基于ANSYS交流接触器电磁机构的谐波仿真分析

合集下载

基于ANSYS电磁继电器触簧系统的随机振动分析

基于ANSYS电磁继电器触簧系统的随机振动分析

基于ANSYS电磁继电器触簧系统的随机振动分析电磁继电器的触簧系统包括触点及簧片,由电磁系统驱动转换机构实现继电器触点与簧片间的闭合与开断。

在设计过程中,触点压力设计的合理性往往需要通过后期装配完成后试验验证来确定。

因此在设计过程中,应用仿真软件进行仿真与分析研究,先从理论设计上满足设计要求的前提下进行加工,既缩短了继电器的研发周期也节约了加工成本。

标签:电磁继电器触点压力预应力仿真分析PSD1引言电磁继电器做为最常见的继电器之一,其设计方法,设计理念在现阶段已较为成熟。

但是在设计过程中,触点与簧片间的压力是设计者不得不考虑的一个因素之一,其触点压力大小一般都是通过设计者的经验者所得,或者通过国外样品的测量所得,并未形成具体的设计思路与方法。

当触点接触压力太小时,触点与簧片间接触电阻偏大,并在随机振动及冲击条件下容易产生瞬断甚至脱落等现象造成继电器的失效;当触点接触压力太大时,电磁系统的功耗偏大造成发热高,导致漆包线损坏,同时也加重触点与簧片间的磨损,当触点间磨损的量大于设计的超距时,触点与簧片之间将无法再有效可靠地接触造成继电器的失效。

因此触点与簧片间的接触压力大小的设计,是在满足继电器触点间接触电阻的同时也能满足振动冲击等环境条件的要求。

本文通过一种特种电磁继电器的设计,简述随机振动仿真分析在继电器触点与簧片的接触压力设计中的作用。

2 研究对象本文研究的对象为一特种继电器,其内部的核心的组件结构如图所示1所示。

为了便于观察内部结构,对组件的陶瓷部分进行了局部剖。

其转换的工作原理为轭铁底部有一弹簧,在管座内部线圈未施加激励时,由弹簧作用于轭铁向上的力,通过转换结构保证簧片与触点之间可靠接触;同理,当内部线圈施加激励时,电磁吸力大于弹簧的反力,保证簧片与另一触点可靠接触。

1-接线柱、2-陶瓷罩、3-转换结构、4-簧片、5-触点、6-轭铁、7-管座图1 继电器内部组件结构示意图该继电器与触簧系统相关的主要技术指标为:(1)触点形式:SPDT;(2)最大连续电流:10A;(3)接触电阻:≤1.0Ω;(4)机械寿命:100万次;(5)振动:10g,50~500Hz;(6)冲击:10g,11ms,1/2s。

Ansys电机电磁震动和噪声分析流程

Ansys电机电磁震动和噪声分析流程

Maxwell 分析模型介绍
分析模型为 Prius 电机的二维分析模型。 瞬态分析模型的各项设置已经设置好。 如需要详细了解如何设置电机的瞬态分析模型,请查看其他相关培训文件。
定子铁心
Phase C Phase B 转子 轴 Phase A Phase C
磁钢
Maxwell 模型修改
为了精确分析定子齿部的径向电磁力,并将力密度的分布耦合到后续的谐响应分 析中。需要将定子齿部“分割”出来,并施加更细密的网格剖分。
调整仿真时间与步长
双击 Projects 管理窗口上的 Analysis>Setup1 设置仿真停止时间 Stop Time 为10ms 设置时间步长 Time Step 为 50us 点击 OK
激活瞬态电磁场与谐响应分析的耦合分析选项
激活瞬态电磁场与谐响应分析耦合分析选项 点击菜单Maxwell2D > Enable Harmonic Force Calculation 在弹出的Enable Harmonic Force Coulping 窗口中, 1. 选中Enable Force Calculation, 2. 在每一个齿尖模型的选择框中,打勾如下图。 3. 点击 OK 。 Maxwell将会在最后一个完整周期, 计算每一个选中物体的瞬时电磁力, 并通过傅里叶分析,转化成频域的 电磁力数据,频率范围是从直流到 DC to 1/(2*dT).
在弹出的 Element Length Based Refinement 窗口中, 1. 将 Name 改成 Length_ToothTips 2. Restrict length of Elements: 3. Maximum Length of Elements: 0.25 mm 4. 点击 OK 改善曲线网格剖分 选中所有的物体( Ctrl + A) 点击菜单 Maxwell 2D > Mesh Operations > Assign > Surface

基于ANSYS软件的接触问题分析及在工程中的应用

基于ANSYS软件的接触问题分析及在工程中的应用

基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。

接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。

ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。

本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。

二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。

解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。

数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。

ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。

接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。

三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。

用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。

2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。

接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。

3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。

可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。

四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。

ANSYS电磁场分析指南第七章3-D谐波磁场分析棱边单元法19页word文档

ANSYS电磁场分析指南第七章3-D谐波磁场分析棱边单元法19页word文档

第七章3-D谐波磁场分析(棱边单元方法)7.1 用棱边元方法进行谐波分析3-D谐波磁场分析(棱边元方法)与静态分析的特点基本相同,但前者只支持线性材料特性分析。

电阻和相对磁导率可以是正交各向异性,也可以与温度相关。

谐波分析仍使用SOLID117单元。

详见《ANSYS单元手册》和《ANSYS理论手册》。

7.1.1 物理模型区域的设置和特性ANSYS程序提供了几个选择用于处理3-D磁场分析中的不同的终端条件,以下图示导体的不同的终端条件:7.1.2 速度效应在交流(AC)激励下,运动导体的某些特殊情况是可以求解电磁场的。

速度效应在静态、谐波和瞬态分析中都有效。

第2章“二维静态磁场分析”中讨论了运动导体分析的应用情况和限制条件。

对于3D问题,设置单元KEYOPT选项和实常数的过程相似于2D谐波分析。

在谐波分析中,所加速度为常数,不作正弦变化(线圈或场激励为正弦变化),且垂直于运动方向的运动体截面应保持常数。

通过设置单元的KEYOPT(2)=1来激活速度效应,带运动导体的3D谐波分析同样需要运动导体区域具有时间积分电势自由度(VOLT),这通过设置单元的KEYOPT(1)=1(AZ和VOLT自由度)来实现。

运动导体分析中能设置的实常数如下表所示:可用谐波分析来仿真静场激励下的运动导体,为了表示静场,需将谐波的频率设置得很低,通常,谐波频率小于0.0001HZ就能产生准静态解,准静态解的结果是存放在实部里的。

如果使用波前法求解,谐波的频率可以低到10-8HZ,而对于迭代解法,过低的频率会导致求解不收敛。

7.2 3-D谐波磁场分析(棱边元方法)的步骤1.在GUI菜单过滤中选定Magnetic-Edge项2.定义任务名和题目命令:/FILNAME和/TITLEGUI:Utility Menu>File>Change JobnameUtility Menu>File>Change Title3.进入ANSYS前处理器命令:/PREP7GUI:Main Menu>Preprocessor4.选择SOLID117单元命令:ET,,solid117GUI: Main Menu>Preprocessor>Element Type>Add/Edit/Delete5.选择SOLID117单元选项对导电区用AZ-VOLT自由度,对不导电区用AZ自由度.命令:KEYOPTGUI:Main Menu>Preprocessor>Element Type>Add/Edit/Delete6.定义材料特性对涡流区必须说明电阻值RSVX,其它详见“二维静态磁场分析”一章7.建立模型对建立几何模型和划分网格的描述,详见“ANSYS建模与分网指南”8.赋予特性命令:VATTGUI: Main menu>Preprocessor>-Attributes-Define9.划分网格(用Mapped网格)命令:VMESHGUI:Main Menu>Preprocessor>-Meshing-Mesh>-Volumes-Mapped 10.进入求解器命令:/SOLUGUI:Main Menu>Solution11.给模型边界加磁力线平行和磁力线垂直边界条件命令:DAGUI:Main Menu>Solution>-Loads-Apply>-Magnetic-Boundary用AZ=0来模拟磁力线平行边界条件,磁力线垂直边界条件自然发生,无需说明。

ansys谐波响应分析程序

ansys谐波响应分析程序

谐响应分析步骤full(完全法)允许定义各种类型的荷载;预应力选项不可用;reduced(缩减法)可以考虑预应力;只能施加单元荷载(压力,温度等)mode superpos'n(模态叠加法)通过对模态分析的道德振型(特征向量)乘以因子并求和来计算出结果的响应,可以包含预应力,可以考虑振型阻尼,不能施加非零位移1 Full法步骤第1步:载入模型Plot>V olumes第2步:指定分析标题并设置分析范畴1 设置标题等Utility Menu>File>Change TitleUtility Menu>File> Change JobnameUtility Menu>File>Change Directory2 选取菜单途径Main Menu>Preference ,单击Structure,单击OK第3步:定义单元类型Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框, 单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。

第4步:指定材料性能选取菜单途径Main Menu>Preprocessor>Material Props>MaterialModels。

出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。

第5步:划分网格选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。

ANSYS电磁场分析指南第九章3D静态、谐波和瞬态分析节点法

ANSYS电磁场分析指南第九章3D静态、谐波和瞬态分析节点法

ANSYS电磁场分析指南第九章3D静态、谐波和瞬态分析节点法第九章3-D静态、谐波和瞬态分析(节点法)9.1节点法(MPV)进⾏3D静态磁场分析3-D节点法磁场分析的具体步骤与2-D静态分析类似,选择GUI参数路径Main Menu>Preferences> Magnetic-Nodal,便于使⽤相应的单元和加载。

与2-D静态分析同样的⽅式定义物理环境,但要注意下⾯讨论的存在区别的地⽅。

9.1.1 选择单元类型和定义实常数对于节点法3 –D静磁分析,可选的单元为3D ⽮量位SOLID97单元,与2D单元不同。

⾃由度为:AX,AY,AZ。

3D⽮量位⽅程中,⽤INFIN111远场单元(AX、AY、AZ三个⾃由度)来为⽆限边界建模。

对于载压和载流绞线圈(只有SOLID97单元),必须定义如下实常数:速度效应可求解运动物体在特定情况下的电磁场,2-D静磁分析讨论了运动体的应⽤和限制,在3-D中,只有SOLID97单元类型能通过设置单元KEYOPT选项来考虑速度效应。

9.1.2 定义分析类型⽤与2D静态磁场分析相同的⽅式定义3D静态磁场分析,即,可以通过菜单路径Main Menu>Solution>New Analysis、或者⽤命令ANTYPE,STATIC,NEW来定义⼀个新的静态磁场分析;或者⽤ANTYPE,STATIC,REST 命令来重启动⼀个3-D分析。

如果使⽤了速度效应,不能在3D静态分析(ANTYPE,STATIC)中直接求解具有速度效应的静态直流激励场,⽽要⽤具有很低频率的时谐分析(ANTYPE,HARMIC)来完成。

9.1.3 选择⽅程求解器命令:EQSLVGUI:Main Menu>Solution>Analysis Options3D模型建议使⽤JCG或PCG法进⾏求解。

⽽对于载压模型、载流模型、或有速度效应的具有⾮对称矩阵的模型,只能使⽤波前法、JCG法、或ICCG法求解。

基于ansys的过盈配合接触应力分析

基于ansys的过盈配合接触应力分析

基于ansys的过盈配合接触应力分析摘要介绍了基于ansys的接触分析步骤,并通过ansys软件,将对一个盘轴紧配合结构进行接触分析,来说明接触分析的有限元计算方法。

关键词ansys 过盈配合接触分析引言在工程结构中,经常会遇到大量的接触问题。

火车车轮与钢轨之间,齿轮的啮合是典型的接触问题。

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

本文以ansys软件为工具,以某转子中轴和盘的连接为例,分析轴和盘的过盈配合的接触应力。

1.面面接触分析的步骤:在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面而把另一个作为“接触”面,对刚体—柔体的接触,“目标”面总是刚性的,“接触”面总是柔性面,这种两个面合起来叫作“接触对”。

使用Targe169和Conta171或Conta172来定义2D接触对,使用Targe170和Conta173或Conta174来定义3D接触对,程序通过相同的实常数号来识别“接触对”。

在接触问题中,两个相互接触的物体必须满足边界不穿透的约束条件,施加边界不穿透约束的方法主要有罚函数算法和扩增的拉格朗日算法。

罚函数算法是在总势能泛函中加入惩罚项,来近似满足接触约束条件。

从物理意义上讲,罚函数法相当于在接触边界上加入线弹簧以防止接触面之间的相互渗透,而罚函数因子相当于弹簧的刚度系数。

罚函数法的优点在于不增加系统未知数总数,可保持刚度矩阵的对称性,提高了求解效率,但罚函数因子的取值对计算结果的精度影响很大,必须根据渗透情况对其进行多次调整。

扩增的拉格朗日算法是为了找到精确的拉格朗日乘子而对罚函数修正项进行反复迭代,与罚函数的方法相比,拉格朗日方法不易引起病态条件,对接触刚度的灵敏度较小,然而,在有些分析中,扩增的拉格朗日方法可能需要更多的迭代,特别是在变形后网格变得太扭曲时。

基于ANSYS Workbench平台的电机电磁噪声仿真分析

基于ANSYS Workbench平台的电机电磁噪声仿真分析

基于ANSYS Workbench平台的电机电磁噪声仿真分析电动机与发电机等电力设备的噪声起因很多,有电磁振动噪声、机械噪声及流致噪声等等,本文通过ANSYS公司的官方案例为操作背景,详细介绍如何将作用在定子上的瞬态电磁力作为结构谐响应分析的载荷计算振动噪声。

1.电磁模型建立与分析如图1所示为一个电机模型,电机的额定输出功率为550W,额定电压为220V,极对数为4,定子齿数为24个,转子的转速为1500rpm,求电磁振动产生的噪声大小。

本算例使用的模块如下:RMxprt模块:建立电机类型;Maxwell模块:2D瞬态电磁场计算;Structural模块:3D谐响应分析计算;Acoustics ACT模块:噪声计算注:Acoustics ACT模块需要单独安装,请用户到官方网站上自行下载。

图1电机模型电机的电路模型如图2所示。

图2电机电路模型1)启动Workbench。

在Windows XP下单击“开始”→“所有程序”→ANSYS15→Workbench 15命令,即可进入Workbench主界面。

2)保存工程文档。

进入Workbench后,单击工具栏中的按钮,将文件保存为“zhendongzaosheng.wbpj”,单击Getting Started窗口右上角的(关闭)按钮将其关闭。

3)双击Toolbox→Analysis System→RMxprt模块建立项目A,如图3所示。

4)双击项目A中的A1栏进如RMxprt电机设置平台,如图4所示。

图3RMxprt模块图4RMxprt平台5)依次选择菜单RMxprt→Machine Type,在弹出的电机类型选择对话框中单击Generic Rotating Machine选项,单击OK按钮,如图5所示。

6)单击Project Manager→RMxprt→Machine选项,在下面出现属性设置对话框中作如下设置:在Source Type栏中选择AC选项;在Structure栏中选择Inner Rotor选项;在Stator Type栏中选择SLOT_AC选项;在Rotor Type栏中选择PM_INTERIOR选项,如图6所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方 程 组 系 统 而完 整 地 概 该
括 了 电磁 场 的基 本 规 律 , 也是 电磁 场 A S S分 析 NY
的依据 . N Y A S S以有 限元 的方 法计 算 未 知量 ( 自由 度 )主要 是 磁 位 或 通 量 , 关 其 他 的 物 理 量 可 以 , 有
交 流接 触器 是 一种 应 用 广泛 的低 压 自动化 电
式 中 , 为磁 场强 度矢 量 , 日 曰为磁 通 密度矢 量 , 为 E
器, 用作 频 繁 的接 通 、 开 电 路 , 利 用 主 触 点 来 断 它 通 、 电路 , 辅 助 触 点 实 现 控 制 指 令 . 流 接 触 断 用 交
钢 片叠 成 , 中一 个 静 态 铁 芯 , 要 产 生 电磁 力 ; 其 主
() 1
() 2 () 3
() 4
另一个 动 态 铁 芯 , 要 带 动 主触 点 和 辅 助 触 点 的 主 通断( 动铁 芯是 联动 的 ) . 当线 圈得 电时 , 静铁 芯
×E = 一 D =p ;
第1 8卷
第 4期
兰州工业高等专科学校学报
Ju n l fL nh uP ltc nc C l g o ra a z o oyeh i ol e o e
Vo.1 No 4 1 8 . Au 2 1 g. 01
21 0 i年 8月
文章 编 号 :09— 2 9 2 1 ) 4— 0 0— 3 10 26 (0 1 0 0 1 0
通 过这 些 自 由度 来 导 出. 据 用 户 所 选 择 的 单 元 根
类 型和 单元 选 项 的不 同 , N Y A S S计 算 的 自 由度 可 以是标 量磁位 、 量磁位 或边 界通 量 J 矢 .
1 电磁 场 分 析 基 本 理 论
著 名 的麦 克 斯 韦 方 程组 ( x e , E ut n Maw ls q a o ) l i 是研究 一 切 宏 观 电磁 场 问题 的基 础 , 电磁 场 理 论
给线 圈施加 交流 电压 降 载荷 30V, 作 频 率 8 工
2 8 6 4 2
8 6 4 2 O
5 Hz, 0 GUI M an : i Me u ou i n n /S l to /De n L a s i f e o d /Ap —
p) Man t / xi t n V l D o/ n Ee e t 1 r g e c E c a 0 / o rp O l ns中 / i ti t m
谐波仿真并分析其关键参数 , 观察仿真结果, 在后处理 中 得到 了电磁力的变化 曲线, 并集中计算 了
电磁 结构 中的 电磁 力 , 同时优化 了工作 气 隙的数值 .
关键词 : N Y ; A S S 流接 触器 ; 电磁 力 ; 真 仿 中 图分 类 号 : M 7 . T 52 2 文 献标 志码 : A
基 于 A S S 交 流 接 触 器 电 磁 机 构 的 谐 波 仿 真 分 析 N Y
龚 明胜 , 张 建, 王 颖
毕节 5 10 ) 57 0
( 毕节地 区工业 学校 , 贵州
摘 要 : 究 了 CT —0交流接 触 器在 吸合 过程 中电磁 力的动 态特 性 . A S S对其 电磁 结 构进 行 研 J 11 用 NY
第 4期
龚 明 胜 等 : 于 A S S 流 接 触 器 电磁 机 构 的谐 波 仿 真 分 析 基 NY 交
・1 1・
2 2 交流接 触器 电磁 机构 AN Y . S S模 型
2 5 加 边界 条件 、 荷并 求解 . 载
1 1 1 1 0 0 O 0
现 以 CT —0型交 流接 触器 为例 , 据 电磁 机 J11 根 构 的实 际尺 寸进 行 建模 , 用 的是 二 维 分 析 , 以 选 所 选 用 P A E 3单 元 建 模 , 模 结 果 如 图 1所 示 . LN 5 建 ( 、 分 别为气 隙 、 A、 A、 静铁 芯 、 圈 、 线 衔铁 ) .

产 生 电磁 吸力 , 动铁 芯 吸合 ,常 闭 触 点 断 开 , 将 常 开触点 接通 , 当线 圈失 电 时 ,电磁 力 消 失 , 铁 : 动 芷 与触头 系统 靠弹 簧 的反 作用 力复 位 J .
B =0.
{ 收 稿 日期 :0 1 62 2 1- -8 0
作者简介 : 龚明胜( 9 8) 男 , 1 6 - , 贵州织金人 , 讲师 , 硕士生
器 的选 用对 动力 设 备 和 电力 线路 正 常 运 行 非 常重
电场 强度 矢量 , 为 电位 移 矢 量 , 电 流 密 度矢 D . ,为 量 , 自由电荷体 密度 . P为
在 麦 克斯 韦方 程 组 中 , 电场 和 磁 场 已 经 成 为

要 , 泛应 用于 自动 控 制 电路 , 电磁 机 构 又是 接 广 而 触 器 的核 心部分 , 主 要 由磁 铁 和 控 制 线 圈组 成 . 其 合 理选 择 电磁 系统 的参 数 是 保证 交 流 接 触 器工 作 可靠性 和 提 高 经 济 技 术 指 标 的重 要 环 节 , 可 靠 其 性 直接 影 响 着 整 个 接 触 器 系统 的工 作 情 况 . 了 为 保 证 系统 有 较 高 的可 靠 性 , 须 对 交 流 接 触 器 电 必 磁 机构 的关 键 参 数 进 行 优 化 , 确保 其 工 作 的可 靠
2 三 相 交 流 接 触 器 的 ANS YS 谐 波
1 方真
2 1 交流接触 器 的工作 原理 .
体 系 的核 心 就 是 麦 克 斯 韦 方 程 组 , 采 用 矢 量 微 若 分算符 , s 为单 位制 , 以 I 其表 达形 式如 下 J .
×日 ;
C T —0交流 接触器 的铁 芯是 由双 “ ” 的硅 J 11 E型
相关文档
最新文档