2014-2015年浙江省杭州市求是高中高二(上)期中数学试卷及参考答案(理科)

合集下载

浙江省杭州地区(含周边)重点中学2014-2015学年高二上

浙江省杭州地区(含周边)重点中学2014-2015学年高二上

2014学年第一学期期中杭州地区(含周边)重点中学高二年级数学学科 试题(文理合卷)考生须知:1.本卷满分120分,考试时间100分钟;2.答题前,在答题卷密封区内填写班级、学号和姓名;座位号写在指定位置; 3.所有答案必须写在答题卷上,写在试卷上无效; 4.考试结束后,只需上交答题卷。

一、选择题(本大题共10小题,每小题4分,共40分,每小题给出的四个选项中,只有一项是符合题目要求的)10y +=的倾斜角是( ▲ )A .30︒B .45︒C .60︒D .120︒ 2.下列说法正确的是( ▲ )A .棱柱的底面一定是平行四边形B .棱锥被平面分成的两部分不可能都是棱锥 C. 圆台平行于底面的截面是圆面 D .半圆绕其直径所在直线旋转一周形成球3.已知两条直线1(:1)30l kx k y +--=和22:(120)k x l y -+-=互相垂直,则k =( ▲ ) A .1或-2 B .-1或2 C . 1或2 D .-1或-2 4.直线l 与直线1y =,直线5x =分别交于P ,Q 两点,PQ 中点为M (1,-1),则直线l 的斜率是( ▲ ) A . 12-B . 12C . 2D .-2 5.已知,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是A.若//,//m n αα,则//m n B .若//,,m n m n αβ⊥⊂,则αβ⊥C .若//,//m m αβ,则//αβ D. 若//,m ααβ⊥,则m β⊥6.如图是一个空间几何体的三视图,其正视图是一个边长为2的正三角形,俯视图是一个斜边长为2的等腰直角三角形,侧视图是一个两直角边长分别为3和1的直角三角形,则此几何体的 体积为 ( ▲ )A .33 B .1 C . 23 D .2 7.若直线0(0)ax by c ab ++=≠在两坐标轴上的截距相等,则,,a b c 满足的条件是( ▲ ) A. a b = B. ||||a b = C. 0c a b ==或 D .0c a b ==或 8.ABCD 为空间四边形,AB =CD ,AD =BC ,AB ≠AD ,M 、N 分别是对角线AC 与BD 的中点, 则MN 与( ▲ )A. AC 、BD 之一垂直B. AC 、BD 都垂直 C .AC 、BD 都不垂直 D. AC 、BD 不一定垂直9.如图,三棱锥P -ABC 的底面是正三角形,各条侧棱均相等,∠APB <60°.设动点D 、E 分别在线段PB 、PC 上,点D 由P 运动到B ,点E 由P 运动到C ,且满足DE ∥BC ,则下列结论正确的是( ▲ )A .当点D 满足AD ⊥PB 时,△ADE 的周长最小 B .当点D 为PB 的中点时,△ADE 的周长最小C .当点D 满足13PD PB =时,△ADE 的周长最小 D .在点D 由P 运动到B 的过程中,△ADE 的周长先减小后增大 10. 在正方体''''ABCD A B C D - 中,P 为棱'AA 上一动点,Q 为 底面ABCD 上一动点,M 是PQ 的中点,若点P ,Q 都运动时, 点M 构成的点集是一个空间几何体,则这个几何体是( ▲ )A. 棱柱B. 棱台C. 棱锥D.球的一部分二.填空题(共7小题,每小题4分,共28分)11.在正方体1111ABCD A B C D -中, E ,F ,G ,H 分别为AA 1,AB ,BB 1, B 1C 1的中点,则异面直线EF 与GH 所成的角为 ▲ .12.已知长方体的三边长分别是3,4,5,则它的外接球的表面积是 ▲ . 13.已知圆锥的底面半径为1,且这个圆锥的侧面展开图形是一个半圆,则该圆锥的母线长为 ▲ .14.如左下图,在三棱柱'''ABC A B C -中,底面ABC 是正三角形,'AA ⊥底面ABC , 且AB =1,'AA =2,则直线'BC 与平面''ABB A 所成角的正弦值为 ▲ .A第B'15.已知一个三棱锥的各棱长都为1,它的正视图是如右上图所视的等腰三角形,则该四面体的侧视图... 面积为 ▲ .16.已知实数a b c 、、满足0a b c --=则原点(0,0)O 到直线0ax by c ++=的距离的最大值为 ▲ .17.若当(1,)x ∈-+∞时,(1)21()k x x k k R +<++-∈恒成立,则实数k 的取值范围是 ▲ .三、解答题:(共4小题,共52分,解题应写出文字说明,证明过程或演算步骤.) 18.(本题满分12分)如图多面体中,正方形ADEF 所在的平面与直角梯形ABCD 所在的平面垂直, 且12AD AB CD ==,//AB CD ,M 为CE 的中点. (1)证明://BM 平面ADEF ; (2)证明:平面BCE ⊥平面BDE .19.(本小题满分12分)已知点A (2,2),直线:21l y x =+. (1)求点A 关于直线l 的对称点'A 的坐标;(2)当点B ,C 分别在x 轴和直线l 上运动时,求ABC ∆周长的最小值.F20.(本小题满分14分)在四棱锥ABCD P -中,BC AD //,90ABC APB ∠=∠=︒,4AB MB =,且CD PM ⊥,22AB BC PB AD ===.(1)证明:面⊥PAB 面ABCD ;(2)求直线DM 与平面PCD 所成角的正弦值.21.(本小题满分14分)在等边三角形ABC 中,AB =2,E 是线段AB 上的点(除点A 外),过点E 作EF AC ⊥于点F ,将AEF ∆ 沿EF 折起到PEF ∆(点A 与点P 重合,如图),使得3PFC π∠=,(1) 求证:EF PC ⊥;(2) 试问,当点E 在线段AB 上移动时,二面角P -EB -C 的大小是否为定值? 若是,求出这个二面角的平面角的正切值,若不是,请说明理由.C BB二、填空题(共7小题,每小题4分,共28分)11.060 12.50π 13. 2 14 15 1617.(,2][0,1]-∞- 三、解答题(本大题共4小题,共52分.解答应写出文字说明,证明过程或演算步骤) 18. (本小题满分12分)解析:(1)(解法一)取DE 的中点N ,连结MN ,AN . 在DEC ∆中,因为M ,N 分别为EC ,ED 的中点, 所以//MN CD ,且12MN CD =. 又因为//AB CD ,12AB CD =,F所以//MN AB ,且MN AB =. 所以四边形ABMN 为平行四边形,故//MB NA , 又因为MB ⊄平面ADEF ,NA ⊂平面ADEF ,所以//BM 平面ADEF . (5分) (解法二)取DC 的中点P ,连结,MP BP . 在直角梯形ABCD 中,因为//AB CD ,12AB CD =,12DP DC =, 所以//AB DP ,且AB DP =,故四边形ABPD 为平行四边形,所以//BP AD .在DEC ∆中,因为M ,P 分别为EC ,DC 的中点,所以//MP ED . 又因为MPPB P =,ED DA D =,所以平面//MPB 平面EDA ,又因为M B ⊂平面MPB ,所以//BM 平面ADEF . (5分) (2)直角梯形ABCD 中,//AB CD ,设12AD AB CD a ===,所以BD BC ==,2CD a =,故222BD BC CD +=,所以BD BC ⊥. (8分)因为平面ADEF ⊥平面ABCD , 又平面ADEF平面ABCD AD =,ED AD ⊥,所以ED ⊥平面ABCD ,故ED BC ⊥. (10分) 又因为BDED D =,所以BC ⊥平面BDE . (11分)又因为BC ⊂平面BCE ,所以平面BCE ⊥平面BDE . (12分)19.(本小题满分12分)1'(,),222-,21522-2116--225216'(-,).(655A a b b a a b b a A ⎧++⎧==⨯+⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩∴⋯⋯⋯解:()设则有解得点的坐标为分)22222'(12A x A A A ABC ==∆⋯⋯⋯()点关于轴的坐标为(,-)则分)20. (本小题满分14分) 解:(1)由BM PB AB 42==,得AB PM ⊥,又因为CD PM ⊥,且CD AB ,所以⊥PM 面ABCD , 且⊂PM 面PAB . 所以,面⊥PAB 面ABCD .………(6分) (2)过点M 作CD MH ⊥,连结HP , 因为CD PM ⊥,且M MH PM = ,所以⊥CD 平面PMH ,又由⊂CD 平面PCD ,得到平面⊥PMH 平面PCD , 平面 PMH 平面PH PCD =,过点M 作PH MN ⊥,即有⊥MN 平面PCD , 连结DN ,则MDN ∠为直线DM 与平面PCD 所成角. ………(10分)在四棱锥ABCD P -中,设t AB 2=, 则t DM 213=,t PM 23=,t MH 1057=,∴t PH 554=,t MN 1637=, 从而104397sin ==∠DM MN MDN ,………(13分) 即直线DM 与平面PCD 所成角的正弦值为104397.………(14分)21. (本小题满分14分)(1),,,.,.(5EF PF EF FC PF FC F EF PFC PC PFC EF PC ⊥⊥⋂=∴⊥⊂∴⊥证明:平面又平面分)21,.,,(10EF PFC BCFE PFC PH FC FC H PH BCFE HG BE BE G PG BE PG PGH ⊥∴⊥⊥⊥⊥⊥∠()由()知平面平面平面作交于点则平面作交于点,连结,则所以就是二面角的平面角分)0,0 1.60,,,21,42tan .(1332.(143AF x x x PFC FH PH x GH x PH PGH GH E AB P EB C =<≤∠=∴=∴-==∴∠==-当点在线段上移动时,二面角的大小定值,这个二面角的平面角的正切设据题意有在图形()中可求得分值)为分)备注:对于简答题的其他解法,请参照评分标准评分.。

2014-2015年浙江省杭州市求是高中高二上学期期中数学试卷及参考答案(文科)

2014-2015年浙江省杭州市求是高中高二上学期期中数学试卷及参考答案(文科)

2014-2015学年浙江省杭州市求是高中高二(上)期中数学试卷(文科)一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)直线x=﹣1的倾斜角为()A.0°B.45°C.90°D.135°2.(4分)下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④D.①和④3.(4分)已知m,n是两条不同直线,α,β,γ是三个不同平面,以下有三种说法:①若α∥β,β∥γ,则γ∥α;②若α⊥γ,β∥γ,则α⊥β;③若m⊥β,m⊥n,n⊊β,则n∥β.其中正确说法的个数是()A.0个 B.1个 C.2个 D.3个4.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B.C.D.5.(4分)在正方体ABCD﹣A1B1C1D1中,直线AC1与平面ABCD所成的角为θ,则sinθ值为()A.B.C.D.6.(4分)直线(a+2)x+(1﹣a)y﹣3=0与(a﹣1)x+(2a+3)y+2=0互相垂直,则a的值为()A.﹣1 B.1 C.±1 D.7.(4分)已知一水平放置的四边形的平面直观图是边长为1的正方形,那么原四边形的面积为()A.B.2 C.2 D.48.(4分)若两条不同的直线与同一平面所成的角相等,则这两条直线()A.平行B.相交C.异面D.以上皆有可能9.(4分)一座楼房由若干个房间组成,该楼的三视图如图所示.则该楼中最高一层的那个房间在大楼的位置是()A.右前上方B.左前上方C.右后上方D.左后上方10.(4分)在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S﹣EFG中必有()A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面 D.GD⊥△SEF所在平面二、填空题:(本大题共6小题,每小题4分,共24分.)11.(4分)直线x﹣4y﹣1=0与直线2x+y﹣2=0的交点坐标是.12.(4分)已知原点O到直线3x+4y=15的距离为.13.(4分)设图是某几何体的三视图,则该几何体的体积为.14.(4分)Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周所成的几何体的体积为.15.(4分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE 与BC所成的角的余弦值为.16.(4分)设l是经过点A(3,5)的任意一条直线,原点到直线l的距离为d,则对应于d取得最大值时的直线l的方程为.三、解答题:(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)已知直线l经过直线l1:3x+4y﹣2=0与直线l2:2x+y+2=0的交点P,且垂直于直线x﹣4y﹣1=0.(1)求直线l的方程;(2)求直线l与两坐标轴围成的三角形的面积S.18.(8分)已知两条直线l1:mx+8y+n=0和l2:2x+my﹣1=0,试分别确定m、n 的值,使:(1)l1与l2相交于一点P(m,1);(2)l1∥l2且l1过点(3,﹣1);(3)l1⊥l2且l1在y轴上的截距为﹣1.19.(10分)如图,正方形ABCD 和正方形CDEF所在平面互相垂直,M为FC 的中点.(1)求证:AF∥平面MBD;(2)求异面直线AF与BM所成角的余弦值.20.(10分)如图,四棱锥P﹣ABCD的底面是梯形,AD∥BC,BA=AD=BC=2,∠ABC=60°,△PAB是等边三角形,平面PAB⊥平面ABCD,M是PC中点.(1)求证:DM∥平面PAB;(2)求直线BM与平面PAB所成角的大小.2014-2015学年浙江省杭州市求是高中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)直线x=﹣1的倾斜角为()A.0°B.45°C.90°D.135°【解答】解:因为直线的方程为x=﹣1,为垂直于x轴的直线,故直线无斜率,故直线x=﹣1的倾斜角为90°,故选:C.2.(4分)下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④D.①和④【解答】解:①圆柱是旋转体;②六棱锥是多面体;③正方体是多面体;④球体是旋转体;⑤四面体是多面体.故选:D.3.(4分)已知m,n是两条不同直线,α,β,γ是三个不同平面,以下有三种说法:①若α∥β,β∥γ,则γ∥α;②若α⊥γ,β∥γ,则α⊥β;③若m⊥β,m⊥n,n⊊β,则n∥β.其中正确说法的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:对于①,若α∥β,β∥γ,由平面平行的传递性可知,γ∥α,故①正确;对于②,若α⊥γ,β∥γ,则α⊥β,故②正确;对于③,因为n⊊β,令n在β内的射影为n′,因为m⊥β,所以m⊥n′,又m⊥n,所以n∥n′,n′⊂β,n⊊β,所以n∥β,故③正确.故选:D.4.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B.C.D.【解答】解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选:C.5.(4分)在正方体ABCD﹣A1B1C1D1中,直线AC1与平面ABCD所成的角为θ,则sinθ值为()A.B.C.D.【解答】解:如图,∵C1C⊥ABCD,∴直线AC1与平面ABCD所成的角θ=∠C1AC,设正方体ABCD﹣A1B1C1D1的棱长为1,则C1C=1,AC1=,∴sinθ=sin∠C1AC===.故选:C.6.(4分)直线(a+2)x+(1﹣a)y﹣3=0与(a﹣1)x+(2a+3)y+2=0互相垂直,则a的值为()A.﹣1 B.1 C.±1 D.【解答】解:由题意,∵直线(a+2)x+(1﹣a)y﹣3=0与(a﹣1)x+(2a+3)y+2=0互相垂直∴(a+2)(a﹣1)+(1﹣a)(2a+3)=0∴(a﹣1)(a+2﹣2a﹣3)=0∴(a﹣1)(a+1)=0∴a=1,或a=﹣1故选:C.7.(4分)已知一水平放置的四边形的平面直观图是边长为1的正方形,那么原四边形的面积为()A.B.2 C.2 D.4【解答】解:如图所示:该四边形的水平放置的平面直观及原四边形,由斜二测画法可知:原四边形是一个一条边长为1,其边上的高(对角线)为的平行四边形,故原四边形的面积S==.故选:C.8.(4分)若两条不同的直线与同一平面所成的角相等,则这两条直线()A.平行B.相交C.异面D.以上皆有可能【解答】解:如图在正方体ABCD_A1B1C1D1中A1A,B1B与底面ABCD夹角相等,此时两直线平行;A1B1,B1C1与底面ABCD夹角相等,此时两直线相交;A1B1,BC与底面ABCD夹角相等,此时两直线异面;故选:D.9.(4分)一座楼房由若干个房间组成,该楼的三视图如图所示.则该楼中最高一层的那个房间在大楼的位置是()A.右前上方B.左前上方C.右后上方D.左后上方【解答】解:由该楼的正视图知该楼中最高一层的那个房间在大楼的右侧,由该楼的侧视图知该楼中最高一层的那个房间在大楼的后方,由该楼的俯视图知该楼中最高一层的那个房间在大楼的上方,∴该楼中最高一层的那个房间在大楼右后上方.故选:C.10.(4分)在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S﹣EFG中必有()A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面 D.GD⊥△SEF所在平面【解答】解:∵在折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,所以SG⊥平面EFG.故选:A.二、填空题:(本大题共6小题,每小题4分,共24分.)11.(4分)直线x﹣4y﹣1=0与直线2x+y﹣2=0的交点坐标是(1,0).【解答】解:解方程组,得x=1,y=0,∴直线x﹣4y﹣1=0与直线2x+y﹣2=0的交点坐标是(1,0).故答案为:(1,0)12.(4分)已知原点O到直线3x+4y=15的距离为3.【解答】解:原点O(0,0)到直线3x+4y=15的距离为:d==3.故答案为:3.13.(4分)设图是某几何体的三视图,则该几何体的体积为.【解答】解:由该几何体的三视图,知:该几何体的上半部分是直径为3的球,下半部分是正四棱柱,正棱柱的底是边长为3的正方形,正四棱柱的高为2,∴该几何体的体积V=+32×2=.故答案为:.14.(4分)Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周所成的几何体的体积为16π.【解答】解:旋转一周所成的几何体是底面以BC为半径,以AB为高的圆锥,所以圆锥的体积:=16π.故答案为:16π15.(4分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成的角的余弦值为.【解答】解:连接DE,设AD=2易知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,在△RtADE中,由于DE=,AD=2,可得AE=3∴cos∠DAE==,故答案为:.16.(4分)设l是经过点A(3,5)的任意一条直线,原点到直线l的距离为d,则对应于d取得最大值时的直线l的方程为3x+5y﹣34=0.【解答】解:当所求直线与点A与原点的连线垂直时d取得最大值,由=可知所求直线的斜率为,故可得直线的方程为y﹣5=(x﹣3),化为一般式可得3x+5y﹣34=0,故答案为:3x+5y﹣34=0三、解答题:(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)已知直线l经过直线l1:3x+4y﹣2=0与直线l2:2x+y+2=0的交点P,且垂直于直线x﹣4y﹣1=0.(1)求直线l的方程;(2)求直线l与两坐标轴围成的三角形的面积S.【解答】解:(1)∵直线l经过直线l1:3x+4y﹣2=0与直线l2:2x+y+2=0的交点P,∴解方程组,得P(﹣2,2),∵l垂直于直线x﹣4y﹣1=0,∴设直线l的方程为4x+y+c=0,把P(﹣2,2)代入,得﹣8+2+c=0,解得c=6,∴直线l的方程为4x+y+6=0.(2)在直线l:4x+y+6=0中,令x=0,得y=﹣6;令y=0,得x=﹣.∴直线l与两坐标轴围成的三角形的面积:S==.18.(8分)已知两条直线l1:mx+8y+n=0和l2:2x+my﹣1=0,试分别确定m、n 的值,使:(1)l1与l2相交于一点P(m,1);(2)l1∥l2且l1过点(3,﹣1);(3)l1⊥l2且l1在y轴上的截距为﹣1.【解答】解:(1)由于l1与l2相交于一点P(m,1),把点P(m,1)代入l1,l2的方程得m2+8+n=0,2m+m﹣1=0,联立解得,n=﹣.(2)∵l1∥l2且l1过点(3,﹣1),∴,解得或(3)由l1⊥l2且l1在y轴上的截距为﹣1,当m=0时,l1的方程化为8y+n=0,l2的方程化为2x﹣1=0.∴﹣8+n=0,解得n=8.∴m=0,n=8.而m≠0时,直线l1与l2不垂直.综上可知:m=0,n=8.19.(10分)如图,正方形ABCD 和正方形CDEF所在平面互相垂直,M为FC 的中点.(1)求证:AF∥平面MBD;(2)求异面直线AF与BM所成角的余弦值.【解答】证明:(1)连接AC,BD交于点O,连接MO∵ABCD为正方形,∴O为AC中点∵△ACF中,M为EC中点∴MO∥AF又∵MO⊂平面MBD,AF⊄平面MBD,∴AF∥平面MBD.(2)解:根据(1)得AF∥OM,AF与BM所成角即∠OMB,设正方形边长为a,则AC=a,AF=a,MO=AF=a,MC=a∴MB==a∴cos∠BMO===.20.(10分)如图,四棱锥P﹣ABCD的底面是梯形,AD∥BC,BA=AD=BC=2,∠ABC=60°,△PAB是等边三角形,平面PAB⊥平面ABCD,M是PC中点.(1)求证:DM∥平面PAB;(2)求直线BM与平面PAB所成角的大小.【解答】(1)证明:取PB中点N,连NM,NA,∵,∴NM∥AD,NM=AD,∴四边形NMDA为平行四边形,从而DM∥AN,又AN⊂平面PAB,DM⊄平面PAB,∴DM∥平面PAB;(2)解:连接AC,则∵AB=2,BC=4,∠ABC=60°∴AC==2∴AC⊥AB∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,∴AC⊥平面PAB取PA中点G,连接MG,则MG∥AC,MG=,∴MG⊥平面PAB连接GB,则∠MBG为直线BM与平面PAB所成角在正三角形PAB中,BG=AB=∴tan∠MBG==1∴∠MBG=45°,即直线BM与平面PAB所成角为45°.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

杭州二中2015学年高二年级第一学期期中考试数学试卷word含答案

杭州二中2015学年高二年级第一学期期中考试数学试卷word含答案

杭州二中2015学年高二年级第一学期期中数学试卷时间:100分钟一、选择题:本大题共8小题,每小题3分,共24分. 1. 不等式0322>++-x x 的解集是A.)1,3(-B. )3,1(-C. ),3()1,(+∞⋃--∞D. ),1()3,(+∞⋃--∞ 2.已知0,>ba ,且13=+b a ,则ab 的取值范围是A.),63[+∞ B. ]121,0( C. ]121,241( D. ]63,0( 3. 设m 为一条直线,βα,为两个不同的平面,则下列说法正确的是A .若ββαα//,//,//m m 则B .若,m αβα⊥⊥,则m β⊥C .若ββαα⊥⊥m m 则,,//D .若ββαα⊥⊥m m 则,//,4. 在等差数列}{n a 中,已知201=a ,前n 项和为n S ,且1510S S =,则n S 的最大值是 A .110B .120C .130D .1405. 若关于x 的不等式220x ax +->在区间[]1,5上有解,则实数a 的取值范围为 A .),523(+∞-B .]1,523[-C .(1,+∞)D .)1,(--∞6.已知各棱长均为1的四面体ABCD 中, E 是AD 的中点,P ∈直线CE ,则|BP|+|DP|的最小值为A.1+63B.1+63 C.1+32D.1+327.若y x a y x +≤+2对+∈R y x ,恒成立,则实数a 的最小值是 A.2 B.3 C. 5 D. 28.设三个底面半径都为1的圆柱侧面两两相切,且它们的轴两两互相垂直,则与这三个圆柱侧面都相切的球的半径最小值等于 A. 12- B. 13- C. 25- D. 1二、填空题:本大题共7小题,每小题4分,共28分.9. 已知圆锥的底面半径为1,高为1,则圆锥的侧面面积=S .10.右图是某三棱锥的三视图,各个视图是全等的等腰直角三角形,且直角边长为1,则这个三棱锥外接球的表面积是 .11.在等比数列{a n }中,各项均为正值,且4862142=+a a a a ,693=a a ,则=+84a a .12.设函数x x x f +-=11log )(21,则不等式)21()(log 21f x f ->的解集是 . 13.空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E 、F 分别为BC 、AD 的中点,则EF 与AB 所成角的大小为 .14.对一切实数x ,二次函数c bx ax x f ++=2)(的值均为非负实数,则cba +的最小值是 .15.已知三棱锥BCD A -,DC DB DA ,,两两垂直,且ο90=∠+∠+∠CAD BAC DAB ,则二面角D BC A --的余弦值的最大值为 .三、解答题:本大题共4小题.共48分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)如图:已知四棱柱1111D C B A ABCD -的底面是菱形,该菱形的边长为1,ο60=∠ABC ,AC AA 平面⊥1.(1)设棱形ABCD 的对角线的交点为O ,求证: O A 1//平面C D B 11; (2)若四棱柱的体积23=V ,求C C 1与平面C D B 11所成角的正弦值.1B17.(本小题满分12分)(1)求关于x 的不等式)(012R a a x ax ∈>+--的解集. (2)求证:))(()(22222d c b a bd ac ++≤+,R d c b a ∈,,,.18.(本小题满足12分) 如图:已知正六边形ABCDEF 边长为1,把四边形CDEF 沿着FC 向上翻折成一个立体图形F E ABCD 11. (1)求证:A E FC 1⊥;(2)若1E B =时,求二面角C FB E --1的正切值.19.(本小题满足12分)数列满足341=a ,2*11(N )n n n a a a n +=-+∈. (1)求证:n n a a >+1; (2)设201521111a a a m +++=Λ,求不超过m 的最大整数.{}n a杭州二中2015学年第一学期高二年级期中考试数学答案一.选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.9 10. π311. 12. )2,21(13. 12512ππ或14. -115.31三、解答题:本大题共4小题.共48分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分10分)如图:已知四棱锥1111D C B A ABCD -的底面是棱形,该棱形的边长为1,ο60=∠ABC ,AC AA 平面⊥1.(1)设棱形ABCD 的对角线的交点为O ,求证: O A 1//平面C D B 11;(2)若四棱柱的体积23=V ,求C C 1与平面C D B 11所成角的正弦值. (1)证明:连接1111,D B C A 交于点G ,连接GC ,因为CO G A CO G A =11,//,于是四边形GCOA 1是平行四边形,故OG O A //1,又C DB OG 11平面⊂,故CD B O A 111//平面(2)解:设h AA =1,因为23sin =∠⋅⋅=ABC BC AB S 底,所以23==Sh V ,所以1=h . 11B因为1111C A D B ⊥,A A D B 111⊥,所以C A D B 111平面⊥所以C A C D B 111平面平面⊥,过GC H C ⊥1,于是C D B H C 111平面⊥所以CG C 1∠为所求角,且55sin 11==∠GC G C CG C .17.(本小题满分12分)(1)求关于x 的不等式R a a x ax ∈>+--,012的解集.解:若0<a ,解集为)1,11(-a;若0=a ,解集为)1,(-∞;若210<<a ,解集为),11()1,(+∞-⋃-∞a ;若21=a ,解集为),1()1,(+∞⋃-∞;若21>a ,解集为),1()11,(+∞⋃--∞a;(2)求证:))(()(22222d c b a bd ac ++≤+,其中d c b a ,,,都是实数.证明:0)(2))(()(2222222222≤--=--=++-+bc ad c b d a acbd d c b a bd ac 故))(()(22222d c b a bd ac ++≤+. 18.(本小题满足12分)如图:已知正六边形''''''F E D C B A ,边长为1,沿着''C F 向上翻折成一个立体图形ABCDEF.(1)求证:EA FC ⊥; (2)若210=EB 时,求二面角E-FB-C 的正切值. (1)证明:过E 作FC EH ⊥,连接AH ,于是FC AH ⊥ 又H EH AH =⋂,于是AHE FC 平面⊥,又F1BAEH EA 平面⊂,故EA FC ⊥.(2)解:连接HB ,计算可得:23=EH , 2760cos 222=⋅-+=οCB CH CB CH BH由210=EB ,故222EB EH BH =+,所以HB EH ⊥,又FC EH ⊥,H FC HB =⋂,所以ABCF EH 平面⊥ 过H 作FB SH ⊥,连接ES ,则ESH ∠为所求角. 在ESH ∆中,23,41==EH SH ,32tan ==∠HSEH ESH . 19.数列满足143a =,2*11(N )n n n a a a n +=-+∈. (1)求证:n n a a >+1;(2)设122013111m a a a =+++L ,求不超过m 的最大整数. (1)因为1341>=a ,故1)1()1()1()()()(1222221112211>+-++-+-=+-++-+-=-----a a a a a a a a a a a a n n n n n n n ΛΛ,于是n n n n n n a a a a a a =->+-=+2121.(2)解:)1(11-=-+n n n a a a ,于是nn n n n a a a a a 111)1(1111--=-=-+所以111111---=+n n n a a a 于是113)1111()1111()1111(2014201420133221--=---++---+---=a a a a a a a m Λ 当2≥n 时,31341)1(1->+-=+n n n n a a a a ,于是)1(3411->-+n n a a ,故21)34(3120142014>+⋅>a ,所以11102014<-<a ,所以不超过m 的最大整数是2.{}n aF。

浙江省杭州求是高级中学2013-2014学年高二上学期期中考试化学试卷.pdf

浙江省杭州求是高级中学2013-2014学年高二上学期期中考试化学试卷.pdf

可能使用到的相对原子量C:12 O:16 H:1 S:32 N: Na: Cl: 一、选择题(每小题只有一个选项符合题意,每小题2分,共40分) 1.废电池的污染引起人们的广泛重视,废电池中对环境形成污染的主要物质是 A.锌 B.汞 C.石墨 D.二氧化锰 2.将铁粉和硫粉混合后加热,待反应一发生即停止加热,反应仍可持续进行,直至反应完全生成新物质硫化亚铁。

这现象说明了 A.该反应是吸热反应 B.该反应是放热反应 C.铁粉和硫粉在常温下容易发生反应 D.硫化亚铁的总能量高于铁粉和硫粉的总能量 3.已知反应:①101 kPa时,C(s)+1/2O2(g)=CO(g) ΔH1=-110.5 kJ·mol-1 ②稀溶液中,H+(aq)+OH-(aq)=H2O(l) ΔH2=-57.3 kJ·mol-1下列结论正确的是 A.若碳的燃烧热用ΔH3来表示,则ΔH3<ΔH1 B.若碳的燃烧热用ΔH3来表示,则ΔH3>ΔH1 C.浓硫酸与稀NaOH溶液反应的中和热为-57.3 kJ·mol-1 D.稀醋酸与稀NaOH溶液反应生成1 mol水,放出57.3 kJ热量 4.下列有关能量转换的说法正确的是 A.煤燃烧是化学能转化为热能的过程 B化石燃料和植物燃料燃烧时放出的能量均来源于太阳能 C动物体内葡萄糖被氧化成CO2是热能转变成化学能的过程 D植物通过光合作用将CO2转化为葡萄糖是太阳能转变成热能的过程 下列说法错误的是 A由电能转化为化学能的装置叫电解池 B在电解池中跟直流电源的正极相连的电极是电解池的阳极 C在电解池中通电时,电子从电解池的阴极流出,并沿导线流回电源的负极 D电解池中阴极发生还原反应,阳极发生氧化反应 用惰性电极实现电解,下列说法正确的是 A电解稀硫酸溶液,溶液pH不变B.电解稀氢氧化钠溶液,溶液pH减小 C电解硫酸钠溶液,在阴极上和阳极上析出产物的物质的量之比为1:2 D电解氯化铜溶液,在阴极上和阳极上析出产物的物质的量之比为1:1 A.4Fe(OH)2+2H2O+O2=4Fe(OH)3↓B.2Fe+2H2O+O2=2Fe(OH)2↓ C.2H2O+O2+4e=4OH- D.Fe-3e=Fe3+ 8.等质量的两份锌粉a、b,分别加入过量的稀H2SO4,同时向a中加入少量的CuSO4溶液,下列图表示产生H2的体积(V)与时间(t)的关系,其中正确的是 9.将NaCl溶液滴在一块光亮清洁的铁板表面上,一段时间后发 现液滴覆盖的圆周中心区(a)已被腐蚀而变暗,在液滴外沿形成 棕色铁锈环(b),如图所示。

2014-2015年浙江省杭州市六校高二上学期期中数学试卷及参考答案(理科)

2014-2015年浙江省杭州市六校高二上学期期中数学试卷及参考答案(理科)

2014-2015学年浙江省杭州市六校高二(上)期中数学试卷(理科)一、选择题(本大题共10小题,每小题3分,共30分,每个小题所给的四个选项有且只有一个符合题目要求.)1.(3分)已知a>b,c>d,则下列不等式成立的是()A.b+d<a+c B.ac>bd C.>D.a﹣c>b﹣d2.(3分)下列四个命题中,其中正确的命题的是()A.过三点确定一个平面B.矩形是平面图形C.四边相等的四边形是平面图形D.三条直线两两相交则确定一个平面3.(3分)在等差数列{a n}中,若a1+a2+a12+a13=24,则a7为()A.6 B.7 C.8 D.94.(3分)垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能5.(3分)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为()A.B.C.D.6.(3分)在△ABC中,若sin2C=sin2A+sin2B,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.(3分)如图是正方体的平面展开图,则在这个正方体中的AB与CD的位置关系为()A.平行B.相交成60°角C.异面成60°角D.异面且垂直8.(3分)设l,m,n表示三条不同的直线,α,β表示两个不同的平面,则下列说法正确的是()A.如l∥m,m⊂α,则l∥αB.如l⊥m,l⊥n,n⊂α,则l⊥αC.如l⊂α,m⊂β,l⊥m,则α⊥βD.如l∥α,l∥β,α∩β=m,则l∥m 9.(3分)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为H.则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.直线AH和BB1所成角为45° D.AH的延长线经过点C110.(3分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)已知三个数﹣3,x,﹣12成等比数列,该数列公比q=.12.(4分)正四棱锥底面边长为4,侧棱长为3,则其侧面积为.13.(4分)一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为cm3.14.(4分)设变量x,y满足,则目标函数z=2x+4y最大值为.15.(4分)如图所示,E、F分别是正方形SD1DD2的边D1D、DD2的中点,沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D.给出下列位置关系:①SD⊥面DEF;②SE⊥面DEF;③DF⊥SE;④EF⊥面SED,其中成立的有:.16.(4分)一个几何体的三视图如图所示,则此几何体的体积是.17.(4分)规定记号“⊗”表示一种运算,即a⊗b=(a,b为正实数).若1⊗k=3,则k的值为,此时函数的最小值为.三.简答题:(本大题共4题,第1、2、3题每题10分,第4题12分,共42分.)18.(10分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,E、F分别为A1C1、BC的中点.(1)求证:AB⊥平面B1BCC1;(2)求证:C1F∥平面ABE.19.(10分)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.20.(10分)△ABC中,a,b,c是A,B,C所对的边,S是该三角形的面积,且(1)求∠B的大小;(2)若a=4,S=5,求b的值.21.(12分)如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.(1)证明:BC上是否存在一点G使得平面EFG∥平面PAB(2)若二面角P﹣AD﹣B为60°,①证明:BE⊥PB;②求直线EF与平面PBC所成角的正切值.2014-2015学年浙江省杭州市六校高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每个小题所给的四个选项有且只有一个符合题目要求.)1.(3分)已知a>b,c>d,则下列不等式成立的是()A.b+d<a+c B.ac>bd C.>D.a﹣c>b﹣d【解答】解:∵a>b,c>d,∴a+c>b+d.故选:A.2.(3分)下列四个命题中,其中正确的命题的是()A.过三点确定一个平面B.矩形是平面图形C.四边相等的四边形是平面图形D.三条直线两两相交则确定一个平面【解答】解:A:由于过不共面的三点才能确定一个平面,故A不对;B:矩形是平行四边形,对边相互平行,能确定一个平面,故结论正确.C:空间四边形的四边可以相等,但不是平面图形,故C不正确.D:由于三条直线两两相交的情形中包括三线不共面且过一点的情形,这种情形中三线可确定三个平面,故D不正确.故选:B.3.(3分)在等差数列{a n}中,若a1+a2+a12+a13=24,则a7为()A.6 B.7 C.8 D.9【解答】解:由a1+a2+a12+a13=24得出a1+a2+a12+a13=a1+a13+a2+a12=2a7+2a7=4a7=24⇒a7=6.故选A.4.(3分)垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能【解答】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选:D.5.(3分)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为()A.B.C.D.【解答】解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是由左下角到右上角的线,故选:C.6.(3分)在△ABC中,若sin2C=sin2A+sin2B,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【解答】解:在△ABC中,∵sin2C=sin2A+sin2B,∴由正弦定理得:c2=a2+b2,∴△ABC为直角三角形,故选:B.7.(3分)如图是正方体的平面展开图,则在这个正方体中的AB与CD的位置关系为()A.平行B.相交成60°角C.异面成60°角D.异面且垂直【解答】解:如图,直线AB,CD异面.因为CE∥AB,所以∠DCE即为直线AB,CD所成的角,因为△CDE为等边三角形,故∠DCE=60°故选:C.8.(3分)设l,m,n表示三条不同的直线,α,β表示两个不同的平面,则下列说法正确的是()A.如l∥m,m⊂α,则l∥αB.如l⊥m,l⊥n,n⊂α,则l⊥αC.如l⊂α,m⊂β,l⊥m,则α⊥βD.如l∥α,l∥β,α∩β=m,则l∥m【解答】解:∵l∥m,m⊂α,若l⊄α,l与α不平行,故A错误;∵若l⊥m,l⊥n,n⊂α,l与α的位置关系不确定,故B错误;∵l⊂α,m⊂β,l⊥m,则α与β有可能平行,故C错误;∵l∥α,l∥β,α∩β=m,过l作平面γ,α∩γ=b,β∩γ=c,由l∥α,得l∥b,由l∥β,得l∥c,∴b∥c,∴b∥l,b∥m,∴l∥m,故D正确.故选:D.9.(3分)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为H.则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.直线AH和BB1所成角为45° D.AH的延长线经过点C1【解答】解:∵AB=AA1=AD,BA1=BD=A1D,∴三棱锥A﹣BA1D为正三棱锥,∴点H是△A1BD的垂心;故选项A正确;对于选项B:∵平面A1BD与平面B1CD1平行,∵AH⊥平面A1BD,∵平面A1BD⊥平面BC1D,∴AH垂直平面CB1D1,选项B正确;根据正方体的对称性得到AH的延长线经过C1,∴选项D正确;对于选项C,∵AA1∥BB1,∴∠A1AH就是直线AH和BB1所成角,在直角三角形AHA1中,∵AA1=1,,∴,所以选项C错误,故选:C.10.(3分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P 到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)已知三个数﹣3,x,﹣12成等比数列,该数列公比q=±2.【解答】解:∵三个数﹣3,x,﹣12成等比数列,∴x2=36,∴x=±6,∴该数列公比q=±2.故答案为:±2.12.(4分)正四棱锥底面边长为4,侧棱长为3,则其侧面积为.【解答】解:因为正四棱锥底面边长为4,侧棱长为3,所以正四棱锥的斜高为:=.所以正四棱锥的侧面积为:=8.故答案为:8.13.(4分)一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为32πcm3.【解答】解:一个正方体的顶点都在球面上,它的对角线就是外接球的直径,它的棱长是4cm,所以球的直径为:4;球的半径为:2,球的体积为:=32π.故答案为:32π.14.(4分)设变量x,y满足,则目标函数z=2x+4y最大值为13.【解答】解:由约束条件得如图所示的三角形区域,三个顶点坐标为A(1,2),B(2,2),C(,)将三个代入得z的值分别为10,12,13直线z=2x+4y过点C时,z取得最大值为13;故答案为:1315.(4分)如图所示,E、F分别是正方形SD1DD2的边D1D、DD2的中点,沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D.给出下列位置关系:①SD⊥面DEF;②SE⊥面DEF;③DF⊥SE;④EF⊥面SED,其中成立的有:①与③.【解答】解:由题意因为SD⊥DF,SD⊥DE,DE⊥DF,DE=DF显然①正确;②错误;③正确;④错误.故答案为:①与③16.(4分)一个几何体的三视图如图所示,则此几何体的体积是8.【解答】解:由三视图可知,该几何体为三棱锥,其底面面积为S=×4×4=8,高为3,则其体积为V=×3×8=8.故答案为:8.17.(4分)规定记号“⊗”表示一种运算,即a⊗b=(a,b为正实数).若1⊗k=3,则k的值为1,此时函数的最小值为3.【解答】解:依题意,1⊗k=+1+k=3,解得k=1此时,函数===1++≥1+2=3故答案为1,3三.简答题:(本大题共4题,第1、2、3题每题10分,第4题12分,共42分.)18.(10分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,E、F分别为A1C1、BC的中点.(1)求证:AB⊥平面B1BCC1;(2)求证:C1F∥平面ABE.【解答】(1)证明:在三棱柱ABC﹣A1B1C1中,侧棱BB1垂直于底面ABC,所以BB1⊥AB,又AB⊥BC,BB1∩BC=B,则有AB⊥平面B1BCC1;(2)证法一、取AB中点G,连接EG,FG,由于E、F分别为A1C1、BC的中点,所以FG∥AC,FG=AC,因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG,又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE;证法二、取AC中点H,连接FH和C1H,因为F,H分别是BC,AC的中点,所以HF∥AB,HF⊄平面ABE,AB⊂ABE,所以HF∥平面ABE,又由AE∥C1H,也可得到C1H∥平面ABE,又C1H∩HF=H,所以平面C1HF∥平面ABE,因为C1F⊂平面C1HF,所以C1F∥平面ABE.19.(10分)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.【解答】解:(I)设等差数列{a n}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴s n===20.(10分)△ABC中,a,b,c是A,B,C所对的边,S是该三角形的面积,且(1)求∠B的大小;(2)若a=4,S=5,求b的值.【解答】解:(1)已知等式利用正弦定理化简得:==,∴2sinAcosB﹣sinCcosB=sinBcosC,∴2sinAcosB=sin(B+C),∴2sinAcosB=sinA,∵sinA≠0,∴cosB=,则B=60°;(2)∵S=acsinB,a=4,S=5,∴c=5,由余弦定理得:b2=a2+c2﹣2accosB=16+25﹣2×4×5×=21,则b=.21.(12分)如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.(1)证明:BC上是否存在一点G使得平面EFG∥平面PAB(2)若二面角P﹣AD﹣B为60°,①证明:BE⊥PB;②求直线EF与平面PBC所成角的正切值.【解答】证明:(1)取BC的中点G,连结EG,FG,∵E,G分别是AD,BC的中点,∴EG∥AB,又EG⊄平面PAB,AB⊂平面PAB,∴EG∥平面PAB,…..(2分)又∵F,G分别是PC,BC的中点,∴FG∥PB,∵FG⊄平面PAB,PB⊂平面PAB,∴FG∥平面PAB(2分),又FG∩EG=G,∴平面EFG∥平面PAB,G即为所求的点…..(5分)(2)①∵PA=PD,AB=BD,E为AD的中点,∴AD⊥PE,AD⊥BE,∴∠BEP即为二面角P﹣AD﹣B的平面角,∴∠BEP=60°,…..(6分)∵AB=,AE=1,∴BE=1,∵PA=,AE=1,∴PE=2,∴PB=,∴PB2+BE2=PE2,∴BE⊥PB…(8分)②∵AD⊥BE,∴BE⊥BC,又BE⊥PB,BC∩PB=B,∴BE⊥平面PBC,连结BF,则∠BFE即为直线EF与平面PBC所成角,…..(10分)∵PB=,PA=,AB=,∴PB⊥AB,由BE⊥PB,PB⊥AB得PB⊥平面ABCD,∴PB⊥BC,PB=,BC=AD=2,∴PC=,∴BF=,又BE=1,∴….12分)赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC ⊥BD ,垂足为E ,AB =2,DC =4,求⊙O 的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

【数学】2014-2015年浙江省杭州市重点中学联考高三(上)期中数学试卷与答案(理科)

【数学】2014-2015年浙江省杭州市重点中学联考高三(上)期中数学试卷与答案(理科)

2014-2015学年浙江省杭州市重点中学联考高三(上)期中数学试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M=(﹣∞,0)∪[3,+∞),N={0,1,2,3},则(∁R M)∩N=()A.{x|0≤x≤3}B.{0,1}C.{0,1,2}D.{1,2,3}2.(5分)等比数列{a n}中,若,则a2a8=()A.3 B.﹣3 C.9 D.﹣93.(5分)下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题4.(5分)命题p:|x+2|>2,命题q:>1,则¬q是¬p成立的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)△ABC中,b=7,c=3,B=60°,则a=()A.5 B.6 C.4 D.86.(5分)设S n为等差数列{a n}的前n项和.若a4<0,a5>|a4|,则使S n>0成立的最小正整数n为()A.6 B.7 C.8 D.97.(5分)将函数f(x)=sin(x﹣)图象上所有点的横坐标缩短到原来的一半(纵坐标不变),再将它的图象向左平移φ个单位(φ>0),得到了一个偶函数的图象,则φ的最小值为()A.B.C.D.8.(5分)在△ABC中,角A,B,C所对的边分别是a,b,c,若20a+15b+12c=,则△ABC的最小角的正弦值等于()A.B.C.D.9.(5分)已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=﹣a(x≠0)有且仅有3个零点,则a的取值范围是()A.[,]∪[,]B.(,]∪[,) C.(,]∪[,) D.[,]∪[,]10.(5分)已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则的值是()A.0 B.C.1 D.二.填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知函数f(x)=,则f(f())的值是=.12.(4分)若函数f(2x)的定义域是[﹣1,1],则函数f(2x﹣1)+f(2x+1)的定义域是.13.(4分)设a,b∈R+,a+b﹣2a2b2=4,则的最小值是.14.(4分)已知实数x,y满足条件,则|y|﹣x的最小值为.15.(4分)已知数列{a n}满足a1=1,a2=,且a n+2=,则该数列的通项公式a n=.16.(4分)在平面直角坐标系xOy中,点P(,cos2θ)在角α的终边上,点Q (sin2θ,﹣1)在角β 的终边上,且=﹣.则sin(α+β)=.17.(4分)实数a,b,c,d满足(b+a2﹣3a)2+(c+d+2)2=0,则(a﹣c)2+(b+d)2的最小值是.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知A={x∈R|x2﹣3x+2≤0},B={x∈R|4x﹣a•2x+9≥0}.(Ⅰ)当a=10时,求A和B;(Ⅱ)若A⊆B.求a的取值范围.19.(14分)已知单位向量与的夹角是钝角,当t∈R时,||的最小值为.(Ⅰ)若,其中λ∈R,求||的最小值;(Ⅱ)若满足()()=,求||的最大值.20.(15分)已知△ABC的三内角A,B,C与所对的边a,b,c满足.(Ⅰ)求角A的大小;(Ⅱ)如果用psinA,sinB,sinC为长度的线段能围成以psinA为斜边的直角三角形,试求实数p的取值范围.21.(15分)各项均为正数的数列{a n}的前n项和S n满足2S n=a n2+a n(n∈N*),等比数列{b n}满足b1=,b n+1+b n=(n∈N*).(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若i,j为正整数,且1≤i≤j≤n,求所有可能的乘积a i b j的和.22.(14分)已知函数f(x)=x2+ax+b.(Ⅰ)设b=a,若|f(x)|在x∈[0,1]上单调递增,求实数a的取值范围;(Ⅱ)求证:存在x0∈[﹣1,1],使|f(x0)|≥|a|.2014-2015学年浙江省杭州市重点中学联考高三(上)期中数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M=(﹣∞,0)∪[3,+∞),N={0,1,2,3},则(∁R M)∩N=()A.{x|0≤x≤3}B.{0,1}C.{0,1,2}D.{1,2,3}【解答】解:∵全集为R,M=(﹣∞,0)∪[3,+∞),N={0,1,2,3},∴∁R M=[0,3),则(∁R M)∩N={0,1,2},故选:C.2.(5分)等比数列{a n}中,若,则a2a8=()A.3 B.﹣3 C.9 D.﹣9【解答】解:由等比数列的性质得,,解得a5=,所以a2a8==3,故选:A.3.(5分)下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题【解答】解:A.正确,若“p∧q”为真命题,则p,q都是真命题,∴“p∨q”为真命题;B.正确,若¬p∨q为假命题,则¬p,q都是假命题,∴p是真命题,¬q是真命题,∴p∧¬q为真命题;C.正确,“若a>b,则ac2>bc2”的否命题为,“若a≤b,则ac2≤bc2”;∵c2≥0,∴由a≤b能得到ac2≤bc2;D.错误,命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为“若方程x2+x﹣m=0有实数根,则m>0”,方程x2+x﹣m=0有实数根只要△=1+4m≥0,即m,所以不一定得到m>0.所以错误的是D.故选:D.4.(5分)命题p:|x+2|>2,命题q:>1,则¬q是¬p成立的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:命题p:|x+2|>2即为x>0或x<﹣4;命题p:>1即为2<x<3;所以¬p:﹣4≤x≤0,¬q:x≤2或x≥3;所以¬p成立¬q成立,反之¬q成立¬p不一定成立;所以¬q是¬p成立的必要不充分条件,故选:B.5.(5分)△ABC中,b=7,c=3,B=60°,则a=()A.5 B.6 C.4 D.8【解答】解:△ABC中,若c=3,b=7,∠B=60°,由余弦定理:b2=a2+c2﹣2accosB得:a2﹣3a﹣40=0,解得:a=8或a=﹣5(舍去).故选:D.6.(5分)设S n为等差数列{a n}的前n项和.若a4<0,a5>|a4|,则使S n>0成立的最小正整数n为()A.6 B.7 C.8 D.9【解答】解:在等差数列{a n}中,∵a4<0,a5>|a4|,得a 5>0,a5+a4>0,,.∴使S n>0成立的最小正整数n为8.故选:C.7.(5分)将函数f(x)=sin(x﹣)图象上所有点的横坐标缩短到原来的一半(纵坐标不变),再将它的图象向左平移φ个单位(φ>0),得到了一个偶函数的图象,则φ的最小值为()A.B.C.D.【解答】解:将函数f(x)=sin(x﹣)图象上所有点的横坐标缩短到原来的一半(纵坐标不变),可得函数y=sin(2x﹣)图象;再将它的图象向左平移φ个单位(φ>0),可得函数y=sin[2(x+φ)﹣]=sin (2x+2φ﹣)的图象,再根据y=sin(2x+2φ﹣)为偶函数,可得2φ﹣=kπ+,k∈z,即φ=+,则φ的最小值为,故选:C.8.(5分)在△ABC中,角A,B,C所对的边分别是a,b,c,若20a+15b+12c=,则△ABC的最小角的正弦值等于()A.B.C.D.【解答】解:在△ABC中,角A,B,C所对的边分别是a,b,c,若20a+15b+12c=,则20a(﹣)+15b+12c=(20a﹣15b)+(12c﹣20a)=.∵、不共线,故有20a﹣15b=0,12c﹣20a=0.∴b=a,c=a,a、b、c分别为△ABC中∠A、∠B、∠C的对边,∴a最小,∴cosA==,∴sinA==,即△ABC的最小角的正弦值等于.9.(5分)已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=﹣a(x≠0)有且仅有3个零点,则a的取值范围是()A.[,]∪[,]B.(,]∪[,) C.(,]∪[,) D.[,]∪[,]【解答】解:因为f(x)=﹣a=0,故=a;分x>0和x<0的情况讨论,显然有a≥0.若x>0,此时[x]≥0;若[x]=0,则=0;若[x]≥1,因为[x]≤x<[x]+1,故<≤1,即<a≤1.且随着[x]的增大而增大.若x<0,此时[x]<0;若﹣1≤x<0,则≥1;若x<﹣1,因为[x]≤x<﹣1;[x]≤x<[x]+1,故1≤<,即1≤a<,且随着[x]的减小而增大.又因为[x]一定是不同的x对应不同的a值.所以为使函数f(x)=﹣a有且仅有3个零点,只能使[x]=1,2,3;或[x]=﹣1,﹣2,﹣3.若[x]=1,有<a≤1;若[x]=2,有<a≤1;若[x]=3,有<a≤1;若[x]=4,有<a≤1;若[x]=﹣1,有a>1;若[x]=﹣2,有1≤a<2;若[x]=﹣3,有1≤a<;若[x]=﹣4,有1≤a<综上所述,<a≤或≤a<,故选:B.10.(5分)已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则的值是()A.0 B.C.1 D.【解答】解:若x≠0,则有,取,则有:∵f(x)是偶函数,则由此得于是,故选:A.二.填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知函数f(x)=,则f(f())的值是=﹣2.【解答】解:∵函数,∴f()=2+=4.=f(4)==﹣2.故答案为:﹣2.12.(4分)若函数f(2x)的定义域是[﹣1,1],则函数f(2x﹣1)+f(2x+1)的定义域是[﹣,] .【解答】解:由函数f(2x)的定义域是[﹣1,1],得﹣1≤x≤1.∴﹣2≤2x≤2,即函数f(x)的定义域是[﹣2,2],再由,解得,∴函数f(2x﹣1)+f(2x+1)的定义域是[﹣,].故答案为:[﹣,].13.(4分)设a,b∈R+,a+b﹣2a2b2=4,则的最小值是4.【解答】解:∵a+b﹣2a2b2=4,∴a+b=4+2a2b2,∴===+2ab≥2=4,当且仅当ab=取等号,故的最小值是4,故答案为:414.(4分)已知实数x,y满足条件,则|y|﹣x的最小值为﹣1.【解答】解:由题意作出其平面区域,由图可知,|y|﹣x的最小值为0﹣1=﹣1.故答案为:﹣1.15.(4分)已知数列{a n}满足a1=1,a2=,且a n+2=,则该数列的通项公式a n=.=,【解答】解:∵a n+2∴=∴﹣=1,∴数列{}是以==2为首项,以1为公差的等差数列,∴=2+n﹣1=n+1,∴==2,=3,…,=n+1,利用累乘法得∴•…=2×3×4×…×n=n!∴a n=16.(4分)在平面直角坐标系xOy中,点P(,cos2θ)在角α的终边上,点Q (sin2θ,﹣1)在角β 的终边上,且=﹣.则sin(α+β)=﹣.【解答】解:∵=﹣,∴=﹣∴cos2θ=,sin2θ=∴P(,),Q(,﹣1),∴sinα=,cosα=,sinβ=,cosβ=,∴sin(α+β)=sinαcosβ+cosαsinβ==﹣.故答案为:﹣.17.(4分)实数a,b,c,d满足(b+a2﹣3a)2+(c+d+2)2=0,则(a﹣c)2+(b+d)2的最小值是.【解答】解:实数a,b,c,d满足(b+a2﹣3a)2+(c+d+2)2=0,则有b+a2﹣3a=0,且c+d+2=0,由于(a﹣c)2+(b+d)2的几何意义:两点A(a,b)、B(c,﹣d)的距离的平方,则为求抛物线y=3x﹣x2上点A和直线x﹣y+2=0上点B的距离的最小值,由于联立方程x﹣y+2=0和y=3x﹣x2上,消去y,得到x2﹣2x+2=0,方程无实数解,故直线和抛物线相离,可设直线y=x+t与抛物线相切,则联立抛物线方程,消去y,得,x2﹣2x+t=0,由判别式为0,即有4﹣4t=0,即t=1,则切线为:y=x+1,由于两直线y=x+2与直线y=x+1的距离为d==,即有抛物线y=3x﹣x2上点A和直线x﹣y+2=0上点B的距离的最小值为,则有(a﹣c)2+(b+d)2的最小值为.故答案为:.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知A={x∈R|x2﹣3x+2≤0},B={x∈R|4x﹣a•2x+9≥0}.(Ⅰ)当a=10时,求A和B;(Ⅱ)若A⊆B.求a的取值范围.【解答】解:(Ⅰ)A={x∈R|x2﹣3x+2≤0}={x|1≤x≤2},当a=10时,B={x∈R|4x﹣10•2x+9≥0}={x|x≤0,或x≥log29},(Ⅱ)A={x|1≤x≤2},A⊆B,则有当1≤x≤2时,2≤2x ≤4,又4x﹣a•2x+9≥0,令2x=t,(2≤t≤4)不等式化为t2﹣at+9≥0对2≤t≤4成立,a≤t+而t+≥2=6,(当且仅当t=3时成立),所以a的取值范围a≤6.19.(14分)已知单位向量与的夹角是钝角,当t∈R时,||的最小值为.(Ⅰ)若,其中λ∈R,求||的最小值;(Ⅱ)若满足()()=,求||的最大值.【解答】解:(Ⅰ)设单位向量与的夹角是α,则||==,∵当t∈R时,||的最小值为,∴|sinα|=,∵单位向量与的夹角是钝角,∴α=,∵,∴||==,∴λ=时,||的最小值为;(Ⅱ)设=(x,y),=(1,0),=(﹣,),∴()•()=,∴,∴||的最大值为+=2.20.(15分)已知△ABC的三内角A,B,C与所对的边a,b,c满足.(Ⅰ)求角A的大小;(Ⅱ)如果用psinA,sinB,sinC为长度的线段能围成以psinA为斜边的直角三角形,试求实数p的取值范围.【解答】解:(Ⅰ)∵△ABC中,∴根据正弦定理,得,即cosA(2sinB﹣sinC)=sinAcosC,化简得2sinBcosA=sinAcosC+cosAsinC=sin(A+C),∵在△ABC中,sin(A+C)=sin(π﹣B)=sinB>0,∴2sinBcosA=sinB,可得cosA=,∵A∈(0,π),∴A=;(Ⅱ)∵用psinA,sinB,sinC为长度的线段能围成以psinA为斜边的直角三角形,∴p2sin2A=sin2B+sin2C,∵A=,得sinA=,∴p2=sin2B+sin2C,可得p2=(sin2B+sin2C),∵sin2B=(1﹣cos2B),sin2C=(1﹣cos2C),C=﹣B,∴p2=[(1﹣cos2B)+(1﹣cos2C)]=(1﹣cos2B)+[1﹣cos(﹣2B)]=sin(2B﹣)+.∵B∈(0,),可得2B﹣∈(﹣,),∴sin(2B﹣),得p2=sin(2B﹣)+∈(1,2]因此,实数p的取值范围是(1,].21.(15分)各项均为正数的数列{a n}的前n项和S n满足2S n=a n2+a n(n∈N*),等比数列{b n}满足b1=,b n+1+b n=(n∈N*).(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若i,j为正整数,且1≤i≤j≤n,求所有可能的乘积a i b j的和.【解答】解:(I)∵各项均为正数的数列{a n}的前n项和S n满足2S n=a n2+a n(n∈N*),∴n=1时,,解得a1=1.当n≥2时,2a n=2(S n﹣S n﹣1)=a n2+a n﹣,化为(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∴a n﹣a n﹣1=1.∴数列{a n}是等差数列,∴a n=1+(n﹣1)×1=n.∵等比数列{b n}满足b1=,b n+1+b n=(n∈N*).设公比为q,则+=,解得q=.∴.(II)∵i,j为正整数,且1≤i≤j≤n,所有可能的乘积a i b j的和=++…++a n b n=++…++.=1﹣+++…+(n﹣1)+=﹣,令S n=1+++…+,S n=++…+,∴=1++++…+﹣=1++++…+﹣=﹣=.∴S n=4﹣.∴所有可能的乘积a i b j的和=4﹣﹣=4﹣.22.(14分)已知函数f(x)=x2+ax+b.(Ⅰ)设b=a,若|f(x)|在x∈[0,1]上单调递增,求实数a的取值范围;(Ⅱ)求证:存在x0∈[﹣1,1],使|f(x0)|≥|a|.【解答】解:数f(x)=x2+ax+b,(1)∵b=a,∴f(x)=x2+ax+a,△=a2﹣4a,x=为对称轴,①当a=0时,f(x)=x2,∴|f(x)|在x∈[0,1]上单调递增,∴a=0符合题意,②当a=4时,f(x)=(x+2)2,∴|f(x)|在x∈[0,1]上单调递增,∴a=4符合题意,③当a>0,a≠4时f(0)=a>0,x=<0,∴|f(x)|在x∈[0,1]上单调递增,∴a>0,a≠4,符合题意,④当a<0时,△=a2﹣4a>0,f(0)=a<0,x0为f(x)=0,的左边的一个零点,x0<0,∴|f(x)|在x∈[x0,]上单调递增,即只需满足1≤a≤﹣2∴a≤﹣2,符合题意,综上a≥0或a≤﹣2,(Ⅱ)证明:函数f(x)=x2+ax+b,|f (1)|=|1+a +b |,|f (﹣1)|=|1﹣a +b |, ∵当1+b ≥0,a ≥0时,f (1)=|1+a +b |≥|a |, 当1+b >0,a <0时,|f (﹣1)|=|1﹣a +b |≥|a |, 当1+b <0,a <0时,|f (1)|=|1+a +b |≥|a |, 当1+b <0,a >0时,|f (﹣1)|=|1﹣a +b |≥|a |, ∴存在x 0∈[﹣1,1],使|f (x 0)|≥|a |.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。

浙江省杭州求是高级中学2013-2014学年高二上学期期中考试数学(理)试卷

浙江省杭州求是高级中学2013-2014学年高二上学期期中考试数学(理)试卷

选择题部分(共30分)一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知球的体积是323π,那么球的半径等于 ( )A.1B.2C.3D.42.-y +1=0的倾斜角为 ( )A.150ºB.120ºC.60ºD.30º3.已知圆13221=+-y x C ):(,圆16)4(222=++y x C :,则圆1C ,2C 的位置关系为( )A .相交B .相离C .内切D .外切 4. 如果直线022=++y ax 与直线023=--y x 平行,则系数aA. -3B.-6C.23-D.325. 右图所示的直观图,其原来平面图形的面积是( ) A.4 B.42 C.22 D.86. 已知某几何体的三视图如右,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A.312cm B.313cm C.316cm D.3112cm7. 下列命题正确的是……………………………( ) A .三点确定一个平面B .经过一条直线和一个点确定一个平面C .四边形确定一个平面D .两条相交直线确定一个平面8.有半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高为 ( )A .r π3B .r 3C .r 233 D .r 23 9.如图长方体中,AB=AD=23, CC 1=2,则二面角 C 1—BD —C 的大小为( )ABcD A 1B 1C 1D 1A.300B.450C.600D.90010. ),(00y x M 为圆)0(222>=+a a y x 内异于圆心的一点,则直线200a y y x x =+与该圆的位置关系是( )A.相切B.相交C.相离D.相切或相交非选择部分(共70分)二、填空题:本大题共6小题,每小题4分,共24分。

11. 已知A (a ,-5)与B(0,10)间的距离是17,则a = .12. 点A(1,3)关于点P(2,5)对称点A'的坐标是 .13. 过A (-3,0)和B (3,0)两点的所有圆中面积最小的圆的方程为 . 14. 已知二面角βα--l 的平面角为45°,有两条异面直线a ,b 分别垂直于两平面,则异 面直线所成角的大小是 .15. 圆022=++++F Ey Dx y x 关于直线04:1=+-y x L 与直线03:1=+y x L 都对称, 则D = ,E = .16. 下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点, 能得出错误!未找到引用源。

浙江省杭州求是高级中学2014-2015学年高二上学期期中

浙江省杭州求是高级中学2014-2015学年高二上学期期中

试卷Ⅰ(选择题,共54分)一、单项选择题(本题共10小题,每小题3分,共30分)1、使带电的金属球靠近不带电的验电器,验电器的箔片张开.下列各图表示验电器上感应电荷的分布情况,正确的是( )2.如图1所示,空间有一电场,电场中有两个点a 和b .下列表述正确的是( )A .该电场是匀强电场B .a 点的电场强度比b 点的大C .a 点的电势比b 点的高D .正电荷在a 、b 两点受力方向相同3、两个相同的金属小球(可看作点电荷),带有同种电荷,且电量之比为1∶7,在真空中相距为r ,两者相互接触后再放回原来的位置上,则它们间的库仑力可能是原来的( )A .7 B.37 C.97 D.1674、空中有两个等量的正电荷q 1和q 2,分别固定于A 、B 两点,DC 为AB 连线的中垂线,C 为A 、B 两点连线的中点,将一正电荷q 3由C 点沿着中垂线移至无穷远处的过程中,下列结论正确的有( )A .电势能逐渐减小B .电势能逐渐增大C .q 3受到的电场力逐渐减小D .q 3受到的电场力逐渐增大5、如图3所示,a 、b 、c 为电场中同一条水平方向电场线上的三点,c 为ab 的中点,a 、b 电势分别为φa =5 V 、φb =3 V .下列叙述正确的是( )A .该电场在c 点处的电势一定为4 VB .a 点处的场强E a 一定大于b 点处的场强E bC .一正电荷从c 点运动到b 点电势能一定减少D .一正电荷运动到c 点时受到的静电力由c 指向a6.两个小灯泡,分别标有“1 A 4 W”和“2 A 1 W”的字样,则它们均正常发光时的电阻阻值之比为()A.2∶1 B.16∶1 C.4∶1 D.1∶167.如图所示,将左边的铜导线和右边的铝导线连接起来,已知截面积S铝=2S铜.在铜导线上取一截面A,在铝导线上取一截面B,若在1 s内垂直地通过它们的电子数相等,那么,通过这两截面的电流的大小关系是()A.I A=I B B.I A=2I B C.I B=2I A D.不能确定8、在正常照射下,太阳能电池的光电转换效率可达23%.单片单晶硅太阳能电池可产生0.6 V 的电动势,可获得0.1 A的电流,则每秒照射到这种太阳能电池上的太阳光的能量是()A.0.24 J B.0.25 J C.0.26 J D.0.28 J9、如图1所示,R4是半导体材料制成的热敏电阻,电阻率随温度的升高而减小,这就是一个火警报警器的电路,电流表是安放在值班室的显示器,电源两极之间接一个报警器,当R4所在处出现火情时,显示器的电流I和报警器两端的电压U的变化情况是()A.I变大,U变小B.I变大,U变大C.I变小,U变大D.I变小,U变小10、某电源电动势6V和内阻为0.5Ω.用此电源与三个阻值均为3 Ω的电阻连接成电路,测得路端电压为4.8 V.则该电路可能为()二、多项选择题(本题共6小题,每小题4分,共24分)11、下列各量中,与检验电荷无关的物理量是()A.电场力F B.电场强度EC.电势差U D.电场力做的功W12、某静电场中的电场线如图188所示,带电粒子在电场中仅受静电力作用,其运动轨迹如图中虚线所示,由M运动到N,以下说法正确的是()A.粒子必定带正电荷B.由于M点没有电场线,粒子在M点不受静电力的作用C.粒子在M点的加速度小于它在N点的加速度D.粒子在M点的动能小于在N点的动能13、如图1108所示为“研究影响平行板电容器电容的因素”的实验装置,以下说法正确的是()A.A板与静电计的指针带的是异种电荷B.甲图中将B板上移,静电计的指针偏角增大C.乙图中将B板左移,静电计的指针偏角不变D.丙图中将电介质插入两板之间,静电计的指针偏角减小14.图示238是某导体的I-U图线,图中倾角为α=45°,下列说法正确的是()A.通过电阻的电流与其两端的电压成正比B.此导体的电阻R=2 ΩC.I-U图线的斜率表示电阻的倒数,所以电阻R=cot 45°=1.0 ΩD.在R两端加6.0 V电压时,每秒通过电阻截面的电量是6.0 C15、某学生做研究串联电路电压特点的实验时,接成如图5所示的电路,接通S后,他将多用电表电压挡的红、黑表笔并联在A、C两点间时,电压表读数为U;当并联在A、B两点间时,电压表读数也为U;当并联在B、C两点间时,电压表读数为零,故障的原因可能是()A.AB段断路B.BC段断路C.AB段短路D.BC段短路16如图2116所示是简化的多用电表的电路图.转换开关S与不同接点连接,就组成不同的电表,已知R3<R4,下面是几位同学对这一问题的议论,请你判断下列说法正确的是()A.S与1或2连接时,多用电表就成了电流表,且前者量程较大B.S与3或4连接时,多用电表就成了电流表,且前者量程较大C.S与3或4连接时,多用电表就成了电压表,且前者量程较大D.S与5连接时,多用电表就成了欧姆表三、填空题(每空2分,共20分)17、长为l的导体棒原来不带电,现将一带电荷量为+q的点电荷放在距棒左端R处,如图191所示.当棒达到静电平衡后,棒上的感应电荷在棒内中点P处产生的电场强度大小等于________,方向为________.18、如图所示,已知电源电动势E=12 V,内阻r=1 Ω,定值电阻R=2 Ω,通过小灯泡的电流为1 A,已知小灯泡的电阻为3 Ω,小型直流电动机的线圈电阻为1 Ω,则电动机两端的电压V 电动机的输入功率W电动机的输出功率W 19、如图1713所示是匀强电场中的一组等势面,每两个相邻等势面间的距离都是25 cm,由此可确定电场强度的方向为及大小为N/C20、用伏安法测量一个定值电阻的电阻值,现有的器材规格如下:A.待测电阻R x(大约100 Ω)B.直流毫安表A1(量程0~10 mA,内阻约100 Ω)C.直流毫安表A2(量程0~40 mA,内阻约40 Ω)D.直流电压表V1(量程0~3 V,内阻约5 kΩ)E.直流电压表V2(量程0~15 V,内阻约15 kΩ)F.直流电源(输出电压4 V,内阻不计)G.滑动变阻器R(阻值范围0~50 Ω,允许最大电流1 A)H.开关一个、导线若干(1)根据器材的规格和实验要求,为使实验结果更加准确,直流毫安表应选________,直流电压表应选________.(2)本实验应采电流表的接法(填内或外)四、计算题(本题共3小题,共26分)21、(8分)如图10所示,在匀强电场中,将带电荷量q=-6×10-6C的电荷从电场中的A点移到B点,克服电场力做了2.4×10-5J的功,再从B点移到C点,电场力做了1.2×10-5J 的功.求:(1)A、B两点间的电势差U AB和B、C两点间的电势差U BC;(2)如果规定B点的电势为零,则A点和C点的电势分别为多少?(3)作出过B点的一条电场线(只保留作图的痕迹,不写做法).22、电路图2913甲所示,若电阻未知,电源电动势和内阻也未知,电源的路端电压U随电流I的变化图线及外电阻的U-I图线分别如图乙所示,求:图2913(1)电源的电动势和内阻;(2)电源的路端电压;(3)电源的输出功率.23、如图11217所示,水平放置的两平行金属板,板长为10 cm,两板相距2 cm.一束电子经加速电场后以v0=4.0×107 m/s的初速度从两板中央水平射入板间,然后从板间飞出射到距板右端L为45 cm、宽D为20 cm的荧光屏上.(不计电子重力,荧光屏中点在两板间的中线上,电子质量m=9.0×10-31 kg,电荷量e=1.6×10-19 C)求:图11217(1)电子飞入两板前所经历的加速电场的电压;(2)若偏转电压为720V,则电子射出偏转电场时的竖直方向的位移为多少?(3)为使带电粒子能射中荧光屏所有位置,两板间所加电压的取值范围.杭州求是高级中学2014学年第一学期高二年级物理学科期中考试答案一、单项选择题(本题共10小题,每小题3分,共30分)二、多项选择题(本题共6小题,每小题4分,共24分)11、答案BC12答案ACD13、BD14、答案AB18答案6V 6W 5W19、水平向右4020、答案(1)C D(2)外四、计算题(本题共3小题,共26分)21、答案(1)4 V-2 V(2)4 V 2 V22、答案(1)4 V 1 Ω(2)3 V(3)3 W解析(1)由题图乙所示UI图线知:电源电动势E=4 V,短路电流I短=4 A,故内阻r=EI短=1 Ω.(2)由图象知:电源与电阻构成闭合回路时对应路端电压U=3 V.(3)由图象知:R=3 Ω,故P出=I2R=3 W.由此看出,电子从偏转电场射出时,不论偏转电压多大,电子都像是从偏转电场的两极板间中线的中点沿直线射出一样,射出电场后电子做匀速直线运动恰好打在荧光屏的边缘上,结合图可得tan θ=D /2L +l 2=D 2L +l U 2=Ddm v 20el (2L +l ),代入所有数据得U 2=360 V 因此偏转电压在-360 V ~360 V 范围内时,电子可打在荧光屏上的任何位置.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年浙江省杭州市求是高中高二(上)期中数学试卷(理科)一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)若直线经过A(0,1),B(3,4)两点,则直线AB的倾斜角为()A.30°B.45°C.60°D.120°2.(4分)下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④D.①和④3.(4分)直线(a+2)x+(1﹣a)y﹣3=0与(a﹣1)x+(2a+3)y+2=0互相垂直,则a的值为()A.﹣1 B.1 C.±1 D.4.(4分)已知m,n是两条不同直线,α,β,γ是三个不同平面,以下有三种说法:①若α∥β,β∥γ,则γ∥α;②若α⊥γ,β∥γ,则α⊥β;③若m⊥β,m⊥n,n⊊β,则n∥β.其中正确说法的个数是()A.0个 B.1个 C.2个 D.3个5.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B.C.D.6.(4分)一座楼房由若干个房间组成,该楼的三视图如图所示.则该楼中最高一层的那个房间在大楼的位置是()A.右前上方B.左前上方C.右后上方D.左后上方7.(4分)若两条不同的直线与同一平面所成的角相等,则这两条直线()A.平行B.相交C.异面D.以上皆有可能8.(4分)已知一个正方形的直观图是一个平行四边形,这个平行四边形的一边的长为4,则该正方形的面积是()A.16 B.64C.16或64 D.以上结论都不对9.(4分)在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S﹣EFG中必有()A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面 D.GD⊥△SEF所在平面10.(4分)已知二面角α﹣l﹣β的大小为50°,P为空间中任意一点,则过点P 且与平面α,β所成的角都是25°的直线的条数为()A.2 B.3 C.4 D.5二、填空题:本大题共6小题,每小题4分,共24分.)11.(4分)已知点M(a,b)在直线3x+4y=15上,则的最小值为.12.(4分)△ABC中,AB=3,BC=4,AC=5,将三角形绕AC边旋转一周所成的几何体的体积为.13.(4分)一个几何体的三视图如图所示,则该几何体的表面积为.14.(4分)一个正方体内接于一个高为,底面半径为1的圆锥,则正方体的棱长为.15.(4分)设l是经过点A(3,5)的任意一条直线,原点到直线l的距离为d,则对应于d取得最大值时的直线l的方程为.16.(4分)已知直平行六面体ABCD﹣A1B1C1D1的各条棱长均为3,∠BAD=60°.长为2的线段MN的一个端点M在DD1上运动,另一个端点N在底面ABCD上运动,则线段MN的中点P的轨迹(曲面)与共一个顶点D的三个面所围成的几何体的体积为.三、解答题:(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)已知直线l经过直线l1:3x+4y﹣2=0与直线l2:2x+y+2=0的交点P.(1)求垂直于直线l3:x﹣4y﹣1=0的直线l的方程;(2)求与直线l4:3x﹣5y+6=0平行的直线l的方程.18.(8分)已知直线l:x+ay+1﹣a=0.(Ⅰ)若l与线段AB有交点,其中A(﹣2,﹣1),B(1,1),求实数a的取值范围;(Ⅱ)若l与x轴的负半轴交M点,交y轴正半轴于N,求△OMN的面积最小时直线l的方程.19.(10分)如图,四棱锥P﹣ABCD的底面是梯形,AD∥BC,BA=AD=BC=2,∠ABC=60°,△PAB是等边三角形,平面PAB⊥平面ABCD,M是PC中点.(1)求证:DM∥平面PAB;(2)求直线BM与平面PAB所成角的大小.20.(10分)如图,侧棱垂直底面的三棱柱ABC﹣A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0).(Ⅰ)当AA1=AB=AC时,求证:A1C⊥平面ABC1;(Ⅱ)若二面角A﹣BC1﹣C的平面角的余弦值为,试求实数t的值.2014-2015学年浙江省杭州市求是高中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)若直线经过A(0,1),B(3,4)两点,则直线AB的倾斜角为()A.30°B.45°C.60°D.120°【解答】解:∵直线经过A(0,1),B(3,4)两点,∴直线AB的斜率k==1,∴直线AB的倾斜角α=45°.故选:B.2.(4分)下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④D.①和④【解答】解:①圆柱是旋转体;②六棱锥是多面体;③正方体是多面体;④球体是旋转体;⑤四面体是多面体.故选:D.3.(4分)直线(a+2)x+(1﹣a)y﹣3=0与(a﹣1)x+(2a+3)y+2=0互相垂直,则a的值为()A.﹣1 B.1 C.±1 D.【解答】解:由题意,∵直线(a+2)x+(1﹣a)y﹣3=0与(a﹣1)x+(2a+3)y+2=0互相垂直∴(a+2)(a﹣1)+(1﹣a)(2a+3)=0∴(a﹣1)(a+2﹣2a﹣3)=0∴(a﹣1)(a+1)=0∴a=1,或a=﹣1故选:C.4.(4分)已知m,n是两条不同直线,α,β,γ是三个不同平面,以下有三种说法:①若α∥β,β∥γ,则γ∥α;②若α⊥γ,β∥γ,则α⊥β;③若m⊥β,m⊥n,n⊊β,则n∥β.其中正确说法的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:对于①,若α∥β,β∥γ,由平面平行的传递性可知,γ∥α,故①正确;对于②,若α⊥γ,β∥γ,则α⊥β,故②正确;对于③,因为n⊊β,令n在β内的射影为n′,因为m⊥β,所以m⊥n′,又m⊥n,所以n∥n′,n′⊂β,n⊊β,所以n∥β,故③正确.故选:D.5.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B.C.D.【解答】解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选:C.6.(4分)一座楼房由若干个房间组成,该楼的三视图如图所示.则该楼中最高一层的那个房间在大楼的位置是()A.右前上方B.左前上方C.右后上方D.左后上方【解答】解:由该楼的正视图知该楼中最高一层的那个房间在大楼的右侧,由该楼的侧视图知该楼中最高一层的那个房间在大楼的后方,由该楼的俯视图知该楼中最高一层的那个房间在大楼的上方,∴该楼中最高一层的那个房间在大楼右后上方.故选:C.7.(4分)若两条不同的直线与同一平面所成的角相等,则这两条直线()A.平行B.相交C.异面D.以上皆有可能【解答】解:如图在正方体ABCD_A1B1C1D1中A1A,B1B与底面ABCD夹角相等,此时两直线平行;A1B1,B1C1与底面ABCD夹角相等,此时两直线相交;A1B1,BC与底面ABCD夹角相等,此时两直线异面;故选:D.8.(4分)已知一个正方形的直观图是一个平行四边形,这个平行四边形的一边的长为4,则该正方形的面积是()A.16 B.64C.16或64 D.以上结论都不对【解答】解:如图所示:①若直观图中平行四边形的边A′B′=4,则原正方形的边长AB=A′B′=4,故该正方形的面积S=42=16.②若直观图中平行四边形的边A′D′=4,则原正方形的边长AD=2A′D′=8,故该正方形的面积S=82=64.故选:C.9.(4分)在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S﹣EFG中必有()A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面 D.GD⊥△SEF所在平面【解答】解:∵在折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,所以SG⊥平面EFG.故选:A.10.(4分)已知二面角α﹣l﹣β的大小为50°,P为空间中任意一点,则过点P 且与平面α,β所成的角都是25°的直线的条数为()A.2 B.3 C.4 D.5【解答】解:首先给出下面两个结论①两条平行线与同一个平面所成的角相等.②与二面角的两个面成等角的直线在二面角的平分面上.图1.(1)如图1,过二面角α﹣l﹣β内任一点作棱l的垂面AOB,交棱于点O,与两半平面于OA,OB,则∠AOB为二面角α﹣l﹣β的平面角,∠AOB=50°设OP1为∠AOB的平分线,则∠P1OA=∠P1OB=25°,与平面α,β所成的角都是25°,此时过P且与OP1平行的直线符合要求,有一条.当OP1以O为轴心,在二面角α﹣l﹣β的平分面上转动时,OP1与两平面夹角变小,不再会出现25°情形.图2.(2)如图2,设OP 2为∠AOB的补角∠AOB′的角平分线,则∠P2OA=∠P2OB=65°,与平面α,β所成的角都是65°.当OP2以O为轴心,在二面角α﹣l﹣β′的平分面上转动时,OP2与两平面夹角变小,对称地在图中OP2两侧会出现25°情形,有两条.此时过P且与OP2平行的直线符合要求,有两条.综上所述,直线的条数共有三条.故选:B.二、填空题:本大题共6小题,每小题4分,共24分.)11.(4分)已知点M(a,b)在直线3x+4y=15上,则的最小值为3.【解答】解:的几何意义是到原点的距离,它的最小值转化为原点到直线3x+4y=15的距离:=3.故答案为3.12.(4分)△ABC中,AB=3,BC=4,AC=5,将三角形绕AC边旋转一周所成的几何体的体积为.【解答】解:如图所示:将此三角形绕AC边旋转一周所成的几何体为两个对底面的上下两个圆锥,其底面半径为三角形斜边上的高r==.∴V==.故答案为.13.(4分)一个几何体的三视图如图所示,则该几何体的表面积为18π+54.【解答】解:由三视图及题设条件知,此几何体为一个长方体和两个球组成的组合体,其中长方体的长宽高分别为:6,3,1,则长方体的表面积为:2(6×3+6×1+3×1)=54,球的半径r=,则每个球的表面积均为:4πr2=9π,故该组合体的表面积为:9π+9π+54=18π+54,故答案为:18π+5414.(4分)一个正方体内接于一个高为,底面半径为1的圆锥,则正方体的棱长为.【解答】解:如图,过正方体的体对角线作圆锥的轴截面,设正方体的棱长为x,则OC=x,∴=,解得x=,∴正方体的棱长为,故答案为:.15.(4分)设l是经过点A(3,5)的任意一条直线,原点到直线l的距离为d,则对应于d取得最大值时的直线l的方程为3x+5y﹣34=0.【解答】解:当所求直线与点A与原点的连线垂直时d取得最大值,由=可知所求直线的斜率为,故可得直线的方程为y﹣5=(x﹣3),化为一般式可得3x+5y﹣34=0,故答案为:3x+5y﹣34=016.(4分)已知直平行六面体ABCD﹣A1B1C1D1的各条棱长均为3,∠BAD=60°.长为2的线段MN的一个端点M在DD1上运动,另一个端点N在底面ABCD上运动,则线段MN的中点P的轨迹(曲面)与共一个顶点D的三个面所围成的几何体的体积为.【解答】解:|MN|=2,则|DP|=1,则点P轨迹是以点D为球心,半径r=1的球,则球的体积为,∵,只取半球的,则;故答案为.三、解答题:(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)已知直线l经过直线l1:3x+4y﹣2=0与直线l2:2x+y+2=0的交点P.(1)求垂直于直线l3:x﹣4y﹣1=0的直线l的方程;(2)求与直线l4:3x﹣5y+6=0平行的直线l的方程.【解答】解:(1)∵直线l经过直线l1:3x+4y﹣2=0与直线l2:2x+y+2=0的交点P.∴解方程组,得P(﹣2,2),设垂直于直线l3:x﹣4y﹣1=0的直线l的方程为4x+y+c=0,把P(﹣2,2)代入,解得c=6.∴直线l的方程为4x+y+6=0.(2)设与直线l4:3x﹣5y+6=0平行的直线l的方程为3x﹣5y+c=0把P(﹣2,2)代入,解得c=16.∴直线l的方程为3x﹣5y+16=0.18.(8分)已知直线l:x+ay+1﹣a=0.(Ⅰ)若l与线段AB有交点,其中A(﹣2,﹣1),B(1,1),求实数a的取值范围;(Ⅱ)若l与x轴的负半轴交M点,交y轴正半轴于N,求△OMN的面积最小时直线l的方程.【解答】解:(Ⅰ)直线l过定点P(﹣1,1),K PA=2,K PB=0,要使l满足条件,必须当a=0时,满足条件;当a≠0时,l的斜率或即a>0或,综上得;(Ⅱ),依题意有,而,∵a<0,∴,即,当a=﹣1时,面积的最小值为2,此时直线的方程为x﹣y+2=0.19.(10分)如图,四棱锥P﹣ABCD的底面是梯形,AD∥BC,BA=AD=BC=2,∠ABC=60°,△PAB是等边三角形,平面PAB⊥平面ABCD,M是PC中点.(1)求证:DM∥平面PAB;(2)求直线BM与平面PAB所成角的大小.【解答】(1)证明:取PB中点N,连NM,NA,∵,∴NM∥AD,NM=AD,∴四边形NMDA为平行四边形,从而DM∥AN,又AN⊂平面PAB,DM⊄平面PAB,∴DM∥平面PAB;(2)解:连接AC,则∵AB=2,BC=4,∠ABC=60°∴AC==2∴AC⊥AB∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,∴AC⊥平面PAB取PA中点G,连接MG,则MG∥AC,MG=,∴MG⊥平面PAB连接GB,则∠MBG为直线BM与平面PAB所成角在正三角形PAB中,BG=AB=∴tan∠MBG==1∴∠MBG=45°,即直线BM与平面PAB所成角为45°.20.(10分)如图,侧棱垂直底面的三棱柱ABC﹣A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0).(Ⅰ)当AA 1=AB=AC时,求证:A1C⊥平面ABC1;(Ⅱ)若二面角A﹣BC1﹣C的平面角的余弦值为,试求实数t的值.【解答】(Ⅰ)证明:∵AA1⊥面ABC,∴AA1⊥AC,AA1⊥AB.又∵AB⊥AC,∴分别以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系.…(1分)则A(0,0,0),C1(0,1,1),B(1,0,0),C(0,1,0),A1(0,0,1),∴,∴,,…(2分)∴,.…(3分)又∵AC1∩AB=A∴A1C⊥平面ABC1.…(4分)(Ⅱ)解:分别以AB,AC,AA1所在直线为x,y,z轴建立空间直角坐标系.则A(0,0,0),C1(0,t,3﹣2t),B(t,0,0),C(0,t,0),A1(0,0,3﹣2t),∴,,.…(6分)设平面ABC1的法向量=(x,y,z),则,令z=t,则=(0,2t﹣3,t).…(8分)同理可求平面BCC1的法向量=(1,1,0).…(10分)设二面角A﹣BC1﹣C的平面角为θ,则有|cosθ|=||==.化简得5t2﹣16t+12=0,解得t=2(舍去)或t=.所以当t=时,二面角A﹣BC1﹣C的平面角的余弦值为.…(12分)。

相关文档
最新文档