线性相关与回归
第12章 线性相关与回归

所以当计算出样本相关系数r后,
应对r是否来自ρ=0的总体作假设
检验,以判断两变量的总体是否有 直线相关关系。常用的假设检验方 法为t检验,其t值的计算公式为:
r 0 r tr 2 sr 1 r n2 n2
例10.2 对例10.1求得的r值作假
设检验。
1)建立假设并确定检验水准
如果我们主要目的是分析两变 量间是否存在直线相关关系,这时 我们就应进行x和y之间的线性相关
分析。如:我们要分析女大学身高
与体重之间的关系,通过散点图发
现两者有直线趋势,可对两个变量
进行线性相关分析。
直线相关(linear correlation): 是指两变量间存在的关系为直线关 系。又称为简单相关(simple
230 .455 r 0.8012 1000 .909 82.727
即表示男青年身高与前臂长之间存在正 相关关系。但还需作假设检验
三、相关系数的假设检验
相关系数r是根据样本资料计算
出来的,它是总体相关系数ρ的估
计值。若从ρ=0的总体中进行随机
抽样,抽取的样本相关系数也可能
不等于0,这是抽样误差所致。
(3,8365)和(21,36.06)两点,就 可做出本例的直线回归方程的图示。
ˆ 注意:直线必须通过( x ,y )和
纵轴上(0,a)两点,因此,这两点可
以用来核对回归直线绘制是否正确。
四、回归系数的假设检验
抽样研究中,计算出的回归系数 b为样本回归系数,故应考虑假设检 验的问题。即使我们从x、y的总体
r
( x x )( y y ) ( x x ) ( y y)
22Biblioteka l xy l xxl yy
线性回归与相关分析

线性回归与相关分析一、引言线性回归和相关分析是统计学中常用的两种数据分析方法。
线性回归用于建立两个或多个变量之间的线性关系,而相关分析则用于衡量变量之间的相关性。
本文将介绍线性回归和相关分析的基本原理、应用场景和计算方法。
二、线性回归线性回归是一种建立自变量和因变量之间线性关系的统计模型。
它的基本思想是通过找到最佳拟合直线来描述自变量与因变量之间的关系。
线性回归模型可以表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1分别表示截距和斜率,ε表示误差项。
线性回归的目标是最小化观测值与模型预测值之间的差异,常用的优化方法是最小二乘法。
线性回归的应用场景非常广泛。
例如,我们可以利用线性回归来分析广告费用和销售额之间的关系,或者分析学生学习时间和考试成绩之间的关系。
线性回归还可以用于预测未来趋势。
通过建立一个合适的线性回归模型,我们可以根据历史数据来预测未来的销售额或者股票价格。
在计算线性回归模型时,我们首先需要收集相关的数据。
然后,可以使用统计软件或者编程语言如Python、R等来计算最佳拟合直线的参数。
通过计算截距和斜率,我们可以得到一个最佳拟合线,用于描述自变量和因变量之间的关系。
此外,我们还可以借助评价指标如R 平方来衡量模型的拟合程度。
三、相关分析相关分析是一种用于衡量两个变量之间相关性的统计方法。
它可以帮助我们判断变量之间的线性关系的强度和方向。
相关系数是表示相关性的一个指标,常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于测量两个连续变量之间的线性关系,其取值范围在-1到1之间。
当相关系数接近1时,表示两个变量呈正相关,即随着一个变量增加,另一个变量也增加。
当相关系数接近-1时,表示两个变量呈负相关,即随着一个变量增加,另一个变量减小。
当相关系数接近0时,表示两个变量之间没有线性关系。
斯皮尔曼相关系数适用于测量两个有序变量之间的单调关系,其取值范围也在-1到1之间。
相关和回归的数学模型区别和联系

相关和回归的数学模型区别和联系在统计学和数据分析领域,相关和回归是两种常用的数学模型,用以揭示变量之间的关系。
本文将详细阐述相关和回归的数学模型的区别与联系,帮助读者更好地理解这两种模型的应用场景和特点。
一、相关和回归的数学模型概述1.相关分析相关分析是指衡量两个变量之间线性关系紧密程度的统计分析方法。
常用的相关系数有皮尔逊相关系数和斯皮尔曼等级相关系数。
相关分析主要用于描述两个变量之间的相关性,但不能确定变量间的因果关系。
2.回归分析回归分析是指研究一个或多个自变量(解释变量)与一个因变量(响应变量)之间线性或非线性关系的方法。
根据自变量的个数,回归分析可分为一元回归和多元回归。
回归分析可以用于预测因变量的值,并分析自变量对因变量的影响程度。
二、相关和回归的数学模型区别1.目的性区别相关分析的目的是衡量两个变量之间的线性关系程度,但不能判断因果关系;回归分析的目的则是建立变量间的预测模型,分析自变量对因变量的影响程度,并预测因变量的值。
2.数学表达区别相关分析通常使用相关系数(如皮尔逊相关系数)来表示两个变量之间的线性关系程度;回归分析则使用回归方程(如线性回归方程)来描述自变量与因变量之间的关系。
3.结果解释区别相关分析的结果是一个介于-1和1之间的数值,表示两个变量之间的线性相关程度;回归分析的结果是一组回归系数,表示自变量对因变量的影响程度。
三、相关和回归的数学模型联系1.研究对象相同相关分析和回归分析都是研究两个或多个变量之间关系的统计分析方法,可以揭示变量间的相互作用。
2.数据类型相似相关分析和回归分析通常应用于数值型数据,且都需要满足一定的数据分布特征,如正态分布、线性关系等。
3.相互补充在实际应用中,相关分析和回归分析可以相互补充。
通过相关分析,我们可以初步判断变量间是否存在线性关系,进而决定是否采用回归分析建立预测模型。
四、总结相关和回归的数学模型在研究变量关系方面有着广泛的应用。
第13章 简单线性回归与相关

b ( X X )(Y Y ) lXY
(X X)2
l XX
a Y bX
§ (1)方差分析
§ 其原理与前面的单因素方差分析相同,统计量F
的计算公式为,
F
SS回归 / 回归 SS 残差 / 残差
MS回归 MS 残差
§ (2)t检验 § 检验统计量t的计算公式为,
t b0 Sb
§ 其中Sb为回归系数的标准误,
Sb
SYX l XX
§ 3.回归分析的统计预测 § 所谓预测就是将预报因子(自变量)代入回归
方程对预报量进行估计。
§ (1)总体均数的置信区间
§ 2.线性相关系数( Pearson积矩相关系数) 线性相关,又称简单相关,用来定量描述两个变 量间线性关系密切程度和相关方向的统计指标 ,适用于二元正态分布资料。
相关系数的计算公式为:
r (X X )(Y Y ) ( X X )2 (Y Y )2
§ 相关系数的统计检验是计算t统计量,计算公式 为:
§ (6)分层资料盲目合并时易出现假象。
分析实例
§ 对某省9个地区水质的碘含量及其甲状腺肿的患 病率作调查后得到一组数据,如图所示,试分 析不同地区的甲状腺肿的患病率高低与本地区 水质的碘含量有无关联?数据文件见例13-1.sav 。
§利用散点图观察两变量之间有无相关趋势。
1.操作步骤与界面说明
§ 距离分析可以计算距离测量指标或者相似性测 量指标 。
§ 1.距离测量指标
§ (1)区间变量(连续变量):默认为Euclidean 距离(欧氏距离) ;有Euclidean距离 、平方 Euclidean距离 、块等。
线性相关与回归(简单线性相关与回归、多重线性回归、Spearman等级相关)

何平平
北大医学部流行病与卫生统计学系 Tel:82801619
线性相关与回归
内容:
多重线性回归分析 简单线性相关与回归
特例
Spearman等级相关
一、简单线性相关与回归 (一)直线回归(linear regression)
1.定义:用直线方程表达X(自变量,independent variable;解释变量,explanatory variable;预测变量, predictor variable )和Y (因变量,dependent variable;响应变量,response variable;结局变量, outcome variable )之间的数量关系。
ˆ 0.05/ 2, n 2 Y Y
(二)直线相关(linear correlation)
1.定义
描述具有直线关系的两个变量之间的相互关系。 r:相关系数,correlation coefficient 用来衡量有直线关系的两个变量之间相关的密切程度和 方向。-1r1 r>0,正相关;r=1为完全正相关 r <0,负相关;r=-1为完全负相关
变量说明:X:体重指数;Y:收缩压(mmHg)。 1.绘制散点图
散点图显示:收 缩压与体重指数 之间有线性相关 趋势,因此可以 进一步做直线回 归与相关
2.直线回归与相关分析
Regression, 回归
Linear, 线性
2.直线回归与相关分析
因变量
自变量
相关 系数r
调整r2 决定 系数r2
F值
4.b的假设检验: b为样本回归系数,由于抽样误差, 实际工作中b一般都不为0。要判断直线回归方程是否成 立,需要检验总体回归系数是否为0。 H0:=0 H1:0 方法一:t检验
相关系数和回归系数

相关系数和回归系数经济学的发展历程中出现了许多概念和理论,其中最重要的两个概念之一就是相关系数和回归系数。
相关系数主要用来描述两个变量之间的线性关系,而回归系数则可以用来描述两个变量之间的非线性关系。
这两个概念极大地推进了经济分析的发展,并在经济学中得到广泛的应用。
相关系数是一个度量两个变量线性关系的量度。
通常,在进行经济分析时,我们会研究不同变量之间的关系,因此相关系数就变得非常重要。
相关系数可以客观地反映出变量之间的线性关系,而相关系数的值可以从-1到1之间变化,值越大,变量之间的线性关系就越强。
通常情况下,如果相关系数的值大于0.7,则可以说变量之间存在显著正相关;如果相关系数的值等于0,则可以说变量之间不存在显著相关;如果相关系数的值小于0.3,则可以说变量之间存在显著负相关。
回归系数是一个度量两个变量之间非线性关系的量度。
在经济分析中,回归系数可以客观地反映出变量之间的非线性关系,一般来说,当变量之间的非线性关系越强,回归系数值就越大。
回归系数值一般取值范围是-1到1之间的实数,正值表示变量之间存在正相关,负值则表示变量之间存在负相关。
回归系数的值越大,则说明两个变量之间的非线性关系越强,值越小,则说明变量之间的关系越弱。
相关系数和回归系数对于经济分析有重要的作用,它们可以帮助我们客观地反映出变量之间的关系,从而帮助我们更好地了解经济中的现象。
它们常常被用于预测未来的经济趋势,也经常被用来检验经济理论的正确性。
相关系数和回归系数的计算也很容易,有许多计算工具可供使用,因此,对于经济学家来说,它们也是必备的分析工具。
总之,相关系数和回归系数是经济学中重要的概念,它们不仅可以帮助我们客观地反映出变量之间的关系,而且还可以用来预测未来的经济趋势,因此,它们非常有价值,经济学家们应该加以重视。
相关系数与回归系数的区别与联系

相关系数与回归系数的区别与联系一、引言在统计学中,相关系数与回归系数是两个非常重要的概念。
相关系数(r)是用来衡量两个变量之间线性关系强度的指标,而回归系数(β)则是用来表示自变量对因变量影响的程度。
尽管两者都与线性关系有关,但在实际应用中,它们有着明显的区别。
本文将阐述这两者的概念、计算方法以及它们在统计分析中的联系与区别。
二、相关系数的定义与计算1.相关系数的定义相关系数(r)是一个介于-1和1之间的数值,它反映了两个变量之间线性关系的强度和方向。
相关系数的绝对值越接近1,表示两个变量之间的线性关系越强;接近0时,表示两个变量之间几乎不存在线性关系。
2.相关系数的计算方法相关系数的计算公式为:r = ∑((x_i-平均x)*(y_i-平均y)) / (√∑(x_i-平均x)^2 * ∑(y_i-平均y)^2) 其中,x_i和y_i分别为变量X和Y的第i个观测值,平均x和平均y分别为X和Y的平均值。
三、回归系数的定义与计算1.回归系数的定义回归系数(β)是指在线性回归分析中,自变量每变动一个单位时,因变量相应变动的量。
回归系数可用于预测因变量值,从而揭示自变量与因变量之间的线性关系。
2.回归系数的计算方法回归系数的计算公式为:β= ∑((x_i-平均x)*(y_i-平均y)) / ∑(x_i-平均x)^2其中,x_i和y_i分别为变量X和Y的第i个观测值,平均x和平均y分别为X和Y的平均值。
四、相关系数与回归系数的关系1.两者在统计分析中的作用相关系数和回归系数都是在统计分析中衡量线性关系的重要指标。
相关系数用于衡量两个变量之间的线性关系强度,而回归系数则用于确定自变量对因变量的影响程度。
2.两者在实际应用中的区别与联系在实际应用中,相关系数和回归系数往往相互关联。
例如,在进行线性回归分析时,回归系数β就是相关系数r在X轴上的投影。
而相关系数r则可以看作是回归系数β的平方。
因此,在实际分析中,我们可以通过相关系数来初步判断两个变量之间的线性关系,进而利用回归系数进行更为精确的预测。
统计学中直线相关与回归的区别与联系

统计学中直线相关与回归的区别与联系在统计学中,直线相关和回归是两个相关的概念,但又有一些区别和联系。
区别:
1. 定义:直线相关是指两个变量之间的线性关系,即随着一个变量的增加,另一个变量也以一定的比例增加或减少。
回归分析是一种统计方法,用于建立一个或多个自变量与因变量之间的关系模型。
2. 目的:直线相关主要关注变量之间的关系和相关程度,通过相关系数来衡量。
而回归分析旨在通过建立数学模型来预测或解释因变量的变化,以及评估自变量对因变量的影响。
3. 变量角色:在直线相关中,两个变量没有明确的自变量和因变量的区分,它们之间的关系是对称的。
而在回归分析中,通常有一个或多个自变量作为预测因变量的因素。
联系:
1. 线性关系:直线相关和回归分析都假设变量之间存在线性关系,即可以用直线或线性模型来描述它们之间的关系。
2. 相关系数:直线相关中使用相关系数来度量变量之间的相关程度。
回归分析中也使用相关系数,但更多地关注回归模型的参数估计和显著性检验。
3. 数据分析:直线相关和回归分析都是常用的数据分析方法,在实际应用中经常同时使用。
直线相关可以帮助我们了解变量之间的关系和趋势,而回归分析可以进一步建立模型和进行预测。
总之,直线相关和回归分析是统计学中两个相关但又有区别的概念。
直线相关关注变量之间的线性关系和相关程度,而回归分析则更关注建立模型和预测变量之间的关系。
在实际应用中,它们常常相互补充使用,以帮助我们理解和解释数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/24
4
Regression 释义
210=1024
2020/5/24
5
2020/5/24
6
小插曲——F.Galton
Galton(1822-1911)是一位人类学家,著名生物 学家达尔文的表兄弟,早年学医,曾在剑桥大学念书。 尽管他的数学不是很好,但在人类学和优生学研究中 萌发的统计学思想,对生物统计的发展产生了深远影 响,如“回归”、 “双变量正态分布”的概念等。 他没有子女,但一生写了9部书,发表了近200篇论文。 1860年当选英国皇家学会会员,1909年被封为爵士, 1910年获得英国皇家学会Copley奖。
2020/5/24
14
★ 正相关 ★负相关 ★称零相关
★ 完全正相关 ★完全负相关
2020/5/24
15
线性相关系数
线性相关系数 (linear correlation coeffiecient) , 简称相关系数。或 Pearson相关系数
相关系数是描述两个变量之间线性相关的程度 和相关方向的统计指标。样本相关系数用 r 表示, 总体相关系数用ρ表示。
11
例:考察身高与体重的伴随关系
体重
散点图
身高
问题:通过散点图可以得出什么结论?
2020/5/24
12
线性相关的概念
图中不是每个身材较高的对象必有较重的体 重,但大多数对象的体重Y与其身高X的变化呈 一种伴随增大或减小的直线变化趋势,这种现象 称为直线相关 。
刻画两个随机变量之间线性相关程度称为 线性相关(linear correlation)
2020/5/24
16
相关系数的特点:
-1 ≤ r ≤ 1 r>0为正相关 r<0为负相关 r=0为零相关或无相关
|r| < 0.4 为低度线性相关; 0.4≤ |r| <0.7为中度线性相关; 0.7≤|r| <1.0为高度线性相关。
2020/5/24
17
相关系数的计算公式
lxx (x 的离均差平方和 ) lyy (y 的离均差平方和 ) lxy (x和y的离均差乘积和,简称乘积和)
编号
1 2 3 4 5 6 7 8 9 10 11 合计
身高(cm) (X) 170 173 160 155 173 188 178 183 180 165 166 1891
前臂长(cm) (Y) 47 42 44 41 47 50 47 46 49 43 44 500
2020/5/24
7
Karl Pearson (英,1857~1936)是 Francis Galton 的得 意门生,他开创了统 计方法学。他对统计 学的主要贡献:变异 数据的处理、分布曲 线的选配、卡方检验 的提出、回归与相关 的发展。
2020/5/24
Karl Pearson
8
基本内容
➢ 第一节 线性相关 ➢ 第二节 线性回归 ➢ 第三节 相关与回归的关系 ➢ 第四节 等级相关 (自学)
➢ 有的现象之间因果不清,只是伴随关系,例如哥哥的身 高和弟弟的身高之间,就不能说有因果关系。
相关与回归就是用于研究和解释两个变量之间相互关系的。
2020/5/24
2
历史背景:
十九世纪英国人类学家 F.Galton首次在《自 然遗传》一书中,提出并阐明了“相关”和“相 关系数”两个概念,为相关论奠定了基础。其后, 他和英国统计学家 Karl Pearson对上千个家庭的身 高、臂长、拃长(伸开大拇指与中指两端的最大 长度)做了测量,并做成散点图。
试问:为何说是单变量? 因为每种类型只牵涉一个变量。
2020/5/24
1
医学上,许多现象之间(即变量之间)都有相互联系,
例如:身高与体重、父亲身高与儿子身高、体温与脉搏、 产前检查与婴儿体重、乙肝病毒与乙肝等。 在这些有关系的现象中,它们之间联系的程度和性质也 各不相同。比如:
➢ 乙肝病毒感染是前因,得了乙肝是后果,乙肝病毒和乙 肝之间是因果关系;
发现:
2020/5/24
3
儿子身高(Y,英寸)与父亲身高(X,英寸) 存在线性关系:
Yˆ 33.73 0.516X
即高个子父代的子代在成年之后的身高平均来 说不是更高,而是稍矮于其父代水平,而矮个子 父代的子代的平均身高不是更矮,而是稍高于其 父代水平。Galton将这种趋向于种族稳定的现象 称之“回归”。
2020/5/24
13
线性相关的类型
X和Y伴随同时上升或伴随下降称为线性正相关 (Linear Positive Correlation)
X与Y的反方向伴随直线变化趋势称为线性负相关 (linear negative correlation)
X和Y无任何直线伴随变化趋势,则称为零相关 (零线性相关) 。
前臂长,以便更好对男青年的发育情况进行评价。 因此随机抽取了11名男青年组成样本,分别测量 每个人的身高和前臂长。见表10-1 • 问男青年的身高与前臂长之间的相关系数是多少? 是正相关还是负相关?
• 分析问题:总体-样本、 目的、变量、关系
2020/5/24
19
表10-1 11名男青年身高与前臂长的测量结果(cm)
第2、第3、第5和第9章介绍了计量资料单变量的 统计描述与统计推断。比如:
计算140名成年男子红细胞数的平均指标与异指 标。 (X , S)
比较药物+饮食疗法(试验组)与仅药物疗法(对照组) 降低糖尿病人的空腹血糖值有无差别。 t 检验
研究白血病时,比较四组鼠脾DNA含量有无差别。
秩和检验
2020/5/24
9
第一节 线性相关
2020/5/24
10
线性相关的掌握要点
线性相关描述了什么问题? 线性相关分析的具体步骤是什么? 线性相关分析对资料有什么要求? 如何对这些要求进行检查或检验? 仅用样本线性相关系数能否说明相关程度? 总体相关系数非常接近1,能否说明Y=X?
2020/5/24
r ( X X )(Y Y ) lXY
( X X )2 (Y Y )2
lXX lYY
l XX
X2
( X )2
n
lYY
Y 2
(Y )2
n
( X )(Y )
l XY XY
n
2020/5/24
18
上一张 下一张 首 页 退 出
实例分析
• 健康调查发现男青年身高与他的前臂长有关; • 于是设想,通过测量男青年的身高,可以预测其