to 3d Transition Metal Monoxides

合集下载

机械制造:金属增材制造步入成长期

机械制造:金属增材制造步入成长期

同比增速(右轴)
20
15
100% 50%
10
0%
5
0 1993 1995 1997 1999 2001
数据来源:Wohlers Associates,莫尼塔公司
莫尼塔(上海)投资发展有限公司
2
2003
2005
2007
2009
2011
-50%
2013 年 8 月 30 日
行业研究•装备制造
3D 打印技术路线众多
技术名称
所用材料 生产过程
企业
SLA
Stereolithography
液态光敏 树脂
以液态的光敏树脂为原料,利用紫外激 光扫描使之固化,然后在固化的表明上 添加新的液体,逐层扫描完成制造,去 除多余的液体
3D Systems
FDM
Fused Deposition Modeling
树 脂 、 塑 在喷嘴处将丝融化,然后将液体层叠在 大 多 数 个 人 级 打
SLM
Selective Laser Melting
金属粉 末,多为 钛合金、 铝合金和 不锈钢
与 SLS 类 似 , 采 用 金 属材 料 , 温 度更 高,可完全融化粉末。需用惰性气体保 护来避免金属氧化。除了层层铺粉的添 加原料方式外,也可用喷头吹粉的方 式。
大 部 分 金 属 3D 打 印 机 , 如 EOS , 3D Systems , Phenix等
5,000 0
个人3D打印机 销量增速(右轴)
图表 13 莫尼塔公司利用 3D 打印制作 的美国总统奥巴马的头像
500% 450% 400% 350% 300% 250% 200% 150% 100% 50% 0%

3d磨砂金属材质参数

3d磨砂金属材质参数

3d磨砂金属材质参数
在3D渲染中,磨砂金属材质的参数设置如下:
漫反射:通常设置为接近金属颜色的灰色,以模拟磨砂金属的表面质地。

反射:根据具体情况设置反射的强弱,一般来说,磨砂金属的反射较弱,因此可以将反射的强度设置为较低的值,如50%以下。

光泽度:磨砂金属表面较为粗糙,因此其光泽度较低,可以将光泽度设置为较低的值,如0.5以下。

细分:为了使磨砂金属的表面更加细腻,可以适当增加细分值,如20以上。

凹凸:为了模拟磨砂金属表面的凹凸感,可以在材质的凹凸通道中添加一张对应的法线贴图。

以上参数仅作参考,具体设置还需根据实际情况进行调整。


3D渲染中,材质参数的设置需要综合考虑场景的光照、物体的形状、摄像机的角度等因素。

同时,为了达到更逼真的效果,还需要进行渲染测试和调整,直到达到理想的效果为止。

3D打印机有哪些种类,如何工作

3D打印机有哪些种类,如何工作

3D打印机有哪些种类,分别是如何工作的
1. 以高分子聚合反应为基本原理:激光立体印刷术(Stereolithography,SLA,有著名的Objet (已和Stratasys合并)和Formlabs为代表), 高分子打印技术(Polymer Printing), 高分子喷射技术(Polymer Jetting), 数字化光照加工技术(Digital Lighting Processing), 微型立体印刷术(Micro Stereolithography)。

2. 以烧结和熔化为基本原理:选择性激光烧结技术(Selective Laser Sintering,SLS,3D打印行业龙头老大3D System的看家本领,EOS也是杰出代表), 选择性激光熔化技术(Selective Laser Melting, SLM), 电子束熔化技术(Electron Beam Melting,EBM)。

3. 以粉末-粘合剂为基本原理:三维打印技术(Three Dimensional Printing, 3DP,MIT在90年发明的,Zcorp(已被3D Systems收购)、voxeljet是杰出代表)
4. 熔融沉积造型技术(Fused Deposition Modeling, FDM,著名代表有RepRap项目、MakerBot 和Stratasys公司)
5. 层压制造技术(Layer Laminate Manufacturing, LLM)
6. 气溶胶打印技术(Aerosolprinting)
7. 生物绘图技术(Bioplotter)。

从金属布线到波长转换膜 日本大学的创新产品

从金属布线到波长转换膜 日本大学的创新产品

从金属布线到波长转换膜,日本大学开发多项新技术2013/09/24新型纳米墨水示意图(图:冈山大学)在2013年8月29~30日于东京有明国际会展中心举行的展会“创新日本2013”上,由日本的大学开发、前景看好的新技术纷纷亮相。

这些基于全新想法的新技术展示非常引人注目。

其中也有不少技术可立刻实用化。

其中之一是日本冈山大学跨领域融合尖端研究中心特聘助教金原正幸开发的银(Ag)纳米油墨和金(Au)纳米油墨(图1)。

即使完全省去涂布后的烧结工艺,也能够实现接近金属点块的低电阻值。

图1:利用常温的印刷工艺也能实现跟金属块相近的导电性日本冈山大学的金原等开发的金/银纳米油墨(a)、NI MS采用这种油墨印刷的约1mm见方的TFT(b)、金属块与印刷后油墨的电阻率的比较(c)。

(摄影:(a)为日本冈山大学)过去,涂布金属纳米油墨后,电阻非常大,要烧结之后才能作为布线使用。

但是,在树脂基板上无法提高烧结温度。

此次之所以能够解决这一课题,是因为为了保持稳定和防止凝聚,涂布金属纳米颗粒的材料采用了具有导电性的酞菁。

金原指出:“酞菁共有金属和电子,整体就像纯粹的金属一样导电”。

日本物质材料研究机构(NIMS)已在电极的形成中使用这种纳米油墨制造出了4层构造的TFT。

NIMS指出“其出色的特性足够作为TFT使用”。

利用蚀刻形成纳米线不使用纳米油墨且能廉价制造由金属纳米线构成的透明导电膜的制造工艺也在展会上亮相(图2)。

该制造工艺是由日本东京工业大学研究生院理工学研究科有机高分子物质专业特聘副教授坂尻浩一开发的。

展示的产品采用了铝(Al)。

坂尻指出:“Al蒸镀的树脂基板是市售品,10cm见方大约10日元。

如果使用该制造工艺量产透明导电膜,成本可比10cm见方1000日元左右的使用Ag纳米油墨的产品大幅降低”。

大幅提高太阳能电池的效率日本大阪大学产业科学研究所第二研究部门教授小林光的研究室开发出了大幅降低结晶硅型太阳能电池表面光反射率的技术(图3)。

金属板料三点渐进无模成形实验装置研究

金属板料三点渐进无模成形实验装置研究
平 台。 图 3表 2参 9


词 : 属板料成形 ; 验装置 ; 形工件 ; 金 实 盘 无模 成 形
中图分类号 :G 8 T 36
文献标志码 : A
文章编号 :0 529 (0 2 0 -0 30 10 —8 5 2 1 )50 1 -3
Re e r h o pe i e a ui m e tf r Thr e s a c n Ex rm nt lEq p n o e
wa qa g n @ 1 6. o ng io a g 2 c n
轻工机械
Lgtn ut ih Id syMahnr r cie y
2 1 年第 5 02 期
三点 渐进 无模 成形 , 验证 其可 行性 。 并
1 三 点渐进 无模成 形原 理
控 制 电机⑥
பைடு நூலகம்
三点 渐进 无 模 成形 方 法 是 基 于 单 点 渐 进
0 引 言
对 渐进 成形技 术研 究 主要 有 单 点 渐进 无 模 成 形 、 三点 渐 进无模 成形 。单 点 渐进 无 模 成 形 在仿 真 实 验 研
究 方面 都 已经 有很 大 的 突 破 , 而对 三 点 渐 进 成形 的 研 究 基本 上还 处于起 步 阶段 J 通 过初 步 研 究发 现 三 点 ,
置, 包括 机 械 结构 设 计 、 动及 动 力 传 递控 制 设 计 等 。 利 用 该 装 置试 制 了盘 形 工件 , 与 理 论 成 形 进 行 比较 分 析 , 究 结 运 并 研 果 表 明 : 实验 装 置 可 以 实现 三 点 渐 进 无 模 成 形 , 而 验证 了该 实验 装 置 的 可 行 性 , 以后 的 实验 研 究提 供 一 个 良好 的 该 从 为

3D原理

3D原理
熔融沉积成型技术,同样是需要把3D的模型薄片化,但是成型的原理不一样。学过高等数学的朋友都知道积分,熔融沉积成型技术,就是把材料用高温熔化成液态,然后通过喷嘴挤压出一个个很小的球状颗粒,这些颗粒在喷出后立即固化,通过这些颗粒在立体空间的排列组合形成实物。
优点:精度高,可以表现准确的表面和平滑的效果,精度可以达到每层厚度0.05毫米到0.15毫米
优点:成型精度更高、成型实物强度更高、可以彩色成型。
缺点:粗糙
“三维打印技术(3DimensionalPrintingtechniques)
Polyjet与Polyjet矩阵
这一技术和我们今天使用的2D喷墨打印机类似,一样是通过多个喷嘴,喷射成型材料来逐层打印3D实物。其成型材料分为两种,一种是成型用的粉末,另外一种是粘接剂,粘接剂可以很快的固化。
缺点:成型材料强度低
选择性激光烧结(Selective Laser Sintering ,SLS)
SLS技术就是选择性烧结料粉末薄层的一部分
选择性激光烧结技术,是把3D模型薄片化之后,在一个容器内,让其充满待烧结的材料粉末,这些粉末可以做的很细,然后由大功率的二氧化碳激光,选择最底层的3D切片形状开始烧结,然后平台下移,材料辊则在已经烧结的部分基础之上,再铺上薄薄的一层材料粉末烧结,如此往复,直到整体成型。
立体光刻造型(stereolithography)
熔融沉积成型(FusedDepositionModelingFDM)
1,喷嘴;2,沉积材料;3,可以多方向移动的平台
类比把一根黄瓜切成很薄的薄片再拼成一整根。先由软件把3D的数字模型,“切”成若干个平面,这就形成了很多个剖面,在工作的时候,有一个可以举升的平台,这个平台周围有一个液体槽,槽里面充满了可以紫外线照射固化的液体,紫外线激光会从底层做起,固化最底层的,然后平台下移,固化下一层,如此往复,直到最终成型。

3Dmax镜面材质制作教程:制作金属、玻璃等反射材质效果

3Dmax镜面材质制作教程:制作金属、玻璃等反射材质效果

3Dmax镜面材质制作教程:制作金属、玻璃等反射材质效果标题:3Dmax镜面材质制作教程:制作金属、玻璃等反射材质效果导言:3Dmax是一种常用的三维建模和渲染软件,它可以实现各种真实感材质的制作。

本教程将详细介绍如何使用3Dmax制作金属、玻璃等反射材质效果,帮助读者提升建模技术。

一、概述1. 介绍3Dmax软件的基本功能和应用场景2. 强调材质在三维建模中的重要性,并列举金属、玻璃等反射材质的常见应用二、准备工作1. 下载安装3Dmax软件(不涉及软件下载链接)2. 打开3Dmax软件并新建一个项目文件三、金属材质效果的制作1. 创建一个立方体模型a. 选择“Create”工具栏中的“Box”创建一个立方体模型b. 调整立方体模型的尺寸和比例2. 添加材质属性a. 打开“Material Editor”面板b. 点击“Get Material”按钮,选择一个金属材质c. 将金属材质拖拽到立方体模型上3. 调整材质参数a. 在“Material Editor”面板中选择金属材质b. 调整金属材质的颜色、反射度、粗糙度等参数c. 实时预览并调整参数4. 光照设置a. 确保场景中有光源b. 调整光源的强度和位置,以使金属材质效果更加真实c. 实时预览并调整光照设置四、玻璃材质效果的制作1. 创建一个球体模型a. 选择“Create”工具栏中的“Sphere”创建一个球体模型b. 调整球体模型的尺寸和比例2. 添加材质属性a. 打开“Material Editor”面板b. 点击“Get Material”按钮,选择一个玻璃材质c. 将玻璃材质拖拽到球体模型上3. 调整材质参数a. 在“Material Editor”面板中选择玻璃材质b. 调整玻璃材质的折射率、透明度、反射度等参数c. 实时预览并调整参数4. 光照设置a. 确保场景中有光源b. 调整光源的强度和位置,以使玻璃材质效果更加真实c. 实时预览并调整光照设置五、其他反射材质效果的制作1. 根据需要,制作其他反射材质效果a. 参考金属、玻璃材质的制作步骤b. 根据具体材质的特点,调整参数和光照设置六、渲染与输出1. 点击渲染按钮进行渲染a. 在主界面上点击“Render Setup”按钮b. 配置渲染设置,如分辨率、渲染器等c. 点击渲染按钮开始渲染2. 导出渲染结果a. 点击“Save Image”按钮保存渲染结果b. 选择保存路径和文件格式c. 确认保存并等待导出结果七、总结1. 简要总结本教程的内容和步骤2. 强调掌握3Dmax镜面材质制作技巧的重要性3. 鼓励读者继续学习和探索更多3Dmax技术结语:通过本教程的学习,读者可以掌握3Dmax中金属、玻璃等反射材质的制作技巧。

3D基础知识介绍PPT课件

3D基础知识介绍PPT课件

2021/3/9
20 20
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
2021/3/9
21
优点:分辨率、透光率方面能保证,不会影响既有的设计架构,3D显示效果出色 缺点:技术尚在开发,产品不成熟
2021/3/9
16
3
主动快门式3D技术介绍
2021/3/9
17
主动快门式3D技术介绍
常见问题
CROSSTALK(鬼影):由于受液晶响应速度的影响,如左眼在观看左眼图像时, 会同时看到上一场残留的部分右眼图像,导致左右眼图像重叠,形成重影, 叫crosstalk,任何基于液晶显示的快门式3D电视都存在crosstalk现象。
2021/3/9
5
实现3D显像的技术概述
三、全息技术:
•全息技术是利用光波的干涉和衍射原理记录并再现物体的真实感的一种成像技术。 •全息技术再现的图像立体感强,具有真实的视觉效应。除用光波产生全息图外, 现在已发展到可用计算机产生全息图,然而需要的计算量极其巨大。 •全息术应该是3D显示的终极解决方案,但目前还有很多技术问题有待解决,短期 内难有成熟产品量产。
优点:与既有的LCD液晶工艺兼容,因此在量产性和成本上较具优势 缺点:画面亮度低,分辨率会随着显示器在同一时间播出影像的增加呈反比降低
2021/3/9
14
裸眼式3D技术
柱状透镜(Lenticular Lens)技术
柱状透镜(Lenticular Lens)技术也被称为双凸透镜或微柱透镜3D技术,其最大 的优势便是其亮度不会受到影响。柱状透镜3D技术的原理是在液晶显示屏的前面加 上一层柱状透镜,使液晶屏的像平面位于透镜的焦平面上,这样在每个柱透镜下面 的图像的像素被分成几个子像素,这样透镜就能以不同的方向投影每个子像素。于 是双眼从不同的角度观看显示屏,就看到不同的子像素。不过像素间的间隙也会被 放大,因此不能简单地叠加子像素。让柱透镜与像素列不是平行的,而是成一定的 角度。这样就可以使每一组子像素重复投射视区,而不是只投射一组视差图像。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Application of Implicit Density Functionalsto3d T ransition Metal Monoxides Dimension: Molecular Dynamics SimulationsR.N.Schmid,E.Engel,R.M.Dreizlerpublished inNIC Symposium2001,Proceedings,Horst Rollnik,Dietrich Wolf(Editors),John von Neumann Institute for Computing,J¨ulich,NIC Series,Vol.9,ISBN3-00-009055-X,pp.213-223,2002.c 2002by John von Neumann Institute for ComputingPermission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on thefirst page.To copy otherwise requires prior specific permission by the publisher mentioned above.http://www.fz-juelich.de/nic-series/volume9Application of Implicit Density Functionalsto3d Transition Metal MonoxidesR.N.Schmid,E.Engel,and R.M.DreizlerInstitut f¨u r Theoretische Physik,J.W.Goethe-Universit¨a t FrankfurtRobert-Mayer-Str.8-10,60054Frankfurt am Main,GermanyE-mail:{rschmid,engel,dreizler}@th.physik.uni-frankfurt.deStandard density functional calculations on the basis of the local density approximation(LDA)predict the type II antiferromagnetic phases of FeO and CoO to be metallic,in contradiction toexperiment.Within the framework of density functional theory this failure must be attributed tothe shortcomings of the LDA,in particular to its incorrect treatment of the self-interaction.Inthis contribution we report results for FeO obtained with an implicit density functional includingthe exact exchange,which guarantees a complete elimination of the self-interaction.1IntroductionIt is a long-standing question whether an effective single-particle description of Mott in-sulators is possible1–4.Although an enormous amount of work has been devoted to this question over the years(see e.g.5–8),a clear-cut answer is still not available.This is true not only for excitations and phase diagrams,but even for the ground states at T=0.In this contribution we reconsider the ground state problem within density functional theory (DFT)9,which currently is the most successful effective single-particle approach.The prototype Mott insulators are the transition metal monoxides MnO,FeO,CoO and,in particular,NiO.In order to illustrate the challenge which these systems pose to a single-particle approach we consider NiO in more detail.Like MnO,FeO and CoO, NiO crystallizes in a rock salt structure with a lattice constant of7.93Bohr,as shown in Fig.1(with a minor distortion in the case of FeO which will be ignored in the following). The basic features of the band structure of NiO,and thus its insulating property,can be understood as follows.The transition metal compounds typically exhibit a strong overlapFigure1.AFII structure of NiO.213aligned,while the direction of the alignment alternates from plane to plane(see Fig.1),i.e. one has two magnetic sublattices and thus an effective doubling of the lattice constant.The impact of the antiferromagnetic structure on the d bands can be extracted from an analysis of the relevant interaction hopping integrals,which characterize the coupling(and thus hybridization)of the d-states of neighboring Ni atoms.Onefinds that the strongest hopping integral is the(ddσ)-type coupling between second-nearest neighbor cations(along the cartesian axes)which is mediated by the p x,p y and p z orbitals of the anions located in the middle between the cations6.As Fig.1shows,the(ddσ)-interaction couples cations states of opposite polarization in the case of the AFII ordering.As a consequence the(ddσ)-interaction always links a majority spin e g state of one magnetic sublattice with a minority spin e g state in the other sublattice(intersublattice coupling).Their hybridization then leads to an energetic lowering of the occupied majority spin e g states of a given magnetic sublattice and a corresponding shift of the unoccupied minority spin e g states to higher energies.The t2g-states,on the other hand,are not affected as they are fully occupied and only contribute to(ddπ)-and(ddδ)-coupling.The fact that the(ddσ)-interaction only couples cations from different sublattices is also responsible for the rather narrow width of the e g bands in the AFII structure(as compared with the width of the t2g-bands or the ferromagnetic phase).Thus,combining the exchange and crystalfield splittings with the antiferromagnetic hybridization shifts,the occupied bands are sufficiently well separated from the unoccupied e g,↓band that the banding effect(intrasublattice coupling)cannot close the gap between these levels.In the same fashion one can explain the insulating nature of MnO.In this case the large exchange splitting of roughly3.8eV is sufficient to produce a gap between the fully occupied majority spin e g-and the completely unoccupied minority spin t2g-band.None of the arguments above is in conflict with the single-particle picture,and,in fact,standard density functional calculations yield gaps for both NiO and MnO6,7.More difficult to describe with single-particle methods are the remaining two systems FeO and CoO for which the minority spin t2g-band is partially occupied.Focusing on FeO,a single-particle description requires that for each site in a given sublattice two of the t2g,↓-states are empty,thus breaking the octahedral symmetry.For both spins the t2g-level is thus split into a singly occupied state t s2g(e.g.the xy-orbital)and a doubly degenerate level t d2g.The impact of this broken symmetry is most easily seen within the Hartree-Fock (HF)approximation10.In its most simple-minded version one can consider the3d states in a net crystalfield v CF produced by the nuclei and all other electrons.The single-particle energiesǫk,σof the d-levels are then given byǫk,σ= d3rφ†k,σ(r) −∇2.(2)|r−r′|Starting from the atomic d-level,thefirst line of Eq.(1)leads to the t2g and e g states in the215crystalfield.The differences between the two spin orientations and between occupied and unoccupied levels result from the second line.On a qualitative level the effect of the second line can be extracted within the most simple approximation to the relevant Slater integrals: Let S denote the self-interaction energy of any of the10d states,U be the direct interaction between two spatially distinct states and X be the corresponding exchange integral,S=(kσ,kτ||kσ,kτ)(3)U=(kσ,lτ||kσ,lτ)(k=l)(4)X=(kσ,lσ||lσ,kσ)(k=l).(5)This crudest possible approach ignores both the differences between the up-and down-orbitals and those between t2g and e g states.The second line of Eq.(1)then contributes to the eigenenergies of the various states ast d2g,↓,e g,↓:(S+5U)−X(6)t s2g,↓:(2S+4U)−S(7)t s2g,↑:(2S+4U)−(S+4X)(8)t d2g,↑,e g,↑:(S+5U)−(S+4X).(9)If one now takes into account the fact that S,U>>X a gap of the order U−X opens level and the unoccupied states.Due to the strong localization of the between the t s2g,↓d-states,which leads to a rather large U,this gap survives the broadening of the levels by the intrasublattice coupling.Thus,assuming that the coupling between the cells leads to a well-defined spatial pattern of occupied t s-states,this consideration shows that a2g,↓single-particle description of FeO and CoO is not impossible.An equivalent argument can be given in the case of DFT.In order to set the stage for the subsequent discussion let usfirst briefly summarize the essentials of DFT at this point.2Density Functional TheoryIn DFT one uses the unique relation between the ground state of the system and its ground state density to recast the many-particle problem in the form of an auxiliary single-particle problem which reproduces the ground state density and energy of the actual many-body system exactly(but not its ground state)9.All complicated many-body effects are relegated to the so-called exchange-correlation(xc)energy E xc which,in the spin-dependent version of DFT(which we will use throughout this paper),is a universal(i.e.system-independent) functional of the spin-up(n↑)and spin-down(n↓)densities,E xc[n↑,n↓].The xc-energy is introduced as the difference between the exact ground state energy E tot of the interacting system and suitable single-particle components of E tot,E tot=T s[n↑,n↓]+ d3r v n(r)n(r)+ α<βZαZβe2d3r′n(r)n(r′)2 d3rHere n=n↑+n↓is the total density,v n represents the potential of the nuclei at the positions Rα,v n(r)=− αZαe22m k,σΘk,σ d3rφ†k,σ(r)∇2φk,σ(r)(12)nσ(r)= kΘk,σ|φk,σ(r)|2(13)Θk,σ= 1forǫk,σ≤ǫF,σ0forǫF,σ<ǫk,σ.(14) Theφk,σare determined by a minimization of E tot,Eq.(10),which leads to the single-particle equations of the auxiliary problem,the Kohn-Sham(KS)equations,−∇2|r−r′|(16)v xc,σ(r)=δE xc[n↑,n↓]potentials as accurately as possible12does predict FeO and CoO to be antiferromagnetic insulators8.While the size of the gaps found is much too small,this result nevertheless pro-vides a proof of principle that the mechanism described above can work in practice.More-over,there is one further indication that the inappropriate handling of the self-interaction is responsible for the failure of the LDA:An explicitly self-interaction corrected form of the LDA gives the correct ground states13.This leads to the question whether an exact treatment of exchange is possible within DFT?The exact exchange energy functional E x is defined via the Fock expression,using the KS-orbitals14,15,E x=−e2|r−r′|.(18)Eq.(18)represents an implicit density functional as theφk,σare unique functionals of nσ(this concept has already been used for T s).Explicit use of(18)automatically guarantees the exact elimination of the self-interaction energy and should thus be ideally suited for the description of Mott insulators.The question which immediately arises in view of the orbital-dependent expression(18)is how to evaluate the corresponding xc-potential?3Optimized Potential MethodIn contrast to the case of explicitly density-dependent functionals,for which the required functional derivativeδE xc/δnσcan be taken analytically,a more indirect,numerical pro-cedure must be used for implicit functionals.The crucial equation of this so-called Opti-mized Potential Method(OPM)16,17is most easily derived by transforming the functional derivative with respect to nσinto a derivative with respect toφk,σ,using the chain rule for functional differentiation.One ends up with a linear integral equation for v xc,σ,d3r′χs,σ(r,r′)v xc,σ(r′)=Λxc,σ(r),(19) whose ingredients are the static response function of the KS auxiliary system,χs,σ(r,r′)=− kΘk,σφ†k,σ(r)G k,σ(r,r′)φk,σ(r′)+c.c.(20)G k,σ(r,r′)= l=kφl,σ(r)φ†l,σ(r′)δφ†k,σ(r′)+c.c..(22)Eq.(19)determines v xc,σonly up to some additive constant,asd3r′χs,σ(r,r′)=0.(23)The overall normalization of v xc,σmust befixed by some additional constraint.Eq.(19)has to be solved selfconsistently together with the KS equations,i.e.its solution forfixedφk,σ218E totOPM HF−2861.70.0Be0.1349.118.2−128545.4−1.7Mg0.91362.8−0.5−526812.2−5.3Ca 2.22591.825.7−1777834.4−13.8Kr 3.25176.8−18.4Table1.Exchange-only ground state energies of neutral atoms with closed sub-shells:OPM results23versus KLI,LDA,PW91-GGA11and HF24results(all energies in mHartree).replaces the insertion of nσinto conventional xc-functionals.Eqs.(19)-(23)have been for-mulated for arbitrary implicit xc-functionals,including a possible correlation component E c.However,to date no suitable orbital-dependent approximation for E c is available,so that the exact E x is usually combined with a standard density functional for E c18–21.The evaluation ofχs,σis computationally rather demanding,as a large number of ex-cited states have to be taken into account in the evaluation of the Greens function(21). Thus an approximate(semi-analytical)solution of Eq.(19)is obviously of interest.Such a solution can be obtained by use of a closure approximation for G k,σ,which leads to the Krieger-Li-Iafrate approximation(KLI)16,22to the OPM,v KLI xc,σ(r)=1δφ†k,σ(r)+c.c. +|φk,σ(r)|2∆v k,σ (24)∆v k,σ= d3r Θk,σ|φk,σ(r)|2v KLI xc,σ(r)−φ†k(r)δE xc-9-8-7-6-5-4-3-2-100.010.11100.20.10.0-0.1Figure4.Exchange potential of Al along[110]-direction from plane-wave pseudopotential calculation:Exact OPM exchange potential versus KLI approximation,LDA and PW91-GGA(in all cases the selfconsistent density obtained with the KLI approximation has been used for the evaluation of v x[n]).Also shown is the corresponding valence density(44special k-points,E cut=100Ryd for basis,E cut=50Ryd for OPM equation).that the combination of the exact E x with the LDA for E c suffers from the overestimation of correlation energies and potentials by the LDA(in a pure LDA calculation this effect for-tuitously cancels with the LDA’s underestimation of exchange energies and potentials25). However,as the discussion of Section1identifies the exchange as the component which is responsible for the opening of the gap,it is unlikely that the failure of the present calcula-tion is due to the shortcomings of the LDA for E c.On the other hand,the exclusion of the3s electrons from the valence space seems to be critical:It is well known from LDA pseudopotential calculations for iron that the3s elec-trons must be included(at least in the form of nonlinear core corrections—compare30,31). This fact is illustrated in Fig.6where the spin-up eigenvalues of diatomic FeO are shown. The all-electron values are compared with three pseudopotential results,based on different valence spaces(the LDA is utilized for this comparison as all-electron OPM results for FeO are not available).It is obvious that the levels obtained with the3p3d4s-type valence space are much less realistic than those found with the more complete valence space including the3s electrons(nonlinear core corrections are not used).A detailed study of the ground and lowest excited states of FeO shows that the excitation energies of this molecule depend very sensitively on the size of the valence space31.In fact,with the3p3d4s-type valence space an incorrect ground state is predicted if nonlinear core corrections are not included (as in our OPM calculation for solid FeO).On the other hand,the3s3p3d4s valence space221Figure5.Band structure of FeO in AFII structure(a=8.145Bohr):Plane-wave-pseudopotential calculation with exact E x,using(a)the KLI-approximation,(b)the LDA for E c,(c)E cut=250Ryd,(d)a valence space including the iron3p,3d and4s states,(e)no nonlinear core corrections.-0.1-0.2-0.3-0.4-0.5Figure6.Spin-up eigenvalues of diatomic FeO(for R=3.0Bohr):Various pseudopotentials(PP)without nonlinear core corrections in comparison with all-electron(AE)result(σ-levels—solid lines,π-levels—dashed lines,δ-levels—dotted lines).yields the correct ground state.A definitive conclusion concerning the importance of the exact E x for the insulating nature of FeO thus requires the inclusion of the3s states,in spite of the resulting increased computational demands.222AcknowledgmentsComputer time for this work has been provided by the John-von-Neumann Institute for Computing at the Research Centre J¨u lich and the Hochschulrechenzentrum of the Univ.of Frankfurt.Financial support by the Deutsche Forschungsgemeinschaft(grant Dr113/20-3) is gratefully acknowledged.References1.N.F.Mott,Proc.Roy.Soc.(London)A62,416(1949).2.J.C.Slater,Phys.Rev.82,538(1953).3.P.W.Anderson,Phys.Rev.115,2(1959).4.J.Hubbard,Proc.Roy.Soc.(London)A276,238(1963).5.T.M.Wilson,Int.J.Quantum Chem.Symp.3,757(1970).6.K.Terakura,T.Oguchi,A.R.Williams,and J.K¨u bler,Phys.Rev.B30,4734(1984).7.T.C.Leung,C.T.Chan,and B.N.Harmon,Phys.Rev.B44,2923(1991).8.P.Dufek,P.Blaha and K.Schwarz,Phys.Rev.B50,7279(1994).9.R.M.Dreizler and E.K.U.Gross,Density Functional Theory,(Springer,Berlin,1990).10.B.H.Brandow,Adv.Phys.26,651(1977).11.J.P.Perdew,J.A.Chevary,S.H.V osko,K.A.Jackson,M.R.Pederson,D.J.Singh,and C.Fiolhais,Phys.Rev.B46,6671(1992).12.E.Engel and S.H.V osko,Phys.Rev.B47,13164(1993).13.A.Svane and O.Gunnarsson,Phys.Rev.Lett.65,1148(1990).14.V.Sahni,J.Gruenebaum,and J.P.Perdew,Phys.Rev.B26,4371(1982).ngreth and M.J.Mehl,Phys.Rev.B28,1809(1983).16.R.T.Sharp and G.K.Horton,Phys.Rev.90,317(1953).17.J.D.Talman and W.F.Shadwick,Phys.Rev.A14,36(1976).18.T.Kotani,Phys.Rev.Lett.74,2989(1995).19.D.M.Bylander and L.Kleinman,Phys.Rev.Lett.74,3660(1995).20.T.Kotani and H.Akai,Phys.Rev.B54,16502(1996).21.M.St¨a dele,J.A.Majewski,P.V ogl,and A.G¨o rling,Phys.Rev.Lett.79,2089(1997).22.J.B.Krieger,Y.Li and G.J.Iafrate,Phys.Lett.146A,256(1990).23.E.Engel and S.H.V osko,Phys.Rev.A47,2800(1993).24.C.Froese Fischer,The Hartree-Fock Method for Atoms(Wiley,New York,1977).25.E.Engel and R.M.Dreizler,put.Chem.20,31(1999).26.N.Troullier and J.L.Martins,Phys.Rev.B43,1993(1991).27.E.Engel,A.H¨o ck,R.N.Schmid,R.M.Dreizler and N.Chetty,Phys.Rev.B64,125111(2001).28.H.J.Monkhorst and J.D.Pack,Phys.Rev.B13,5188(1976).29.D.E.Eastman and J.L.Freeouf,Phys.Rev.Lett.34,395(1975).30.P.Ballone and R.O.Jones,Chem.Phys.Lett.233,632(1995).31.E.Engel,A.H¨o ck,and R.M.Dreizler,Phys.Rev.B63,125121(2001).223。

相关文档
最新文档