二维热传导方程有限差分法的MATLAB实现

合集下载

matlab fdm算法

matlab fdm算法

matlab fdm算法MATLAB是一种强大的数值计算软件,广泛应用于科学、工程和技术领域。

有许多算法和方法可以使用MATLAB实现,其中包括有限差分法(FDM)算法。

本文将介绍MATLAB中的FDM算法以及其在数值计算中的应用。

FDM算法是一种常见的数值计算方法,适用于求解偏微分方程(PDE)。

它将连续的PDE转化为离散的差分方程,然后利用离散的差分方程进行求解。

FDM算法在数值计算中具有广泛的应用,尤其适用于求解边值问题、热传导问题和流体动力学问题。

在MATLAB中,实现FDM算法需要以下几个关键步骤:1. 网格生成:选择适当的网格,并将待求解的区域离散化为小的网格单元。

常见的网格包括一维网格、二维网格和三维网格。

2. 差分形式:将偏微分方程转化为差分方程。

根据PDE的特性和问题的具体要求,选择适当的差分形式。

3. 离散化:将PDE中的微分算子和边界条件在网格上进行离散化。

常见的离散化方法有中心差分、前向差分和后向差分。

4. 矩阵构建:将离散化的差分方程转化为一个线性方程组。

这可以使用矩阵乘法和向量操作来实现。

5. 解线性方程组:使用MATLAB中的线性代数函数来解决离散化的线性方程组。

常见的函数包括LU分解、迭代法和共轭梯度法等。

6. 后处理:根据实际问题的需要,对求解结果进行后处理。

可以绘制网格图、等值线图等来展示结果。

下面,我们将以一个简单的热传导问题为例,演示MATLAB中的FDM算法。

假设我们要求解一个一维热传导问题,该问题的偏微分方程为:dT/dt = alpha * d^2T/dx^2其中,T是温度,t是时间,x是空间位置,alpha是热扩散系数。

首先,我们需要定义问题的参数和边界条件。

假设热扩散系数alpha为1,边界条件为T(0) = 0,T(1) = 100。

我们将空间区域[0,1]离散化为10个网格单元,时间区域[0,1]离散化为100个时间步长。

接下来,我们可以使用MATLAB中的差分形式来离散化偏微分方程。

matlab差分方程

matlab差分方程

matlab差分方程MATLAB是一种广泛使用的计算机辅助工具,其中包含了许多实用算法和解决方案。

差分方程是MATLAB中非常重要的一种工具,可以用于模拟和解决各种差分方程问题。

下面将介绍如何使用MATLAB来解决差分方程问题。

首先在MATLAB窗口中打开一个新的脚本文件(Ctrl+N),左侧显示脚本编辑器的窗口。

在窗口中输入以下内容:function dy = diffeq(t,y)dy = zeros(2,1);dy(1) = y(2);dy(2) = -0.1*y(2) - y(1) - 10*(y(1)^3);在这个脚本中,我们定义了一个名为“diffeq”的函数,它有两个参数(t和y)。

该函数返回一个长度为2的dy向量,dy是y的导数(dy/dt)。

在本例中,我们使用了系统描述的常见方法:x'=f(x,t),y是系统状态向量。

换句话说,我们将梯度设置为我们想要模拟的方程。

一旦函数被定义,我们现在可以开始运行模拟。

接下来,我们将使用MATLAB的ODE求解器来解决我们的差分方程问题。

我们可以这样编写代码:[t,y] = ode45(@diffeq,[0 30],[1 0]);在这里,ode45是MATLAB中用于解决常微分方程的函数,它需要三个参数。

第一个参数是定义我们的方程的函数(即我们之前声明的diffeq函数),第二个参数是我们期望的时间范围(从0到30,单位为秒),第三个参数是初值(在这个例子中,我们使用y(0)=1和y'(0)=0作为初值)。

运行后,MATLAB会将结果存储在两个向量t和y中,我们可以使用下面的代码来显示不同时间点t的y值:plot(t,y(:,1),'-')在此代码中,我们使用plot函数来绘制y的前一个元素(我们的状态向量正在被建模)以及时间t之间的关系。

结果应该是一个类似于与时间的函数y(t)的曲线。

这个值可以根据不同的初值和系统变量被改变。

matlab有限差分法

matlab有限差分法

matlab有限差分法一、前言Matlab是一种广泛应用于科学计算和工程领域的计算机软件,它具有简单易学、功能强大、易于编程等优点。

有限差分法(Finite Difference Method)是一种常用的数值解法,它将微分方程转化为差分方程,通过对差分方程进行离散化求解,得到微分方程的数值解。

本文将介绍如何使用Matlab实现有限差分法。

二、有限差分法基础1. 有限差分法原理有限差分法是一种通过将微分方程转化为离散形式来求解微分方程的数值方法。

其基本思想是将求解区域进行网格划分,然后在每个网格点上进行逼近。

假设要求解一个二阶常微分方程:$$y''(x)=f(x,y(x),y'(x))$$则可以将其转化为离散形式:$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}=f(x_i,y_i,y'_i)$$其中$h$为网格步长,$y_i$表示在$x_i$处的函数值。

2. 一维情况下的有限差分法对于一维情况下的常微分方程:$$\frac{d^2 y}{dx^2}=f(x,y,y')$$可以使用中心差分法进行离散化:$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}=f(x_i,y_i,y'_i)$$这个方程可以写成矩阵形式:$$A\vec{y}=\vec{b}$$其中$A$为系数矩阵,$\vec{y}$为函数值向量,$\vec{b}$为右端项向量。

三、Matlab实现有限差分法1. 一维情况下的有限差分法假设要求解的方程为:$$\frac{d^2 y}{dx^2}=-\sin(x)$$首先需要确定求解区域和网格步长。

在本例中,我们将求解区域设为$[0,2\pi]$,网格步长$h=0.01$。

则可以通过以下代码生成网格:```matlabx = 0:0.01:2*pi;```接下来需要构造系数矩阵和右端项向量。

根据上面的公式,系数矩阵应该是一个三对角矩阵,可以通过以下代码生成:```matlabn = length(x)-2;A = spdiags([-ones(n,1), 2*ones(n,1), -ones(n,1)], [-1 0 1], n, n); ```其中`spdiags`函数用于生成一个稀疏矩阵。

二维传热方程c-n有限差分python

二维传热方程c-n有限差分python

二维传热方程c-n有限差分python二维传热方程,也称为二维热传导方程,是一个描述温度分布随时间变化的重要偏微分方程。

对于一个均匀的二维区域,该方程可以表示为:∂T/∂t = α(∂²T/∂x² + ∂²T/∂y²)其中,T表示温度,t表示时间,x和y表示空间坐标,α表示热扩散率。

为了解决这个方程,可以使用有限差分法(Finite Difference Method)。

该方法将连续的空间离散化为一系列离散的网格点,并使用差分近似来求解方程。

下面是一个使用Python实现二维传热方程有限差分法的简单示例代码:```pythonimport numpy as npimport matplotlib.pyplot as plt# 定义区域和网格大小nx, ny = 100, 100x = np.linspace(0, 1, nx)y = np.linspace(0, 1, ny)dx, dy = x[1] - x[0], y[1] - y[0]# 定义初始温度分布T = np.zeros((nx, ny))T[nx//2, ny//2] = 100# 定义时间步长和总时间dt = 0.01nt = 1000# 定义热扩散率alpha = 0.01# 迭代求解温度分布for n in range(nt):T_new = np.zeros((nx, ny))for i in range(1, nx-1):for j in range(1, ny-1):T_new[i, j] = T[i, j] + alpha*dt*((T[i+1, j] - 2*T[i, j] + T[i-1, j])/(dx**2) + (T[i, j+1] - 2*T[i, j] + T[i, j-1])/(dy**2))T = T_new# 可视化结果plt.imshow(T, extent=(0, 1, 0, 1), origin='lower', cmap='hot')plt.colorbar(label='Temperature')plt.xlabel('x')plt.ylabel('y')plt.show()```在上述代码中,我们首先定义了一个100x100的网格,并将中心点设置为初始温度100度。

热传导方程有限差分法的MATLAB实现

热传导方程有限差分法的MATLAB实现

△t
n
nn
关于
t
的二阶中心差商[10]:
坠2u 坠x2

uj+1
-2uj +uj-1 (△x)2
,对方
程进行离散。 离散后的方程为:
n n-1
n
nn
uj -uj △t
=a2
uj+1
-2uj +uj-1 (△x)2


:r=
a2·△t (△x)2
,即
n
n
n
n-1
(1+2r)uj -r·uj+1 -r·uj-1 =uj 。 可化为矩阵形式:
摘 要:对于有界热传导齐次方程的混合问题,用分离变量法求解往往很复杂。 为了更好地
理解热传导方程的解,使用 MATLAB 软件将方程的解用图像表示出来。 通过区域转换的思想,
利用 MATLAB 编程实现一定区域内热传导方程的有限差分方法,数值表明了方法的可行性和
稳定性。
关键词:热传导方程;有限差分;MATLAB
方法, 把控制方程中的导数用网格节点上的函数值
的差商代替进行离散,从而 建立以网格节点上的值
为未知数的代数方程组。
1 求解热传导方程的基本思想
基本思想是把连续的定解区域用有限个离散点
构成的网格来代替, 这些离散点称作网格的节点;
把连续定解区域上的连续变量的函数用在网格上定
义的离散变量函数来近似; 把原方程和定解条件中
x0(ii+1)=ii*ox; end u=sin(pi*x0/l); % t=0 时 u(x,t)的值 r=a^2*ot/(ox)^2; for ii=1:n
%数据的输入 B=zeros(M-1,1);%存放系数矩阵主对角线元素 A=zeros (M-2,1);%存放系数矩阵主对角线元素下 方次对角线的元素 C=zeros (M-2,1);%存放系数矩阵主对角线元素上 方次对角线的元素 S=zeros(M-1,1);%存放右端的常数项 for ii=1:M-2

【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

第1章前言1.1问题背景在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。

诸如粒子扩散或神经细胞的动作电位。

也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。

热方程及其非线性的推广形式也被应用与影响分析。

在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。

虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。

自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。

科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。

而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。

解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。

为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。

1.2问题现状近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。

同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。

而且精度上更好。

目前,在欧美各国MATLAB的使用十分普及。

在大学的数学、工程和科学系科,MATLAB苏佳园:二维热传导方程有限差分法的MATLAB实现被用作许多课程的辅助教学手段,MATLAB也成为大学生们必不可少的计算工具,甚至是一项必须掌握的基本技能。

利用matlab程序解决热传导问题-推荐下载

利用matlab程序解决热传导问题-推荐下载

1、题目及要求
1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m℃)) 6. 计算结果的等温线图 7. 计算小结 题目:已知条件如下图所示:
二、各节点的离散化的代数方程
各温度节点的代数方程
ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4 ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4
0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0; -1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0; 0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0; 0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0; 0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0; 0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0; 0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0; 0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0; 0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1; 0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0; 0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0; 0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1; 0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12]; b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4; yy=xx; [X,Y]=meshgrid(xx,yy); Z=reshape(x,4,4); Z=Z' contour(X,Y,Z,30) Z= 139.6088 150.3312 153.0517 153.5639

利用matlab程序解决热传导问题

利用matlab程序解决热传导问题

哈佛大学能源与环境学院课程作业报告作业名称:传热学大作业——利用matlab程序解决热传导问题院系:能源与环境学院专业:建筑环境与设备工程学号:姓名:盖茨比2015年6月8日一、题目及要求1.原始题目及要求2.各节点的离散化的代数方程3.源程序4.不同初值时的收敛快慢5.上下边界的热流量(λ=1W/(m℃))6.计算结果的等温线图7.计算小结题目:已知条件如下图所示:二、各节点的离散化的代数方程各温度节点的代数方程ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4tm=(2*i+300+n)/24; tn=(2*j+m+p+200)/24; to=(2*k+p+n+200)/24; tp=(l+o+100)/12 三、源程序【G-S迭代程序】【方法一】函数文件为:function [y,n]=gauseidel(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=G*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0;0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0;0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0;0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0;0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]';[x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.1523 84.1429 67.9096 63.3793 62.4214 20.1557 15.4521 14.8744 14.7746 【方法2】>> t=zeros(5,5);t(1,1)=100;t(1,2)=100;t(1,3)=100;t(1,4)=100;t(1,5)=100;t(2,1)=200;t(3,1)=200;t(4,1)=200;t(5,1)=200;for i=1:10t(2,2)=(300+t(3,2)+t(2,3))/4 ;t(3,2)=(200+t(2,2)+t(4,2)+t(3,3))/4;t(4,2)=(200+t(3,2)+t(5,2)+t(4,3))/4;t(5,2)=(2*t(4,2)+200+t(5,3))/4;t(2,3)=(100+t(2,2)+t(3,3)+t(2,4))/4;t(3,3)=(t(3,2)+t(2,3)+t(4,3)+t(3,4))/4; t(4,3)=(t(4,2)+t(3,3)+t(5,3)+t(4,4))/4; t(5,3)=(2*t(4,3)+t(5,2)+t(5,4))/4;t(2,4)=(100+t(2,3)+t(2,5)+t(3,4))/4;t(3,4)=(t(3,3)+t(2,4)+t(4,4)+t(3,5))/4;t(4,4)=(t(4,3)+t(4,5)+t(3,4)+t(5,4))/4;t(5,4)=(2*t(4,4)+t(5,3)+t(5,5))/4;t(2,5)=(2*t(2,4)+300+t(3,5))/24;t(3,5)=(2*t(3,4)+t(2,5)+t(4,5)+200)/24;t(4,5)=(2*t(4,4)+t(3,5)+t(5,5)+200)/24;t(5,5)=(t(5,4)+t(4,5)+100)/12;t'endcontour(t',50);ans =100.0000 200.0000 200.0000 200.0000 200.0000 100.0000 136.8905 146.9674 149.8587 150.7444 100.0000 102.3012 103.2880 103.8632 104.3496 100.0000 70.6264 61.9465 59.8018 59.6008 100.0000 19.0033 14.8903 14.5393 14.5117【Jacobi迭代程序】函数文件为:function [y,n]=jacobi(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=D\(L+U);f=D\b;y=B*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=B*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0; 0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0; 0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0; 0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0; 0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=jacobi(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6); xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)n =97Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.152384.1429 67.9096 63.3793 62.421420.1557 15.4521 14.8744 14.7746四、不同初值时的收敛快慢1、[方法1]在Gauss 迭代和Jacobi 迭代中,本程序应用的收敛条件均为norm(y-x0)>=eps ,即使前后所求误差达到e 的-6次方时,跳出循环得出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档