热传导方程差分格式的收敛性和稳定性【文献综述】

合集下载

热传导方程差分格式的收敛性和稳定性【文献综述】

热传导方程差分格式的收敛性和稳定性【文献综述】

文献综述信息与计算科学热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展.计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”.在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程.有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计算过程是逐层推进的, 在计算第n +1层的近似值时要用到第n 层的近似值 , 直到与初始值有关. 前面各层若有舍入误差, 必然影响到后面各层的值, 如果误差的影响越来越大, 以致差分格式的精确解的面貌完全被掩盖, 这种格式是不稳定的, 相反如果误差的传播是可以控制的, 就认为格式是稳定的. 只有在这种情形, 差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解. 由Lax 等价定理告诉我们, 对于各适定的线性的初值问题, 对相容性的差分逼近来说, 稳定性则是差分方程的解收敛于微分方程的解的充分必要条件. 收敛是差分方程的本质要求, 稳定是差分方程的基本特性, 对于计算的问题来说, 数值稳定性事差分格式必须要具备的条件, 一个不稳定的差分格式, 即使其他方面有很多的优点, 也是不能用来计算的. 可见由于收敛性和稳定性的重要性, 对于他们的研究是非常具有价值的.热传导方程: 2222222.u u u u a t x yz ⎛⎫∂∂∂∂=++ ⎪∂∂∂∂⎝⎭ 一维热传导方程的初边值问题: 22200120(0,0),()(0),(),()(0).t x x l u u a x l t t x u x x l u t u t t ϕμμ===⎧∂∂==<<>⎪∂∂⎪⎪ =<<⎨⎪⎪⎪ = =>⎩ 用n j u , n j u t ∂⎛⎫ ⎪∂⎝⎭, 及22n ju x ⎛⎫∂ ⎪∂⎝⎭分别表示初边值问题的解(,)u x t 及其偏导数(,)u x t t ∂∂及22(,)u x t x ∂∂在点(,)j n x t 之值, (,)j n x t 表示求解区域内网格节点. 当初边值问题的解在区域内部适当光滑时, 对任一区域内部的节点(,)j n x t 利用泰勒展开公式, 然后化简得到显示差分格式:1112200220,()()(1,,1),(),()(0,1,2,).n n nn n j j j j j j n n J U U U U U a t x U j x j J U n t U n t n ϕμμ++-⎧--+-=⎪∆∆⎪⎪=∆=⋅⋅⋅-⎨⎪⎪⎪=∆=∆=⋅⋅⋅⎩ 这里由于差分方程的解U 与原初边值问题的解u 一般是不同的, 故用不同的记号表示.明显的用上式近似热传导方程的初边值问题, 所忽略掉的项, 即截断误差是2()(())O t O x ∆+∆. 记22()t a x λ∆=∆ 其隐式格式: 111110012(12),()(1,,1),(),()(0,1,2,).n n n n j j j j j n n J U U U U U j x j J U n t U n t n λλλϕμμ+++-+⎧-++-=⎪⎪=∆=⋅⋅⋅-⎨⎪=∆=∆=⋅⋅⋅⎪⎩ 其中22()t a x λ∆=∆.参考文献[1] 谷超豪, 李大潜, 陈恕行等. 数学物理方程[M ]. 北京: 高等教育出版社, 2002.[2] 刘盾. 实用数学物理方程[M ]. 重庆: 重庆大学出版社, 1996.[3] 张锁春. 抛物型方程定解问题的有限差分数值计算[M ]. 北京: 科学出版社, 2010.[4] (美)哈伯曼. 实用偏微分方程[M ]. 北京: 机械工业出版社, 2007.[5] 陆金甫, 关治. 偏微分方程数值解法[M ]. 北京: 清华大学出版社, 2003.[6] K. W. Morton, D. F. Mayers. 偏微分方程数值解[M ]. 北京: 人民邮电出版社, 2006.[7] 戴嘉尊, 邱建贤. 微分方程数值解法[M ]. 南京: 东南大学出版社, 2002.[8] 徐琛梅. 一类非线性偏微分方程差分格式的稳定性分析[J ]. 江西科学, 2008,27(3) :227~230.[9] 张天德, 张希华, 王玮. 偏微分方程差分格式的构造[J]. 山东工业大学学报, 1997,26(2) :245~246.[10] P. Darania and A. Ebadian. A method for the numerical solution of integrodifferentialequations [J]. Applied Mathematics and Computation , 2007, 188(1): 657~668.[11] Yang Zhang. A finite difference method for fractional partial differential equation [J].Journal of Computational and Applied Mathematics, 2009, 215(2):524~529.。

2.4 差分方程的相容性、收敛性和稳定性资料

2.4 差分方程的相容性、收敛性和稳定性资料
100 n 100 25 n 误差为零,则若取r=0.8,则 n 1 . 8 3 . 37 10 j 。 j j
由此可以看出,这个计算误差必定会将差分方程精确解原来面 目完全淹没了,所求得差分方程数值解已经没有任何意义了, 因此,FTFS差分方程是不稳定的。
(2)对流方程FTBS差分格式的误差传播方程为:

n
n
当 t , x 0时,上等式右侧所有项都趋近0,差分方程趋近 于原微分方程,即FTCS差分方程和原方程是相容的。


关于差分方程相容性需要作以下说明:
相容性是对求解区域内任意一点差分方程逼近于微分方程的 程度,相容性是有限差分算法(包括有限体积算法)首先必 须满足的有效性条件。

相容性要求对于求解区域内任意点 x j , t n ,在 t , x 同时趋近于0, 截断误差R n 趋近于0。如果 t , x 不是同时趋近于0或并不趋近于0, j 而是趋近于某值,或结论并不是对每个点
n j
设a≥0, a
t ≤1,则0≤ x
a ≤1,于是有:
t x
e
n 1 j
t n t n 1 a e j a e j 1 O(x, t ) x x t t n 1 a max en a max e j j O( x, t ) j j x x
下面我们用几个简单的例子来说明差分方程稳定性概念。 (1)对流方程FTFS差分方程为:
1 n n n un u r u u j j j 1 j


其中 r t 。设在n时刻计算误差为 n j ,n+1时刻计算误差 x n 1 为 j ,则计算误差传播方程为:

一维热传导方程的差分格式

一维热传导方程的差分格式

u
x j ,tk1
t
2
2u
x j ,tk1 t 2
o( ).
(2.10)
再将 u xj1,tk1 , u xj1,tk1 分别以 x j , tk1 为中心关于 x 运用泰勒级数展开, 有
u
x j1, tk1
=u
x j , tk1
u
x j , tk1
(h) u
x xj , 0 j M ,
t tk , 0 k N
将 分割成矩形网格.记 h xj | 0 j M , tk |0 k N , h h .
称 x j , tk 为结点[1].
定义 h 上的网格函数
U
k j
|0
j
M,0 k
N
,
其中U
k j
u
xj ,tk
u
x j1, tk
=u
xj ,tk
u
xj ,tk
(h) u
xj ,tk h2 u(xj ,tk() -h)3
2!
3!
u(4)
xj ,tk
h4
o(h4 ) ,
4!
u
x j1, tk
=u
xj ,tk
u
xj ,tk
u h
xj ,tk 2!
h2 u
xj ,tk 3!
舍去截断误差,

u
k j
代替
u
xj ,tk
,得到如下差分方程
u k 1 j
u
k j
a
u k 1 j 1
2u
k j
1
h2
u k 1 j 1
f
k j
1
,
1 j M 1, 1 k N.

求解热传导方程的高精度隐式差分格式毕业论文

求解热传导方程的高精度隐式差分格式毕业论文

新疆大学毕业论文(设计)题目:求解热传导方程的高精度隐式差分格式所属院系:数学与系统科学学院专业:信息与计算科学声明本人郑重声明该毕业论文(设计)是本人在开依沙尔老师指导下独立完成的,本人拥有自主知识产权,没有抄袭、剽窃他人成果,由此造成的知识产权纠纷由本人负责。

声明人(签名):年月日亚库甫江.买买提同学在指导老师的指导下,按照任务书的内容,独立完成了该毕业论文(设计),指导教师已经详细审阅该毕业论文(设计)。

指导教师(签名):年月日新疆大学毕业论文(设计)任务书班级:信计07-2 姓名:亚库甫江.买买提论文(设计)题目:求解热传导方程的高精度隐式差分格式专题:毕业设计论文(设计)来源:教师自拟要求完成的内容:学习和掌握一维热传导方程已有的各种差分格式的基础上,扩散方程对空间变量应用紧致格式离散,对时间变量应用梯形方法,构造热传导方程的精度为()24τ+数值格式,O h讨论格式的稳定性,最后数值例子来验证。

发题日期:2012 年12月25日完成日期:2012 年5月28 日实习实训单位:数学学院地点:数学学院论文页数:19页;图纸张数:4指导教师:开依沙尔老师教研室主任院长(系主任)摘要本文首先对热传导方程经典差分格式进行复习和讨论,然后热传导方程对空间变量四阶紧致格式进行离散,时间变量保持不变,把一维热传导方程转化为常微分方程组的初值问题, 再利用梯形方法构造热传导方程方程的时间二阶空间四阶精度的一种差分格式,并稳定性进行分析,数值结果与Crank-Nicholson 格式进行比较,数值结果表明, 该方法是有效求解热传导方程的数值计算.关键词: 热传导方程,高精度紧致格式; 梯形方法;两层隐格式; Crank-Nicolson格式ABSTRACTThis paper first study on some classical finite difference for the heat conduction equation, secondely secondely we apply compact finite difference approximation of fourth order for discretizing spatial derivatives but leave the time variable Continuous. This approach results in a system of ODEs, which can then be used trapezodial formula derived fourth order in space and second order in time unconditionally stable implicit scheme .the stability and local truncation error of the obtained method are analysied. Numerical experiments shows that this method Useful, efficient method for solving diffusion equationKeywords: Heat conduction eqution;Higher- oder compact scheme; Trapezodial formula ;Two- level implict scheme; Crank- Nicolson scheme目录引言 (1)预备知识 (2)1.扩散方程的经典差分格式 (3)1.1 显式差分格 (3)1.1.1 显式的截断误差................ . (4)1.1.2 显式差分格式的稳定性 (4)1.2 隐式差分格式 (5)1.2.1 隐式差分格式的截断误差 (5)1.2.2 隐式差分格式的稳定性 (6)1.3 Crank-Nicolson格式 (6)1.3.1 Crank-Nicolson差分格式的截断误差 (7)1.3.2 Crank-Nicolson差分格式的稳定性 (8)2.高精度格式的构造 (9)2.1梯形方法 (9)2.2本文格式的构造 (10)2.3 稳定性分析 (11)3.数值实验 (13)结论 (17)致谢 (18)参考文献 (19)引言热传导方程是一类描述物理量随时间的扩散和衰减规律的抛物型微分方程.自然环境、工程设备及生物机体中的许多物理现象,诸如气体的扩散、液体的渗透、热的传导、以及半导体材料中杂质的扩散等都可用热传导方程来描述.由于物理问题本身的复杂性,其精确解往往不容易求得,因此研究其数值求解方法无疑具有非常重要的理论意义和工程应用价值【1】.求解该问题的数值方法主要有 差分法、有限元法、边界元法等,其中有限差分方法数值求解扩散方程的应用广泛的有效地方法之一。

差分方程的相容性收敛性和稳定性课件

差分方程的相容性收敛性和稳定性课件
差分方程的相容性是指,给定差分方程在某个初始时刻的解,这个解必须能够决 定该差分方程在所有后续时刻的解。换句话说,如果一个差分方程在某个时刻有 解,那么这个解必须是稳定的,并且能够被扩展到该方程的所有其他时刻。
相容性的判定方法
通过分析差分方程的形式和系数,可以判断其是否具有相容 性。
判断差分方程是否具有相容性的方法通常包括检查该方程是 否满足一定的数学性质,例如,是否具有一致的形式和系数 。此外,还可以通过求解该差分方程的初始值问题来验证其 相容性。
近似解。
有限元法的优势
有限元法能够处理复杂的几何形 状和边界条件,且能够处理非线 性问题,因此在工程领域应用广
泛。
06
差分方程的实际应用案例
在物理中的应用
1 2
量子力学
差分方程在量子力学中用于描述粒子在势能场中 的行为,例如在求解薛定谔方程时,差分法是一 种常用的数值解法。
热传导方程
在求解一维或二维的热传导方程时,可以使用差 分法将偏微分方程转化为差分方程进行求解。
3
波动方程
在处理波动问题时,如声波、电磁波等,差分法 可以用来模拟波的传播和干涉现象。
在金融中的应用
股票价格模型
差分方程可以用于描述股 票价格的变动规律,例如 著名的几何布朗运动模型 就是一种差分方程。
期货价格模型
在期货定价理论中,差分 方程被用来描述未来价格 的变化趋势,为投资者提 供决策依据。
图形法
通过绘制差分方程的解的 图像,观察其随时间的演 化趋势。
比较法
通过比较差分方程与已知 稳定或不稳定方程的性质 ,判断其稳定性。
稳定性的应用
控制工程
稳定性是控制系统的重要性能指 标,决定了系统的动态行为。

差分格式的稳定性与收敛性

差分格式的稳定性与收敛性

差分格式的稳定性与收敛性1 基本概念所谓稳定性问题是指在数值计算过程中产生的误差的积累和传播是否受到控制.在应用差分格式求近似解的过程中,由于我们是按节点逐次递推进行,所以误差的传播是不可避免的,如果差分格式能有效的控制误差的传播,使它对于计算结果不会产生严重的影响,或者说差分方程的解对于边值和右端具有某种连续相依的性质,就叫做差分格式的稳定性.差分格式的收敛性是指在步长h 足够小的情况下,由它所确定的差分解m u 能够以任意指定的精度逼近微分方程边值问题的精确解()m u x .下面给出收敛性的精确定义:设{}m u 是差分格式定义的差分解,如果当0h → 并且m u x →时,有()0m u u x -→,则称此格式是收敛的.2 差分方程的建立对于二阶边值问题'''()(),,(),(),Lu u q x u f x a x b u a u b αβ⎧≡-+=<<⎨==⎩ (1) 其中()q x 、[](),,()0.f x C a b q x ∈≥将区间[],a b 分成N 等份,记分点为,0,1,,,m x a mh m N =+=⋅⋅⋅ 这里步长b a h N-=.利用泰勒公式,得''1121[(()2()()]()m m m m m u x u x u x u x R h+--+=- (2) 其中 2(4)11(),(,)12m m m m m h R u x x ξξ-+=-∈(3) 把式(2)代入式(1)中的微分方程,有1121()[(()2()()]()()h m m m m m m L u x u x u x u x q x u x h+-≡--++ ()m m f x R =+ (4) 略去余项m R ,便得到(1)式中的微分方程在内部节点m x 的差分方程;再考虑到式(1)中的边界条件,就得到边值问题(1)的差分方程11201(2)()(),,,,h m m m m m m m N L u u u u q x u f x a x b h u u αβ+-⎧≡--++=<<⎪⎨⎪==⎩(5) 解线性代数方程组(5),得()m u x 的近似值m u .01,,,N u u u ⋅⋅⋅称为边值问题(1)的差分解.从上面的推导过程可以看出,在节点m x 建立差分方程的关键是在该点用函数()u x 的二阶中心差商代替二阶导数,最后用差分算子h L 代替微分算子L 就产生差分方程(5).记 ()()()m m h m R u Lu x L u x =-,称()m R u 是用差分算子h L 代替微分算子L 所产生的截断误差.由式(2),二阶中心差商代替二阶导数所产生的截断误差m R ,从式(4)和式(5)可以得出(())m h m m R L u x u =-,m R 称为差分方程(5)的截断误差.3 讨论差分方程组(5)的解的稳定性与收敛性引理3.1(极值原理) 设01,,,N u u u ⋅⋅⋅是一组不全相等的数,记01{,,,}N S u u u =⋅⋅⋅,11(),1,2,,1,h m m m m m m m L u a u b u c u m N -+=++=⋅⋅⋅- (6) 其中0,0,0,.m m m m m m b a c b a c ><<≥+(1) 若0(1,2,,1)h m L u m N ≤=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值;(2) 若0(1,2,,1)h m L u m N ≥=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中负的最小值.证 首先用反证法证明(1).假设在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值,记为M ,那么{}0max 0m m NM u ≤≤=>,由于S 中的数不全相等,一定存在某个(11)i i N ≤≤-,使得i u M =,并且1i u -与1i u +中至少有一个小于M .于是11()h i i i i i i i L u a u bu c u -+=++11i i i i i b M a u c u -+=++()0i i i b M a c M >++≥这与0h i L u ≤矛盾,从而(1)得证.同理可证明(2).现在运用极值原理论证差分方法的稳定性及收敛性.定理3.2 差分方程组(5)的解m u 满足{}111max ,()()max ,1,2,,1,2m m m m m N u x a b x f m N αβ≤≤-≤+--=⋅⋅⋅- (7) 证 把方程组 00,1,2,,1,,h m N L u m N u u αβ==⋅⋅⋅-⎧⎨==⎩和 0,1,2,,1,0h m m N L u f m N u u ==⋅⋅⋅-⎧⎨==⎩的解分别记为(1)m u 和(2)m u ,其中差分算子h L 由式(5)定义,则方程组(5)的解m u 为(1)(2)m m m u u u =+ (8)由极值原理可知 {}(1)max ,,1,2,,1m u m N αβ≤=⋅⋅⋅-. (9)接下来再估计(2)m u ,考虑差分方程11201(2),1,2,,1,0m m m N v v v M m N h u u +-⎧--+==⋅⋅⋅-⎪⎨⎪==⎩(10)其中 {}0max m m NM f ≤≤= 容易验证该微分方程是从边值问题'',()()0v M v a v b ⎧-=⎨==⎩ (11) 得到的,而在此边值问题的解是 ()()()2M v x x a b x =--. 因为()v x 是x 的二次函数,它的四阶导数为零,从式(2)、(3)看到()v x 在点m x 的二阶中心差商与''()m v x 相等,因此差分方程(10)的解等于边值问题(11)的解,即()()()02m m m m M v v x x a b x ==--≥. 另一方面,(2)(2)(2)(2)00()0,0,h m m h m h m m m m N N L v u L v L u q v M f v u v u ±=±=+±≥±=±=由极值原理可知 (2)0,m mv u ±≥ 即 (2)()(),1,2,, 1.2m m m m M u v x a b x m N ≤=--=⋅⋅⋅-(12) 综合式(8)、(9)、(12)就得到式(7).定理3.2表明差分方程(5)的解关于边值问题(1)的右端项和边值问题是稳定的,亦即当f 、α、β有一个小的改变时,所引起的差分解的改变也是小的.定理3.3 设()u x 是边值问题(1)的解,m u 是差分方程(5)的解,则22(4)()()max (),1,2,, 1.96m m a x b b a u x u h u x m N ≤≤--≤=⋅⋅⋅-(13) 证 记 ()m m m u x u ε=-,由式(3)、(4)、(5)可知0,1,2,,1,0,h m m N L R m N εεε==⋅⋅⋅-⎧⎨==⎩ 其中m R 由式(3)定义.从定理3.2得111()()max 2m m m m m N x a b x R ε≤≤-≤-- 22(4)()max ().96a xb b a h u x ≤≤-≤ 式(13)给出了差分方程(5)的解的误差估计,而且表明当0h →差分解收敛到原边值问题的解,收敛速度为2h .4 小结收敛性和稳定性是从不同角度讨论差分法的精确情况,稳定性主要是讨论初值的误差和计算中的舍入误差对计算结果的影响,收敛性则主要讨论推算公式引入的截断误差对计算结果的影响.使用既收敛有稳定的差分格式才有比较可靠的计算结果,这也是讨论收敛性和稳定性的重要意义.参考文献[1] 李瑞遐、何志东.微分方程数值方法,上海:华东理工大学出版社[2] 黄明游、冯果忱.数值分析(下册)北京:高等教育出版社,2008[3] 杨大地、王开荣.数值分析.北京:科学出版社,2006[4] 袁东锦.计算方法——数值分析.南京:南京师范大学出版社.2007[5] 李清扬等.数值分析(第4版).武汉:华中科技大学出版社.2006。

Burgers方程差分解的收敛性与稳定性

Burgers方程差分解的收敛性与稳定性

差 分 解 的 模 估 计 , 明 了 差分 解 的 存 在 性 、 收 敛 性 和 稳 定 性 , 且 得 到 了显格 式 和 2 证 并
弱隐格式对于步长7 的限制条件. - 和h
关键 词 : ugr方程 ; 限差 分 ; 敛 性 ; 定 性 B res 有 收 稳
中图分类号 : 2 1 2 O 4. 8
存在且有估计式
n= 0 1 … , ” ,, Ⅳ
ma I I C . x l I o
下面对0< < 的情 形应 用P icr定理证 明差分解的存在性, on a6 同时得到差分解的 2 估 模
计.
引理6 假设正数A
l若^丁 l ,充分小且 ,
7 -


首先对
O 1 L 的情 形进 行证 明, 为此构 造有 限维 欧 氏空间R(+ ) + J ‘ 到 其 自身的一 Ⅳ
个映射日, A = { J= 01… , ; +Z 才I ,, J礼=01… , , ,, Ⅳ) 定义 = {2 ul J=0 l… , ; ,, 几=
0 1… , ,, Ⅳ)=日 为如下系统 的解
+ , n =a + 一n , ( 才+) A A
u = ) ( ,


(a 7) (b 7)
( 7)
J = 0 .Βιβλιοθήκη 对任意给定的{ ) () ,7是一个关于{ 的线性代数方程组, + ) 易证其解是唯一的, 事实上, 对给 定的{ , m + ) u ) 设{ 为另一组解, 一- “, n 记叫 + =钆 - “ , n J 则有 W + +a-(n n a =ar + 乱 + n  ̄ u +, + ) O A △一 礼 J T
0 () 时,4是显格式; 当0< < 虿 称 () 1 时, 4为弱隐格式; 当

一维热传导方程的差分法

一维热传导方程的差分法

一维热传导方程的差分法【摘要】本文主要介绍了一维热传导方程的差分法,通过离散化处理将连续的热传导方程转化为离散的计算形式,包括显式差分法、隐式差分法和Crank-Nicolson方法。

这些方法在计算热传导过程中具有重要的应用意义。

在稳定性分析部分,讨论了各种差分方法的稳定性条件,以保证数值计算的准确性和稳定性。

结论部分总结了各种方法的优缺点,并展望了未来在热传导领域的研究方向和实际应用前景。

一维热传导方程的差分法为热传导问题的数值模拟提供了重要的数值计算手段,为工程技术和科学研究提供了有力的支持。

【关键词】一维热传导方程、差分法、离散化处理、显式差分法、隐式差分法、Crank-Nicolson方法、稳定性分析、热传导、热传导方程、数值模拟、数值计算、实际应用、稳定性、研究意义、展望未来、总结。

1. 引言1.1 背景介绍一维热传导方程是描述热传导过程的数学模型,通过该方程可以研究材料内部温度分布随时间的变化规律。

在实际工程和科学研究中,热传导方程具有广泛的应用,包括材料热处理、地热能利用、气候变化模拟等领域。

背景介绍:热传导方程最初由法拉第提出,是研究热传导现象最基本的方程之一。

热传导方程的一维形式可以表示为:\frac{\partial u(x,t)}{\partial t} = \alpha \frac{\partial^2u(x,t)}{\partial x^2}u(x,t)表示位置x处在时间t时的温度分布,\alpha为热传导系数。

通过求解这个偏微分方程,可以得到材料内部温度分布对时间的变化情况。

在本文中,我们将使用差分法对一维热传导方程进行数值求解。

差分法是一种常用的数值计算方法,在离散化处理方程后,将时间和空间离散化处理,然后利用差分格式来逼近偏微分方程的解。

通过显式差分法、隐式差分法和Crank-Nicolson方法的分析,我们将探讨这些方法在解决一维热传导方程中的应用和稳定性分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献综述
信息与计算科学
热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展.
计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”.
在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程.
有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.
热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计
算过程是逐层推进的, 在计算第n +1层的近似值时要用到第n 层的近似值 , 直到与初始值有关. 前面各层若有舍入误差, 必然影响到后面各层的值, 如果误差的影响越来越大, 以致差分格式的精确解的面貌完全被掩盖, 这种格式是不稳定的, 相反如果误差的传播是可以控制的, 就认为格式是稳定的. 只有在这种情形, 差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解. 由Lax 等价定理告诉我们, 对于各适定的线性的初值问题, 对相容性的差分逼近来说, 稳定性则是差分方程的解收敛于微分方程的解的充分必要条件. 收敛是差分方程的本质要求, 稳定是差分方程的基本特性, 对于计算的问题来说, 数值稳定性事差分格式必须要具备的条件, 一个不稳定的差分格式, 即使其他方面有很多的优点, 也是不能用来计算的. 可见由于收敛性和稳定性的重要性, 对于他们的研究是非常具有价值的.
热传导方程: 2222222.u u u u a t x y z ⎛⎫∂∂∂∂=++ ⎪∂∂∂∂⎝⎭ 一维热传导方程的初边值问题:
22200120(0,0),()(0),(),()(0).
t x x l u u a x l t t x u x x l u t u t t ϕμμ===⎧∂∂==<<>⎪∂∂⎪⎪ =<<⎨⎪⎪⎪ = =>⎩用, , 及分别表示初边值问题的解及其偏导数及n j u n j u t ∂⎛⎫ ⎪∂⎝⎭22n
j u x ⎛⎫∂ ⎪∂⎝⎭(,)u x t (,)u x t t ∂∂在点之值, 表示求解区域内网格节点. 当初边值问题的解在22
(,)u x t x ∂∂(,)j n x t (,)j n x t 区域内部适当光滑时, 对任一区域内部的节点利用泰勒展开公式, 然后化简得(,)j n x t 到显示差分格式:
1112200220,()()(1,,1),
(),()(0,1,2,).n n n
n n j j j j j j n n J U U U U U a t x U j x j J U n t U n t n ϕμμ++-⎧--+-=⎪∆∆⎪⎪=∆=⋅⋅⋅-⎨⎪⎪⎪=∆=∆=⋅⋅⋅⎩这里由于差分方程的解与原初边值问题的解一般是不同的, 故用不同的记号表示.
U u 明显的用上式近似热传导方程的初边值问题, 所忽略掉的项, 即截断误差是
. 记 2()(())O t O x ∆+∆2
2()
t a x λ∆=∆ 其隐式格式: 111110012(12),()(1,,1),
(),()(0,1,2,).
n n n n j j j j j n n J U U U U U j x j J U n t U n t n λλλϕμμ+++-+⎧-++-=⎪⎪=∆=⋅⋅⋅-⎨⎪=∆=∆=⋅⋅⋅⎪⎩ 其中. 22
()t a x λ∆=∆
参考文献
[1] 谷超豪, 李大潜, 陈恕行等. 数学物理方程[M ]. 北京: 高等教育出版社, 2002.
[2] 刘盾. 实用数学物理方程[M ]. 重庆: 重庆大学出版社, 1996.
[3] 张锁春. 抛物型方程定解问题的有限差分数值计算[M ]. 北京: 科学出版社, 2010.
[4] (美)哈伯曼. 实用偏微分方程[M ]. 北京: 机械工业出版社, 2007.
[5] 陆金甫, 关治. 偏微分方程数值解法[M ]. 北京: 清华大学出版社, 2003.
[6] K. W. Morton, D. F. Mayers. 偏微分方程数值解[M ]. 北京: 人民邮电出版社, 2006.
[7] 戴嘉尊, 邱建贤. 微分方程数值解法[M ]. 南京: 东南大学出版社, 2002.
[8] 徐琛梅. 一类非线性偏微分方程差分格式的稳定性分析[J ]. 江西科学, 2008,
27(3) :227~230.
[9] 张天德, 张希华, 王玮. 偏微分方程差分格式的构造[J]. 山东工业大学学报, 1997,
26(2) :245~246.
[10] P. Darania and A. Ebadian. A method for the numerical solution of integrodifferential
equations [J]. Applied Mathematics and Computation , 2007, 188(1): 657~668.
[11] Yang Zhang. A finite difference method for fractional partial differential equation [J].
Journal of Computational and Applied Mathematics, 2009, 215(2):524~529.。

相关文档
最新文档