CO方向移动,同时点Q从点O出发以每秒1个单位长度的速度沿OA方向移动,设移动的时间为t秒(0<t<7),四边形OPBA与△OQB的面积分别记为S1,S2,是否存在一段时间,使S1<2S2?若存在,求出t的取值范围;若不存在,试说明理由.2016-2017学年广西柳州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在﹣1,,,0.7中,无理数是()A.﹣1B.C.D.0.7【考点】26:无理数.【解答】解:﹣1,,0.7是有理数,是无理数,故选:C.2.(3分)8的立方根为()A.±2B.2C.4D.±4【考点】24:立方根.【解答】解:∵2的立方是8,∴8的立方根为2,故选:B.3.(3分)如图,与∠1是同位角的是()A.∠2B.∠3C.∠4D.∠5【考点】J6:同位角、内错角、同旁内角.【解答】解:观察图形可知,与∠1是同位角的是∠4.故选:C.4.(3分)若m>n,下列不等式一定成立的是()A.m﹣2>n+2B.2m>2n C.﹣>D.m2>n2【考点】C2:不等式的性质.【解答】解:A、左边减2,右边2,故A错误;B、两边都乘以2,不等号的方向不变,故B正确;C、左边除以﹣2,右边除以2,故C错误;D、两边乘以不同的数,故D错误;故选:B.5.(3分)下列命题是真命题的是()A.同位角相等B.有且只有一条直线与已知直线垂直C.垂线段最短D.直线外一点到这条直线的垂线段,叫做点到直线的距离【考点】O1:命题与定理.【解答】解:同位角不一定相等,A是假命题;过一点有且只有一条直线与已知直线垂直,B是假命题;垂线段最短,C是真命题;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,D是假命题,故选:C.6.(3分)下面调查中,适合采用全面调查的事件是()A.对全国中学生心理健康现状的调查B.谋批次汽车的抗重击能力的调查C.春节联欢会晚会收视率的调查D.对你所在的班级同学的身高情况的调查【考点】V2:全面调查与抽样调查.【解答】解:∵对全国中学生心理健康现状的调查适合采用抽样调查,∴选项A不符合题意;∵某批次汽车的抗重击能力的调查适合采用抽样调查,∴选项B不符合题意;∵春节联欢会晚会收视率的调查适合采用抽样调查,∴选项C不符合题意;∵对你所在的班级同学的身高情况的调查适合采用全面调查,∴选项D符合题意.故选:D.7.(3分)估算的值介于()A.5到6之间B.6到7之间C.7到8之间D.8到9之间【考点】2B:估算无理数的大小.【解答】解:∵8<<9,∴在8到9之间,故选:D.8.(3分)如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为()A.36°B.44°C.46°D.54°【考点】J2:对顶角、邻补角;J3:垂线.【解答】解:∵∠AOD=136°,∴∠BOC=136°,∵MO⊥OB,∴∠MOB=90°,∴∠COM=∠BOC﹣∠MOB=136°﹣90°=46°,故选:C.9.(3分)若方程组的解为,则点P(a,b)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【考点】97:二元一次方程组的解;D1:点的坐标.【解答】解:∵方程组的解为,∴,解得,∴点P(a,b)为(2,﹣3)在第四象限,故选:D.10.(3分)平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)【考点】D5:坐标与图形性质.【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如果用(7,1)表示七年级一班,那么八年级五班可表示成(8,5).【考点】D3:坐标确定位置.【解答】解:∵(7,1)表示七年级一班,∴八年级五班可表示成(8,5).故答案为:(8,5).12.(3分)计算:=.【考点】78:二次根式的加减法.【解答】解:原式=(3﹣2)=.故答案为:.13.(3分)某市有6500名九年级学生参加数学毕业考试,为了了解这些学生毕业考试的数学成绩,从6500份数学答卷中随机抽取了300份进行统计分析,在这个问题中,样本容量是300.【考点】V3:总体、个体、样本、样本容量.【解答】解:6500名九年级学生参加数学毕业考试,为了了解这些学生毕业考试的数学成绩,从6500份数学答卷中随机抽取了300份进行统计分析,在这个问题中,样本容量是300,故答案为:300.14.(3分)已知方程2x+y﹣5=0,用含x的代数式表示y=﹣2x+5.【考点】93:解二元一次方程.【解答】解:方程2x+y﹣5=0,解得:y=﹣2x+5,故答案为:﹣2x+515.(3分)若不等式组无解,则m的取值范围是m≥8.【考点】CB:解一元一次不等式组.【解答】解:x<8在数轴上表示点8左边的部分,x>m表示点m右边的部分.当点m在8这点或这点的右边时,两个不等式没有公共部分,即不等式组无解.则m≥8.故答案为:m≥8.16.(3分)如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…则点A2017的坐标为(505,﹣504).【考点】D2:规律型:点的坐标.【解答】解:通过观察可得数字是4的倍数的点在第三象限,4的倍数余1的点在第四象限,4的倍数余2的点在第一象限,4的倍数余3的点在第二象限,∵2017÷4=504…1,∴点A2017在第四象限,且转动了504圈以后,在第505圈上,∴A2017的坐标为(505,﹣504).故答案为:(505,﹣504).三、解答题(本题共7题,满分52分)17.(6分)解方程组:.【考点】98:解二元一次方程组.【解答】解:①+②,得3x=9,解,得x=3.(2分)把x=3代入②,得y=1.(4分)∴原方程组的解为.(5分)18.(6分)解不等式组,并把解集在数轴上表示出来.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【解答】解:解不等式①,得x>﹣2,解不等式②,得x<3,∴这个不等式组的解集是﹣2<x<3,这个不等式组的解集在数轴上表示如下:.19.(6分)已知,点A(4,3),B(3,1),C(1,2).(1)在平面直角坐标系中分别描出A,B,C三点,并顺次连接成△ABC;(2)将△ABC向左平移6个单位,再向下平移5个单位得到△A1B1C1;画出△A1B1C1,并写出点A1,B1,C1的坐标.【考点】Q4:作图﹣平移变换.【解答】解:(1)如下图所示,△ABC即为所求;(2)如图所示,△A1B1C1即为所求;由图可得,A1(﹣2,﹣2),B1(﹣3,﹣4),C1(﹣5,﹣3).20.(8分)某学校为了了解八年级500名男生体能的情况,从中随机抽取了部分男生进行1分钟跳绳次数测试,将数据整理后,绘制成如下不完整的频数分布表和频数分布直方图:请根据图表信息回答下列问题:(1)这次参加测试的男生共50人,表中a=16,b=0.16.(2)请补全频数分布直方图;(3)如果1分钟跳绳次数x在120(含120次)以上的为“合格”,请估计该校八年级男生跳绳次数为“合格”的人数.【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图.【解答】解:(1)总人数=2÷0.04=50人,a=50×0.32=16,b==0.16,故答案为50,16,0.16.(2)补全频数分布直方图如下图所示:(3)抽取的学生中,成绩“各格”的男生人数共有14+16+4=34,×500=340,答:该校八年级男生跳绳次数为“合格”的人数为340人.21.(8分)如图,已知AB∥CD,BC∥ED,请你猜想∠B与∠D之间具有什么数量关系,并说明理由.【考点】JA:平行线的性质.【解答】解:猜想:∠B+∠D=180°.理由如下:∵AB∥CD,∴∠B=∠C,∵BC∥ED,∴∠C+∠D=180°,∴∠B+∠D=180°.22.(8分)小李新家装修,在装修客厅时,购进彩色地砖和单色地砖共80块,共花费4000元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也铺设这两种型号的地砖共30块,且采购地砖的费用不超过1600元,那么彩色地砖最多能采购多少块?【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【解答】解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得,解得.答:彩色地砖采购20块,单色地砖采购60块.(2)设购进彩色地砖a块,则单色地砖购进(30﹣a)块,由题意,得80a+40(30﹣a)≤1600,解得:a≤10.故彩色地砖最多能采购10块.23.(10分)如图1,在平面直角坐标系中,OA=7,OC=18,将点C先向上平移7个单位,再向左平移4个单位,得到点B,连接AB,BC.(1)填空:点B的坐标为(14,7);(2)如图2,BF平分∠ABC交x轴于点F,CD平分∠BCO交BF于点D,过点F作FH ⊥BF交BC的延长线于点H,试判断DC与FH的位置关系,并说明理由;(3)若点P从点C出发以每秒2个单位长度的速度沿CO方向移动,同时点Q从点O出发以每秒1个单位长度的速度沿OA方向移动,设移动的时间为t秒(0<t<7),四边形OPBA与△OQB的面积分别记为S1,S2,是否存在一段时间,使S1<2S2?若存在,求出t的取值范围;若不存在,试说明理由.【考点】RB:几何变换综合题.【解答】解:(1)由题意点B的坐标(14,7);故答案为(14,7).(2)结论:PC∥FH.理由如下:∵BF平分∠ABC∴∠FBC=∠ABC∵CD平分∠BCO,∴∠BCD=∠BCO依题意得A(0,7),B(14,7),∴AB⊥y轴,∴AB∥OC∴∠ABC+∠BCO=180°∴∠FBC+∠BCD=∠ABC+∠BCO=(∠ABC+∠BCO)=×180°=90°,∴∠BPC=180°﹣(∠FBC+∠BCP)=90°∴CP⊥BF,∵FH⊥BF∴PC∥FH.(3)存在如图3中,由(1)得B(14,7)由题意得:PC=2t,OQ=t,则OP=18﹣2t,A(0,7),C(18,0),S1=(AB+OP)×OA=(14+18﹣2t)×7=﹣7t+112(6分)S2=t×14=7t(7分)∵要满足S1<2S2∴﹣7t+112<2×7t(8分)t>,又∵0<t<7∴当<t<7时,S1<2S2.。

广西柳州市2017-2018学年八年级上学期期末考试数学试题(解析版)

广西柳州市2017-2018学年八年级上学期期末考试数学试题(解析版)

广西柳州市2017-2018学年八年级上学期期末考试数学试题(考试时间:90分钟,全卷满分:100分)一、选择题(本题共10小题,每小题3分,满分30分)1. 如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是( )A. B. C. D.【答案】C【解析】A、B、D都是轴对称图形,C不是轴对称图形;故选C.2. 若分式有意义,则x满足的条件是( )A. x=3B. x<3C. x>3D. x≠3【答案】D【解析】试题解析:根据分式有意义的条件知:x-3≠0解得:x≠3.故选D.3. 下列长度的三根小木棒能够成三角形的是( )A. 2cm,3cm,5cmB. 7cm,4cm,2cmC. 3cm,4cm,8cmD. 3cm,3cm,4cm【答案】D【解析】依据三角形任意两边之和大于第三边:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.4. 下列计算正确的是( )A. B. C. D.【答案】B【解析】试题解析:A. ,故原选项错误;B. ,正确;C. ,故原选项错误;D. ,故原选项错误.故选B.5. 如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是( )A. AC=BDB. OD=OCC. ∠A=∠CD. OA=OB【答案】C【解析】试题解析:A、添加AC=BD不能判定△OAB≌△COD,故此选项错误;B、添加OD=OC不能判定△OAB≌△COD,故此选项错误;C、添加∠A=∠C,可利用ASA判定△OAB≌△COD,故此选项正确;D、添加AO=BO,不能判定△OAB≌△COD,故此选项错误;故选C.点睛:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6. 若是一个完全平方式,则k的值是( )A. 2B. 4C. -4D. 4或-4【答案】D【解析】试题解析:∵x2-kx+4是一个完全平方式,∴k=±4,故选D.7. 如图,△ABD≌△CDB,下面四个结论中,不正确的是( )A. △ABD和△CDB的面积相等B. △ABD和△CDB的周长相等( )C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC【答案】C【解析】解:∵△ABD≌△CDB,∴∠ADB=∠CBD,AD=BC,△ABD和△CDB的面积相等,△ABD和△CDB的周长相等,∴AD∥BC,则选项A,B,D一定正确.由△ABD≌△CDB不一定能得到∠ABD=∠CBD,因而∠A+∠ABD=∠C+∠CBD不一定成立.故选C.8. 下列各式由左边到右边的变形中,是分解因式的为( )A. a(x+y)=ax+ayB. -4x+4=x(x-4)+4C. 10-5x=5x(2x-1)D. —16+3x=(x-4)(x+4)+3x【答案】C【解析】试题解析:A、是多项式乘法,不是分解因式,故本选项错误;B、不是分解因式,故本选项错误;C、右边是积的形式,故本选项正确;D、右边不是积的形式,故本选项错误.故选C9. 若一个三角形三个内角度数的比为2:3:4,则这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形【答案】B【解析】试题分析:根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.点评:三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.10. 暑假期间,赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页,才能在借期内读完,他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中正确的是( )A. B.C. D.【答案】C【解析】试题解析:读前一半用的时间为:,读后一半用的时间为:.方程应该表示为:+=14.故选C.二、填空题(本大题共6小题,每小题3分,满分18分)11. 计算:____【答案】【解析】试题解析:=故答案为:.12. 一个多边形的内角和是1800,这个多边形是____边形.【答案】十二【解析】试题解析:设这个多边形的边数为n,则有:(n-2)180°=1800°,解得:n=12.故答案为:十二.13. 一粒大米的质量约为0.000021kg,这个数用科学记数法表示为____【答案】【解析】0.000021=2.1×10-5;故答案是:2.1×10-5。

广西柳州市2017-2018学年七年级上学期数学期末考试试卷(含解析)新人教版

广西柳州市2017-2018学年七年级上学期数学期末考试试卷(含解析)新人教版

广西柳州市2017-2018学年七年级上学期数学期末考试试卷一、单选题1.-4的倒数是()A.B.C.4D.-4【答案】A【考点】有理数的倒数【解析】【解答】-4的倒数为1÷(-4)= ,故答案为:A.【分析】乘积为1的两个数互为倒数,根据定义,用1除以-4即可求出其倒数。

2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.B.C.D.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:194亿=1.94×1010.故答案为:A.【分析】用科学记数法表示绝对值较大的数,一般表示成a×10n的形式,其中1≤∣a∣<10,n等于原数的整数位数减1.3.多项式xy2+xy+1是()A. 二次二项式B. 二次三项式C. 三次二项式D. 三次三项式【答案】D【考点】多项式【解析】【分析】多项式中次数最高项的次数是这个多项式的次数,每个单项式叫做多项式的项.【解答】多项式xy2+xy+1的次数是2+1=3次,项数是3,所以是三次三项式.故选D.【点评】理解多项式的次数的概念是解决此类问题的关键4.下列计算正确的是()A.B.C.D.【答案】C【考点】合并同类项法则及应用【解析】【解答】解:A、不是同类项,不能合并,故A不符合题意;B、5y-3y=2y,故B不符合题意;C、符合题意;D、-3x+5x=2x.故D不符合题意.故答案为:C.【分析】整式加减的实质就是合并同类项,合并同类项的时候,只需要把系数相加减,字母和字母的指数都不变,但不是同类项的不能合并。

5.下列说法中,正确的是()A.是负数B.若,则或C.最小的有理数是零D.任何有理数的绝对值都大于零【答案】B【考点】绝对值及有理数的绝对值,有理数的乘方【解析】【解答】解:A.(﹣3)2=9,9是正数,故不符合题意;B.若|x|=5,则x=5或﹣5是正确的,故符合题意;C.没有最小的有理数,故不符合题意;D.任何有理数的绝对值都大等于0,故不符合题意.故答案为:B.【分析】一个负数的偶次幂是正数;一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,故任何有理数的绝对值都是非负数,互为相反数的两个数的绝对值相等,绝对值最小的数是0;没有最小的有理数,根据性质即可一一判断。

数学七年级下学期《期末测试卷》含答案

数学七年级下学期《期末测试卷》含答案

人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。

柳州市七年级下册数学期末试卷(带答案)-百度文库

柳州市七年级下册数学期末试卷(带答案)-百度文库

柳州市七年级下册数学期末试卷(带答案)-百度文库一、选择题1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3 D .a=2,b=-3 2.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭3.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .144.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .2565.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是( ) A .0 B .1 C .3 D .7 6.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,97.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩8.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .69.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150° 10.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( )A .4B .5C .6D .8二、填空题11.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.12.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________.13.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫⎪⎝ =______.14.已知()223420x y x y -+--=,则x=__________,y=__________.15.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.16.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABCS =,则图中阴影部分的面积是 ________.17.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.18.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.19.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+22.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.23.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.24.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。

2017-2018学年新课标最新广西省七年级下册期末数学试卷(有答案)-精品试卷

2017-2018学年新课标最新广西省七年级下册期末数学试卷(有答案)-精品试卷

2017-2018学年广西七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.在实数﹣3,0,,3中,最小的实数是()A.﹣3 B.0 C.D.32.下列各数中,无理数是()A.B.3.14 C.D.5π3.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.为了描述温州市某一天气温变化情况,应选择()A.扇形统计图B.折线统计图C.条形统计图D.直方图5.在数轴上表示不等式x<1的解集,正确的是()A.B.C.D.6.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互为对顶角B.互补 C.互余 D.相等7.方程组的解是()A.B.C.D.8.下列调查中,适宜采用普查方式的是()A.检查一枚用于发射卫星的运载火箭的各零部件B.了解一批圆珠笔的寿命C.考察人们保护海洋的意识D.了解全国九年级学生身高的现状9.已知点P(a,a﹣1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为()A.B.C.D.10.已知代数式x a﹣1y3与﹣5x﹣b y2a+b是同类项,则a与b的值分别是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.剧院里5排2号可用(5,2)表示,则(3,7)表示.12.= .13.如图,a∥b,∠1=30°,则∠2= .14.+﹣= .15.一元一次不等式组的解集是.16.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校1500名学生有名学生是骑车上学的.三、解答题(共7小题,满分52分)17.计算:|﹣3|++×.18.已知y=kx+b,当x=2时,y=﹣4;当x=﹣1时,y=5.求k、b的值.19.在读书节活动期间,为了了解学校初三年级学生的课外阅读情况,小颖随机抽取初三年级部分同学进行调查,把得到的数据处理后制成如下的表格,并绘制成如图所示的统计图,请根据表格和统计图,解答如下问题:方式是(填“全面调查”或者“抽样调查”);(2)补全图中的频数分布直方图.20.解不等式组:,并把它的解集在数轴上表示出来.21.如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.22.如图,在四边形ABCD中,延长AD至E,已知AC平分∠DAB,∠DAB=70°,∠1=35°.(1)求证:AB∥CD;(2)求∠2度数.23.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b= ;(2)补全条形统计图;(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)均有名.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在实数﹣3,0,,3中,最小的实数是()A.﹣3 B.0 C.D.3【考点】实数大小比较.【分析】依据正数大于0,负数小于0,正数大于负数进行判断即可.【解答】解:∵﹣3<0<<3,∴其中最小的实数是﹣3.故选:A.【点评】本题主要考查的是比较实数的大小,掌握比较两个实数大小的法则是解题的关键.2.下列各数中,无理数是()A.B.3.14 C.D.5π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故A错误;B.3.14是有理数,故B错误;C、=﹣3是有理数,故C错误;D、5π是无理数,故C正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.为了描述温州市某一天气温变化情况,应选择()A.扇形统计图B.折线统计图C.条形统计图D.直方图【考点】频数(率)分布直方图;统计图的选择.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得要求反映温州市某一天气温变化情况,结合统计图各自的特点,应选用折线统计图.故选B.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.5.在数轴上表示不等式x<1的解集,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】根据题意,把已知解集表示在数轴上即可.【解答】解:在数轴上表示不等式x<1的解集,正确的是故选B【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互为对顶角B.互补 C.互余 D.相等【考点】垂线;余角和补角;对顶角、邻补角.【分析】根据垂线的定义得出∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即:∠1与∠2互余,故选:C.【点评】本题考查了垂线的定义、平角的定义、角的互余关系;熟练掌握垂线的定义和平角的定义是解决问题的关键.7.方程组的解是()A.B.C.D.【考点】解二元一次方程组.【专题】计算题.【分析】本题解法有多种.可用加减消元法或代入消元法解方程组,解得x、y的值;也可以将A、B、C、D四个选项的数值代入原方程检验,能使每个方程的左右两边相等的x、y的值即是方程的解.【解答】解:(1)+(2)得,2x=6,x=3,把x=3代入(1)得,3+y=4,解得y=1.方程组的解为.故选B.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法.8.下列调查中,适宜采用普查方式的是()A.检查一枚用于发射卫星的运载火箭的各零部件B.了解一批圆珠笔的寿命C.考察人们保护海洋的意识D.了解全国九年级学生身高的现状【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:检查一枚用于发射卫星的运载火箭的各零部件适宜采用普查方式;了解一批圆珠笔的寿命适宜采用抽样调查方式;考察人们保护海洋的意识适宜采用抽样调查方式;了解全国九年级学生身高的现状适宜采用抽样调查方式;故选:A.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.已知点P(a,a﹣1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;点的坐标.【专题】计算题.【分析】由点P(a,a﹣1)在平面直角坐标系的第一象限内,可得,分别解出其解集,然后,取其公共部分,找到正确选项;【解答】解:∵点P(a,a﹣1)在平面直角坐标系的第一象限内,∴,解得,a>1;故选A.【点评】本题考查了点的坐标及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.已知代数式x a﹣1y3与﹣5x﹣b y2a+b是同类项,则a与b的值分别是()A.B.C.D.【考点】同类项;解二元一次方程组.【专题】计算题.【分析】根据同类项的定义得到,然后解方程组即可.【解答】解:∵x a﹣1y3与﹣5x﹣b y2a+b是同类项,∴,∴.故选A.【点评】本题考查了同类项:所含字母相同,并且相同字母的指数相同的项叫同类项.二、填空题(共6小题,每小题3分,满分18分)11.剧院里5排2号可用(5,2)表示,则(3,7)表示3棑7号.【考点】坐标确定位置.【分析】根据信息,括号内第一个数表示排数,第二个数表示号数,依此可知(3,7)表示的意义.【解答】解:剧院里5排2号可用(5,2)表示,则(3,7)表示3棑7号.故答案为3棑7号.【点评】本题考查了坐标确定位置的方法,根据题目信息,确定有序数对的两个数的实际含义是解题的关键.12.= 3 .【考点】二次根式的乘除法.【专题】计算题.【分析】原式利用平方根的定义化简即可得到结果.【解答】解:原式=3.故答案为:3【点评】此题考查了二次根式的乘除法,熟练掌握平方根的定义是解本题的关键.13.如图,a∥b,∠1=30°,则∠2= 150°.【考点】平行线的性质;对顶角、邻补角.【专题】探究型.【分析】先根据平行线的性质求出∠3的度数,再由两角互补的性质即可得出∠2的度数.【解答】解:∵a∥b,∠1=30°,∴∠1=∠3=30°,∴∠2=180°﹣∠3=180°﹣30°=150°.故答案为:150°.【点评】本题考查的是平行线的性质,用到的知识点为两直线平行,同位角相等.14.+﹣= 1.【考点】实数的运算.【专题】计算题.【分析】原式利用立方根及算术平方根定义计算即可得到结果.【解答】解:原式=2+0﹣=1,故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.一元一次不等式组的解集是x>.【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥﹣2;由②得:x>,则不等式组的解集为x>,故答案为:x>.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校1500名学生有195 名学生是骑车上学的.【考点】条形统计图;用样本估计总体.【分析】从条形图获取信息,求出骑车上学学生的百分比,计算即可.【解答】解:1500×=195,故答案为:195.【点评】本题考查的是条形统计图、用样本估计总体,读懂统计图,从统计图中得到必要的信息是解决问题的关键.注意条形统计图能清楚地表示出每个项目的数据.三、解答题(共7小题,满分52分)17.计算:|﹣3|++×.【考点】实数的运算.【专题】计算题;实数.【分析】原式利用绝对值的代数意义,算术平方根、立方根定义计算即可得到结果.【解答】解:原式=3+4﹣1=6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知y=kx+b,当x=2时,y=﹣4;当x=﹣1时,y=5.求k、b的值.【考点】解二元一次方程组.【分析】由“=2时,y=﹣4;当x=﹣1时,y=5”可得出关于k、b的二元一次方程组,解方程组即可得出结论.【解答】解:由题意,得,解得.【点评】本题考查了解二元一次方程组,解题的关键是有函数图象上的点得出关于k、b的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象上的点得出方程组是关键.19.在读书节活动期间,为了了解学校初三年级学生的课外阅读情况,小颖随机抽取初三年级部分同学进行调查,把得到的数据处理后制成如下的表格,并绘制成如图所示的统计图,请根据表格和统计图,解答如下问题:方式是抽样调查(填“全面调查”或者“抽样调查”);(2)补全图中的频数分布直方图.【考点】频数(率)分布直方图;全面调查与抽样调查;统计表.【分析】(1)根据全面调查与抽样调查定义可知;(2)根据统计表中数据即可补全统计图.【解答】解:(1)由于小颖是随机抽取初三年级部分同学进行调查,所以小颖所采用的调查方式是抽样调查,故答案为:抽样调查;(2)根据题设的条件可知:阅读科普类的有15人,据此补全频数分布直方图如图:【点评】本题主要考查全面调查与抽样调查、统计表与频数分布直方图,弄清定义及根据图表获取有用信息是解题的关键.20.解不等式组:,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】先分别解两个不等式得到x>﹣2和x≤3,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.【解答】解:,解不等式①得x>﹣2,解不等式②得x≤3,所以这个不等式组的解集﹣2<x≤3,在数轴上表示解集为:.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.21.如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.【考点】作图-平移变换.【分析】根据图形平移的性质画出△A′B′C′,再写出各点坐标即可.【解答】解:如图所示:由图可知,A′(4,0),B′(1,3),C′(2,﹣2).【点评】本题考查的是作图﹣平移变换,熟知图形平移的性质是解答此题的关键.22.如图,在四边形ABCD中,延长AD至E,已知AC平分∠DAB,∠DAB=70°,∠1=35°.(1)求证:AB∥CD;(2)求∠2度数.【考点】平行线的判定与性质.【分析】(1)根据角平分线的定义求得∠BAC的度数,然后根据内错角相等,两直线平行,证得结论;(2)根据平行线的性质,两直线平行,同位角相等,即可求解.【解答】(1)证明:∵AC平分∠DAB,∴∠BAC=∠DAC=∠DAB=×70°=35°,又∵∠1=35°,∴∠1=∠BAC,∴AB∥CD;(2)解:∵AB∥CD,∴∠2=∠DAB=70°.【点评】本题考查了平行线的判定定理以及性质定理,解答此题的关键是:根据角平分线的定义求得∠BAC 的度数.23.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了80 名同学的体育测试成绩,扇形统计图中B级所占的百分比b=40% ;(2)补全条形统计图;(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)均有190 名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由等级A的人数除以所占的百分比求出调查的总学生;进一步求出B占的百分比;(2)求出C级的学生数,补全条形统计图即可;(3)求出A,B,C的百分比之和,乘以600即可得到结果.【解答】解:(1)根据题意得:20÷25%=80(人),B占的百分比为×100%=40%;(2)C级的人数为80﹣(20+32+4)=24(人),补全条形图,如图所示:(3)根据题意得:200×=190(人),则估计该校九年级同学体育测试达标的人数约为190人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,从统计图中得到必要的信息是解决问题的关键.。

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
○…………内…………○…………装…………○…………订…………○…………线…………○…………
广西柳州市2017-2018学年七年级下学期数学期末考试试卷
考试时间:**分钟 满分:**分
姓名:____________班级:____________学号:___________
题号 一 二 三 四 五 总分 核分人
得分
注意
事项:
1、









2B




2、提前 15 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
评卷人 得分
一、单选题(共10题)

A . 3a >3b
B . ﹣3a >﹣3b
C . a ﹣3>b ﹣3
D .
2. 如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程正确的是( )
A .
B .
C .
D .
3. 下列实数中,无理数是( ) A . 3 B . π C .
D .
4. 在平面直角坐标系中,点P (1,﹣2)位于( )
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
5. 某新品种葡萄试验基地种植了5亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随封机抽查了10株葡萄,在这个统计工作中,10株葡萄的产量是( ) A . 总体 B . 总体中的一个样本 C . 样本容量 D . 个体
答案第2页,总15页
……○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
……○…………内…………○…………装…………○…………订…………○…………线…………○…………
6. 如图,
,∠3=108°,则∠1的度数是( )
A . 72°
B . 80°
C . 82°
D . 108°
7. 下列调查中,适合采用全面调查方式的是( ) A . 了解一批圆珠笔的使用寿命 B . 调查长江流域的水污染情况 C . 了解全国七年级学生身高的现状
D . 检查一枚用于发射卫星的运载火箭的各零部件
8. 如图,将∠ABC 沿BC 方向平移1个单位得到∠DEF ,若∠ABC 的周长等于8,则四边形ABFD 的周长等于( )
A . 9
B . 10
C . 11
D . 12
9. 比较下列各组数的大小,正确的是( )
A . π>3.146
B . <1.732
C .
D .
10. 如图,AB∠CD∠EF ,则下列四个等式中一定成立的有( ) ①∠2+∠3=180;②∠2=∠3;③∠1+∠3=180°④∠2+∠3﹣∠1=180°
○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
○…………内…………○…………装…………○…………订…………○…………线…………○…………
A . 1个
B . 2个
C . 3个
D . 4个
第Ⅱ卷 主观题
第Ⅱ卷的注释
评卷人 得分
一、填空题(共6题)
1. 已知一组数据都是整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是 .
2. 9的平方根是 ,使分式
有意义的x 的取值范围是 .
3. 已知方程组 的解是 ,则a +b 的值为 .
4. x 与3的和不小于5,用不等式表示为 .
5. 在平面直角坐标系中,若点P (x -2, x )在第二象限,则x 的取值范围为
6. 如图所示,把长方形ABCD 沿EF 对折,若∠AEF=110°,则∠1= °.
评卷人 得分
二、计算题(共2题)
7. 计算:| ﹣
|+
8. 解方程组:
评卷人 得分
三、解答题(共2题)
m ,n 的新运算,规定:m∠n=4m ﹣3n ,例如:5∠2=4×5﹣3×2=14,若m 满足m∠2<0,求m 的取值范围.
答案第4页,总15页
……○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
……○…………内…………○…………装…………○…………订…………○…………线…………○…………
评卷人
得分
四、综合题(共3题)
1小时,为了解学生参加户外活动的情况,对该校七年级部分学生参加户外活动的时间进行调查,并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:
(1)填空:这次调查的学生共 人,表示户外活动时间为1小时的扇形圆心角度数是 度;
(2)求参加户外活动的时间为1.5小时的学生人数,并补全频数分布直方图;
(3)若该校七年级有学生600人,请估计该校七年级学生参加户外活动的时间不少于1小时的有多少人?
12. 某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买2个足球和3个篮球共需360元;购买5个足球和2个篮球共需460元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,且总费用不超过1450元,学校最多可以购买多少个篮球?
13. 如图,在平面直角坐标系中,已知A (0,﹣1),B (0,3),点M 为第二象限内一点,且点M 的坐标为(t ,1).
○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
○…………内…………○…………装…………○…………订…………○…………线…………○…………
(1)请用含t 的式子表示∠ABM 的面积;
(2)当t=﹣2时,在x 轴的正半轴上有一点P ,使得∠BMP 的面积与∠ABM 的面积相等,请求出点P 的坐标.
参数答案
1.【答案】:
【解释】:。

相关文档
最新文档