五年级加法原理第一讲(1)
五年加法乘法原理

加法原理和乘法原理(5年级)----关于计数类问题一、加法原理:如果完成一件事,有几“类”不同的方法,而每一类又有若干种方法(每种方法都能完成这件事),那么完成这件事的方法总数等于每类方法种数的和。
二、乘法原理:如果完成一件事,有几个必不可少的“步”骤,而每个步骤又有若干种不同的方法,那么完成这件事的方法总数等于每个步骤的方法种数的乘积。
注意:“类”和“步”的不同之处,是正确运用加法原理和乘法原理的关键.如果方法能独立地完成某一件事,则把所有这类方法相加,简称为“分类-----加法”.如果方法不能独立地完成某一件事,只是完成了一个步骤,还需要其它步骤的方法配合完成,那么完成这件事的不同方法数,应该把相应每步骤的不同方法相乘,简称为“分步------乘法”例1 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中,火车有4班,汽车有2班,轮船有3班。
那麽,一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?解:因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9 种不同的走法。
加法原理:做一件事,完成它可以有n 类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,… …,在第n类办法中有mn种不同的方法。
那么完成这件事共有N= m1+ m2+… …+ mn 种不同的方法。
例2 由 A 村去 B 村的道路有3条,由 B 村去 C 村的道路有2条。
从A 村经B 村去C 村,共有多少种不同的走法?解:从A 村去B 村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B 村到达C 村又有2种不同的走法。
因此,从A 村经B 村去C 村共有 3 × 2 = 6 种不同的走法。
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,… …,做第n步有mn种不同的方法。
乘法原理和加法原理(小学奥数5年级)

加法原理和乘法原理知识方法一、分类计数原理(加法原理)1、完成一件事情,有n类方法,在第1类方法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……在第n类方法中有mn种不同的方法,则完成这件事有N=m1+m2+……+m n 种不同的方法2、分类计数原理的特点:针对的是“分类”问题,各类方法是相互独立的。
二、分步计数原理(乘法原理)1、完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有有m2种不同的方法,……做第n步有mn种不同的方法,则完成这件事有N=m1×m2×……×m n 种不同的方法2、分不计数原理的特点:针对的是“分步”问题,各类方法是相互依存的。
例1:从资阳到成都可乘火车,也可乘汽车,一天中,火车有3列,汽车有12辆,一天中乘坐这些交通工具从资阳到成都有多少种不同的方法?例2:陈老师从资阳到美国,第1天,乘高铁到成都有3辆,次日,从成都乘飞机到美国有5班,陈老师从资阳到美国有多少种不同的乘车方法?变式:一个盒子里装有5个小球。
另一个盒子里装有9个小球。
所有这些小球的颜色各不相同。
(1)从两个盒子中任取一个小球,有多少种不同的取法?(2)从两个盒子中各取一个球,有多少种不同的取法?例3:4个数字3、5、6、8可以组成多少个没有重复数字的四位数?变式:有7、3、6三个数字卡片,能组成几个不同的三位数?(每个数字只能用1次)例4、用4种不同颜色给下面的图形涂色。
使相邻两个长方形颜色不相同,有多少种不同的涂法?变式:在A 、B 、C 、D 四个长方形区域中涂上红黄蓝黑这4种不同颜色,使相邻两个长方形颜色不相同,有多少种不同的涂法?例5、南京与上海的动车组特快列车,中途只停靠常州,无锡,苏州三个火车站。
共要准备多少种不同的车票?(考虑往返)变式:北京到广州的火车中间要停靠8个大站。
火车站要准备多少种不同的车票?有多少种不同的票价?(考虑往返)练习题1、小军小蓝和小红三个朋友排成一排照相,有多少种不同的排法?2、书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书,如果从中各取一本科技书,一本故事书和一本英语书,那么总共有多少种取法?3、有8、0、2、4、6五个数字,可以组成几个不同的五位数?4、五一前夕,学校举行亲子活动。
五年级奥数加法原理之分类枚举(一)学生版

五年级奥数加法原理之分类枚举(一)学生版2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲知识要点教学目标7-1-1.加法原理之分类枚举(一)1、完成一件事分N类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例 1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【例 2】和为15的两个非零自然数共有对。
希望杯小学五年级数学竞赛《加法原理》专题辅导培训资料导学讲义

加法原理在日常生活与实践中,我们经常会遇到分组、计数的问题。
解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。
熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。
什么叫做加法原理呢?我们先来看这样一个问题:从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。
假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。
那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。
因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。
我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和。
即N = m1 + m2 + … + m n (N代表完成一件工作的方法的总和,m1,m2, … m n 表示每一类完成工作的方法的种数)。
这个规律就乘做加法原理。
例1 书架上有10本故事书,3本历史书,12本科普读物。
志远任意从书架上取一本书,有多少种不同的取法?例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?例3在4 x 4的方格图中(如下图),共有多少个正方形?例4 妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法?练习与思考(每题10分,共100分。
)1.从甲城到乙城,可乘汽车,火车或飞机。
已知一天中汽车有2班,火车有4班,甲城到乙城共有()种不同的走法。
2.一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准备____种不同的车票。
3.下面图形中共有____个正方形。
4.图中共有_____个角。
5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。
第一讲 排列组合(加法与乘法原理)

第1讲排列组合(加法与乘法原理)1、加法原理:完成一件工作共有N类方法。
在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。
要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
2、乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m 1×m2×…×mn种方法。
运用乘法原理计数,关键在于合理分步。
完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。
运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。
计数时要注意区分是分类问题还是分步问题,正确运用两个原理。
灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。
例1:(1)教室图书角放有4种不同的故事书,有7种不同的漫画书,从中取一本,共有多少种不同的取法?(2)教室图书角放有4种不同的故事书,有7种不同的漫画书,从中各取一本,共有多少种不同的取法?练习:(1)由镇往县城有3条路,由县城往长青山旅游区有4条路,由镇区经县城去长青山有几种不同的走法?(2)某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤。
他要各买一样,共有多少种不同的买法?例2:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?练习:现有一架天平和1g,3g,9g,27g的砝码各一个,能称出多少种不同的重量?例3:各数位的数字之和是24的三位数共有多少个?练习:在所有四位数中,各位上的数之和等于34的数有种。
五年级奥数加法乘法原理

加法原理和乘法原理是数学中常用的两个基本原理,它们在组合计数和概率问题中起着重要的作用。
在本文中,我们将详细介绍加法原理和乘法原理,并通过一些实际例子来帮助你更好地理解和应用这两个原理。
【加法原理】加法原理是指当两个事件分别有m种和n种可能结果时,这两个事件同时发生的可能结果有m+n种。
假设有一枚硬币,它的正反面各有两种可能结果,分别是“正面”和“反面”。
如果我们要计算这枚硬币抛掷两次的可能结果,根据加法原理,我们就可以得到2+2=4种可能的结果,即正-正、正-反、反-正、反-反。
这个原理可以用于求解各种组合计数问题。
对于一个实际问题,如果其中有几个独立事件,我们可以通过加法原理将这些独立事件的可能结果进行累加,从而得到整个问题的可能结果。
举一个例子,假设有一个箱子里面有3个红球和4个蓝球。
现在我们要从中随机抽取两个球,问有多少种可能的结果。
根据加法原理,我们可以将这个问题分成两个独立事件:第一个事件是从箱子中抽取一个球,可能有3种结果(红球、红球、蓝球);第二个事件是从箱子中抽取另一个球,可能有4种结果(红球、红球、蓝球、蓝球)。
根据加法原理,这两个事件同时发生的可能结果有3+4=7种。
因此,从这个箱子中随机抽取两个球的可能结果为7种。
【乘法原理】乘法原理是指当两个事件分别有m种和n种可能结果时,这两个事件同时发生的可能结果有m×n种。
假设有一张扑克牌,其中有4个花色(红桃、方块、黑桃、梅花)和13个大小(2、3、4、5、6、7、8、9、10、J、Q、K、A)。
如果我们要计算从整副扑克牌中抽取一张牌的可能结果,根据乘法原理,我们就可以得到4×13=52种可能的结果。
乘法原理可以用于求解多个事件同时发生的可能结果。
对于一个实际问题,如果其中有几个相互独立的事件,我们可以通过乘法原理将这些事件的可能结果相乘,从而得到整个问题的可能结果。
举一个例子,假设有一个四位数的密码锁,每个位置上的数字都可以是0~9中的任意一个数字。
5五年级加法原理(郭)

第一讲加法原理【知识精要】加法原理:完成一件工作共有N类方法。
在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。
例如:书架上有6本不同的画报、10本不同科技书, 小明准备任选一本来看,有多少种选法?选一本书有两类方法,第一类是在6本不同的画报中任选一本书,有6种选法;第二类是在10本不同科技书中任选一本书,有10种选法.一共有6+10=16种方法。
运用加法原理计数,关键在于合理分类,不重不漏。
要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
【例题精讲】例1 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有4班,汽车有3班,轮船有2班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?例2 有数字1、2、3可以组成多少个数?(每个数字最多只能用一次)?练习2 小明、小华、小红三人去公园玩,想在大门口拍照留念,请问他们共有多少种不同的照法(人相同,位置不同算一种)?例3 从1写到1000,一共用了多少个“1”这个数字?练习3从1写到400,一共用了多少个“2”这个数字?例4 在所有的两位数中,十位数字比个位数字大的两位数共有多少个?练习4 6人握手,每两人握一次手,一共要握多少次手?例5 在下图中,从A点沿实线走最短路径到B点,共有多少条不同路线?练习5在下图中,从A点沿实线走最短路径到B点,共有多少条不同路线?例6 985的数字和是9+8+5=22。
问:数字和是22的三位数共有多少个?练习6在所有四位数中,各位上的数之和等于34的数有多少种?※例7 小明要登上10级台阶,他每一步只能登1级或2级台阶,他登上10级台阶共有多少种不同的登法?※例8 图中有10个编好号码的房间,你可以从小号码房间走到相邻的大号码房间,但不能从大号码走到小号码,从1号房间走到10号房间共有多少种不同的走法?【习题精练】1 南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。
小学思维数学讲义:加法原理之分类枚举(一)-含答案解析

加法原理之分类枚举(一)1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲知识要点 教学目标模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下图中共有多少个三角形?
第一讲 加法原理
我思考 我练习 闯关没问题!
例1、学校里开展“读书节”活动,要求 每位学生读一本书。李明家藏书有名著 15本,科普书20本,历史书8本,李明 任意选一本书,有多少种不同的选法?
解析:
李明读一本书,可以选择名著中的任意一本书,那 么选择名著就有15种选法,同样道理,选择科普读物就 有20种选法,选择历史书就有8种选法,。现在从3类书 中任意选一本,把这三类书不同的选法合起来就可以了 。
• • • • • • • • • • • • •
解析:
我们可以按照钱币的张数进行分类,用一 张钱币有4种不同的钱数,用两张钱币可以有 6种不同的钱数用三张钱币可以有4种不同的 钱数,用四张钱币有1种钱数 解:4+6+4+1=15(种) 答:可以组成15种不同币值
自主空间
用1克砝码,2克砝码,5克砝码,10克砝码 各一个,一共可以称出多少种不同物体质量?
自主空间
书架上层又8本不同的故事书,下层有6本不同的 科普书。如果从书架上任意拿一本书,一共有多少种 不同的拿法?
例2 在南京,苏州,杭州,合肥,上海5座城市中,任 意两座城市结为“友好城市”一共有多少种不同的组 成方法?
解析
先把所有结成的友好城市分类:第一类,先确定南京,再 从余下的4座城市中选一座城市与南京结为友好城市有4种 方法,第二类,确定苏州,因为苏州与南京结为友好城市 ,在第一类已经有了, 故只要在余下的3座城市中选,有3种选法,第三 类,确定杭州,有2种方法,第四类,确定合肥有 一种方法。 解:4+3+2+1=10(种) 答:一共有10种不同的组成方法
解:15+20+8=43(种) 答:李明任意选一种书有43种选法。
方法总结:
如果做一件事,完成它有N类办法,这 第一类办法 中有M1种不同的方法,在第二类办法中有M2种不同的 方法-=M1+M2+-----+Mn种不同的方法,这就是 加法原理。
自主空间
火车从南京站到上海站中途还要停靠6个站, 铁路运输公司要为在南京站到上海站之间运行的 火车准备多少种不同的火车票?
解:5+4+3+2+1=15(种) 15×2=30(种) 答:有30种不同的火车票
例3、用一张10元,一张5元,一张2元一张一元, 可组成多少种不同的币值
•
阿凡提巧惩高利贷者 一天,阿凡提来到一个集市,正好遇见一个高利贷者在叫喊,“放金币喽! 放金币喽!我的金币可是个宝,只要你把它埋在地里一天一夜,就会变成 1000金币。” 阿凡提:“我借一个金币!”阿凡提决心惩罚这个愚弄百姓,贪得无厌的家伙,为民 除害。 高利贷者:“那你每天得还我1000个金币。” 阿凡提:“好,一言为定。我将连续15天借金币,第1天借1个金币,以后每天都是前 一天的2倍。15天以后我还给你金币,如果这15天之内,你后悔了,那么我借的金币就 不能还给你了。” 高利贷者一计算,立即眉开眼笑,满口答应。 前几天,高利贷者还得意洋洋。可是不到15天,这个贪得无厌的高利贷者就破产了。 聪明的同学,你知道他是怎样破产的吗?假如他不破产,他又赔了多少金币呢? 阿凡提15天向他借的金币的个数依次是:1(20),2(21),4(22),8(23),16 (24),32(25),64(26)„„16384(215)这样,阿凡提借的金币一共是: 1+2+4+8+„+16384=32767(个)。阿凡提15天应该还给他的金币是:1000×15=15000 (个),照这样计算,高利贷者还赔了17767个金币。
解:4+6+4+1=15(种) 答:一共可以称出15种不同的质量
课堂总结:
1、做一件事有不同类的方法,求一共的 方法数 2、确定做一件事有几类方法 3、给做一件事的方法分类
今日事 今日毕 开开心心放学去!
下图中共有多少个三角形?
解:5+4+3+2+1=15(个)