【步步高】2014届高三数学大一轮复习 2.1函数及其表示教案 理 新人教A版

合集下载

(安徽专用)2014届高考数学一轮复习 第二章函数2.1函数及其表示试题 新人教A版

(安徽专用)2014届高考数学一轮复习 第二章函数2.1函数及其表示试题 新人教A版

课时作业4 函数及其表示一、选择题1.下列四个命题中正确命题的个数是( ).①函数是其定义域到值域的映射;②f (x )=x -3+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④函数y =⎩⎪⎨⎪⎧ x 2(x ≥0),-x 2(x <0)的图象是抛物线. A .1 B .2 C .3 D .42.下列各组函数f (x )与g (x )相同的是( ).A .f (x )=x ,g (x )=(x )2B .f (x )=x 2,g (x )=(x +1)2C .f (x )=x ,g (x )=e ln xD .f (x )=|x |,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0 3.已知函数f (x )=⎩⎪⎨⎪⎧ 2x ,x ≤0,f (x -3),x >0,则f (5)等于( ).A .32B .16C .12D .1324.已知函数f (x )满足2f (x )-f ⎝ ⎛⎭⎪⎫1x =3x 2,则f (x )的最小值是( ). A .2 B .2 2 C .3 D .45.水池有2个进水口,1个出水口,每个水口进出水速度如下图(1)(2)所示,某天0点到6点,该水池的蓄水量如下图(3)所示(至少打开一个水口).给出以下三个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断是( ).A .① B.①② C.①③ D.①②③6.设函数f (x )=⎩⎪⎨⎪⎧2x -3,x ≥1,x 2-2x -2,x <1,若f (x 0)=1,则x 0等于( ). A .-1或3 B .2或3C .-1或2D .-1或2或37.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若对任意的x ∈[a ,b ],都有|f (x )-g (x )|≤1成立,则称f (x )和g (x )在[a ,b ]上是“亲密函数”,区间[a ,b ]称为“亲密区间”.若f (x )=x 2+x +2与g (x )=2x +1在[a ,b ]上是“亲密函数”,则其“亲密区间”可以是( ).A .[0,2]B .[0,1]C .[1,2]D .[-1,0]二、填空题8.(2012安徽合肥六中模拟)函数f (x )=1x -3+2x -4的定义域是__________. 9.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-(x -1)2,x >0,则使f (x )≥-1成立的x 的取值范围是__________.10.设函数f 1(x )=12x ,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2 014)))=__________.三、解答题11.某市出租车起步价为5元,起步价内最大行驶里程为3 km ,以后3 km 内每1 km 加收1.5元,再超过3 km 后,每1 km 加收2元.(不足1 km 按1 km 计算)(1)写出出租车费用y 关于行驶里程x 的函数关系式;(2)求行程7.5 km 时的出租车费用.12.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x ≥0,2-x ,x <0. (1)求f [g (2)]和g [f (2)]的值;(2)求f [g (x )]和g [f (x )]的表达式.参考答案一、选择题1.A 解析:只有①正确,②函数定义域不能是空集,③图象是分布在一条直线上的一系列的点,④图象不是抛物线. 2.D 解析:A ,C 定义域不同,B 对应关系不同,故选D.3.C 解析:f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=2-1=12,故选C. 4.B 解析:由2f (x )-f ⎝ ⎛⎭⎪⎫1x =3x 2,① 令①式中的x 变为1x 可得2f ⎝ ⎛⎭⎪⎫1x -f (x )=3x 2.② 由①②可解得f (x )=2x 2+x 2,由于x 2>0,因此由基本不等式可得f (x )=2x 2+x 2≥22x 2·x 2=22,当x =142时取等号. 5.A 解析:由4点时水池水量为5可知打开一个进水口,故②不正确;4点到6点水池水量不变,也可能三个水口都打开,故③不正确.故选A.6.C 解析:∵f (x 0)=1,∴⎩⎪⎨⎪⎧ x 0≥1,2x 0-3=1或⎩⎪⎨⎪⎧x 0<1,x 02-2x 0-2=1, 解得x 0=2或x 0=-1.7.B二、填空题8.[2,3)∪(3,+∞) 解析:⎩⎪⎨⎪⎧2x -4≥0,x -3≠0⇒x ∈[2,3)∪(3,+∞). 9.[-4,2] 解析:∵f (x )≥-1, ∴⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, ∴-4≤x ≤0或0<x ≤2,即-4≤x ≤2. 10.12 014解析:f 1(f 2(f 3(2 014)))=f 1(f 2(2 0142))=f 1(2 014-2) =122((2 014))-=12 014. 三、解答题11.解:(1)令[x ]表示不小于x 的最小整数,当0<x ≤3时,y =5;当3<x ≤6时,y =5+1.5([x ]-3);当x >6时,y =9.5+2([x ]-6).∴y =⎩⎪⎨⎪⎧ 5,0<x ≤3,1.5[x ]+0.5,3<x ≤6,2[x ]-2.5,x >6.(2)当x =7.5时,y =2[7.5]-2.5=2×8-2.5=13.5(元).12.解:(1)由已知,g (2)=1,f (2)=3,∴f [g (2)]=f (1)=0,g [f (2)]=g (3)=2.(2)当x ≥0时,g (x )=x -1,故f [g (x )]=(x -1)2-1=x 2-2x ;当x <0时,g (x )=2-x ,故f [g (x )]=(2-x )2-1=x 2-4x +3;∴f [g (x )]=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,x 2-4x +3,x <0. 当x ≥1或x ≤-1时,f (x )≥0,故g [f (x )]=f (x )-1=x 2-2;当-1<x <1时,f (x )<0,故g [f (x )]=2-f (x )=3-x 2.∴g [f (x )]=⎩⎪⎨⎪⎧x 2-2,x ≥1或x ≤-1,3-x 2,-1<x <1.。

2014高考数学(理)一轮复习学案课件 第2编 函数及其表示

2014高考数学(理)一轮复习学案课件 第2编 函数及其表示
学案1 函数及其表示方法
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
2
考纲解读
返3回
考向预测
返4回
课前热身
返5回
返6回
考点 一
考点突破
返7回
返8回
返9回
返10回
考点 二
返11回
返12回
返13回
返14回
返15回
返42回
返43回
返44回
பைடு நூலகம்
返45回
返46回
返16回
考点 三
返17回
返18回
返19回
返20回
真题再现
返21回
返22回
误区警示
返23回
返24回
规律探究
返25回
即时巩固
返26回
返27回
返28回
返29回
返30回
课后拔高
返31回
返32回
返33回
返34回
返35回
返36回
返37回
返38回
返39回
返40回
返41回

【苏教版】【步步高】2014届高考数学一轮复习备考【配套课件】第2章 函数2.1.2(二)

【苏教版】【步步高】2014届高考数学一轮复习备考【配套课件】第2章 函数2.1.2(二)

填一填·知识要点、记下疑难点
2.1.2(二)
1.在求函数解析式时,若已知以函数为元的方程形式,若能设法构 造另一个方程,组成方程组,再解这个方程组,求出函数元,称
本 这个方法为消元法. 课 时 2.分段函数的定义:在定义域内不同部分上,有不同的 栏 解析表达式 目 ________________,像这样的函数叫做分段函数. 开 并 关 3.分段函数定义域是各段定义域的________集,其值域是各段值域
2.1.2(二)
2.1.2 函数的表示方法(二)
【学习要求】 1.进一步掌握求函数解析式的方法;
本 课 时 栏 目 开 关
2.了解分段函数的定义; 3.学会求分段函数的定义域、值域; 4.学会运用函数图象来研究分段函数. 【学法指导】 通过求函数解析式,进一步掌握数学中的思想方法;通过分段 函数的学习,感悟表达的多样性;加深函数概念的理解,提高 分析问题、解决问题的能力.
(2)分段函数是一个函数而不是几个函数,处理分段函数问题时,首先
本 课 要确定自变量的数值属于哪个区间段,从而选取相应的解析表达式; 时 画分段函数图象时,应根据不同定义域上的不同解析式分别作出. 栏 目 开 关
研一研•问题探究、课堂更高效
2.1.2(二)
跟踪训练 3 某人开汽车以 60 km/h 的速度从 A 地到 150 km 远处的 B 地,在 B 地停留 1 h 后,再以 50 km/h 的速度返回 A 地,把汽 车离开 A 地的路程 s(km)表示为时间 t(h)(从 A 地出发是开始)的函
本 课 时 栏 目 开 关
凑法、换元法、待定系数法、消元法、特殊值法等,要根据 题目特点选用不同的方法求解. 2. 分段函数求值要先找准自变量所在的区间; 分段函数的定义 域、值域分别是各段函数的定义域、值域的并集.

2014年高考数学一轮复习精品学案(人教版A版)---函数概念与表示

2014年高考数学一轮复习精品学案(人教版A版)---函数概念与表示

2014年高考数学一轮复习精品学案(人教版A版)――函数概念与表示一.【课标要求】1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.通过具体实例,了解简单的分段函数,并能简单应用;4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义;5.学会运用函数图象理解和研究函数的性质二.【命题走向】函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。

从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。

高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大预测2014年高考对本节的考察是:1.题型是1个选择和一个填空;2.热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。

三.【要点精讲】1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数。

记作:y=f(x),x∈A。

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

【志鸿优化设计】2014届高考数学一轮复习第二章函数2.1函数及其表示教学案理新人教A版

【志鸿优化设计】2014届高考数学一轮复习第二章函数2.1函数及其表示教学案理新人教A版
ln( x+ 1) ≠0,
4. B 解析: 由 x+ 1>0, 4- x2≥0
x≠0,
得 x>-1,
-2≤ x≤2,
所以定义域为 ( - 1 ,0) ∪(0,2] .
5. A
解析:

x≤1时,
x
3=
2,
∴ x=log 32;
当 x>1 时,- x= 2,∴ x=- 2( 舍去 ) .
∴ x=log 32.
3.若两个函数的定义域与值域相同, 它们不一定是同一函数, 如函数 y= x 与 y= x+ 1,
其定义域与值域完全相同,但不是同一个函数;再如
y=sin x 与 y= cos x,其定义域都为
R,值域都为 [ - 1,1] ,显然不是同一个函数. 定义域和解析式相同的两个函数是同一个函数.
4.分段函数的定义域、 值域为各段上的定义域、 值域的并集; 最大 ( 小 ) 值是各段最大 ( 小 )
-x, x>1,
A. log 32 C. log 32 或- 2
B.- 2 D. 2
一、求简单函数的定义域、值域
【例 1- 1】 (2012 江苏高考 ) 函数 f ( x) = 1- 2log 6x的定义域为 __________ .
【例 1- 2】已知函数 f (3 - 2x) 的定义域为 [ - 1,2] ,求 f ( x) 的定义域.
考点探究突破
【 例 1 - 1 】 (0 , 6 ] 解 析 : 要 使 函 数 f ( x) = 1- 2log 6x 有 意 义 , 则 需
1- 2log 6x≥0, x>0,
解得 0< x≤ 6,故 f ( x) 的定义域为 (0 , 6] .

【步步高】2014届高考数学大一轮复习 2.2 函数的单调性与最值配套课件 理 新人教A版

【步步高】2014届高考数学大一轮复习 2.2 函数的单调性与最值配套课件 理 新人教A版
利用函数的单调性求参数的取值 范围,解题思路为视参数为已知
数 a 的取值范围.
数,依据函数的图象或单调性定
义,确定函数的单调区间,与已
知单调区间比较求参.
题型分类·深度剖析
题型二
利用函数单调性求参数
【例 2】 若函数 f(x)=axx+-11在 (-∞,-1)上是减函数,求实
思维启迪 解析 探究提高
(a≠0)在(-1,1)上的单调性.
解析 探究提高
题型分类·深度剖析
题型一
函数单调性的判断
【例 1】试讨论函数 f(x)=xa-x1 (a≠0)在(-1,1)上的单调性.
思维启迪 解析 探究提高
可利用定义或导数法讨论函 数的单调性.
题型分类·深度剖析
题型一
函数单调性的判断
思维启迪
【例 1】试讨论函数 f(x)=xa-x1
—下结论.
题型分类·深度剖析
变式训练 1 (1)已知 a>0,函数 f(x)=x+ax (x>0),证明函数 f(x)
在(0, a]上是减函数,在[ a,+∞)上是增函数;
证明 设 x1,x2 是任意两个正数,且 0<x1<x2, 则 f(x1)-f(x2)=x1+xa1-x2+xa2=x1x-1x2x2(x1x2-a). 当 0<x1<x2≤ a时,0<x1x2<a,又 x1-x2<0,
题型分类·深度剖析
题型二
利用函数单调性求参数
【例 2】 若函数 f(x)=axx+-11在
思维启迪 解析 探究提高
(-∞,-1)上是减函数,求实
数 a 的取值范围.
题型分类·深度剖析
题型二
利用函数单调性求参数

【苏教版】【步步高】2014届高考数学一轮复习备考【配套课件】第2章 函数2.2.1(二)

【苏教版】【步步高】2014届高考数学一轮复习备考【配套课件】第2章 函数2.2.1(二)
本 课 时 栏 目 开 关
函数的图象,说出函数的最大、最小值在函数图象的什么部 位取得?函数的最大、最小值各是什么 ?
答 曲线的最高点对应的纵坐标为函数的最大值,最大值为 9; 曲线的最低点对应的纵坐标为函数的最小值,最小值为-2.
研一研•问题探究、课堂更高效
2.2.1(二)
问题 2 根据问题 1 的讨论, 你能给函数的最大值及最小值下个定 义吗?
证明
本 课 时 栏 目 开 关
因为当 x∈[a,c]时,f(x)是单调增函数,
所以对于任意 x∈[a,c],都有 f(x)≤f(c).
又因为当 x∈[c,b]时,f(x)是单调减函数, 所以对于任意 x∈[c,b],都有 f(x)≤f(c). 因此,对于任意 x∈[a,b]都有 f(x)≤f(c), 即 f(x)在 x=c 时取得最大值.
本 课 时 栏 目 开 关
解析 观察函数图象知, 图象最低点的纵坐标为 f(-2)=-1, 最高点的纵坐标为 2.
练一练•当堂检测、目标达成落实处
2.2.1(二)
1 有最大值1, 2.下列关于函数 f(x)= 在[1,+∞)上的最值情况为____________ x
无最小值 ______________.
填一填·知识要点、记下疑难点
2.2.1(二)
最高点 3.函数的最大值、最小值分别对应函数图象上的____________和 最低点 ____________.
4.函数单调性与最值的关系:已知函数 y=f(x)的定义域是[a,b],
本 课 时 栏 目 开 关
a<c<b.当 x∈[a,c]时,f(x)是单调增函数;当 x∈[c,b]时,f(x)
本 课 时 栏 目 开 关

【步步高】2014届高三数学大一轮复习 1.2命题及其关系、充分条件与必要条件教案 理 新人教A版

【步步高】2014届高三数学大一轮复习 1.2命题及其关系、充分条件与必要条件教案 理 新人教A版

§1.2命题及其关系、充分条件与必要条件2014高考会这样考 1.考查四种命题的意义及相互关系;2.考查对充分条件、必要条件、充要条件等概念的理解,主要以客观题的形式出现;3.在解答题中考查命题或充分条件与必要条件.复习备考要这样做 1.在解与命题有关的问题时,要理解命题的含义,准确地分清命题的条件与结论;2.注意条件之间关系的方向性、充分条件与必要条件方向正好相反;3.注意等价命题的应用.1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.[难点正本疑点清源]1.等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.2.集合与充要条件设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有(1)若A ⊆B ,则p 是q 的充分条件,若A B ,则p 是q 的充分不必要条件; (2)若B ⊆A ,则p 是q 的必要条件,若B A ,则p 是q 的必要不充分条件; (3)若A =B ,则p 是q 的充要条件; (4)若A B ,且B A ,则p 是q 的既不充分也不必要条件.1. 下列命题:①“全等三角形的面积相等”的逆命题; ②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60°”的逆否命题.其中真命题的序号是________(把所有真命题的序号填在横线上). 答案 ②③解析 ①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab =0,则a =0”的否命题为“若ab ≠0,则a ≠0”,而由ab ≠0,可得a ,b 都不为零,故a ≠0,所以该命题是真命题;③因为原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是一个真命题. 2. “x >2”是“1x <12”的________条件.答案 充分不必要 解析 ①x >2⇒2x >0⇒x 2x >22x ⇒1x <12, ∴“x >2”是“1x <12”的充分条件.②1x <12⇒x <0或x >2D ⇒/x >2. ∴“x >2”是“1x <12”的不必要条件.3. 已知a ,b ∈R ,则“a =b ”是“a +b2=ab ”的____________条件.答案 必要不充分 解析 因为若a =b <0,则a +b2≠ab ,所以充分性不成立;反之,因为a +b2=ab ⇔a=b ⇔a =b ≥0,所以必要性成立,故“a =b ”是“a +b2=ab ”的必要不充分条件.4. (2011·天津)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 C解析因为A={x|x-2>0}={x|x>2}=(2,+∞),B={x|x<0}=(-∞,0),所以A∪B=(-∞,0)∪(2,+∞),C={x|x(x-2)>0}={x|x<0或x>2}=(-∞,0)∪(2,+∞).即A∪B=C.故“x∈A∪B”是“x∈C”的充要条件.5.(2012·天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析由条件推结论和结论推条件后再判断.若φ=0,则f(x)=cos x是偶函数,但是若f(x)=cos(x+φ) (x∈R)是偶函数,则φ=π也成立.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.题型一四种命题的关系及真假例1已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( ) A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题思维启迪:根据四种命题的定义判断一个原命题的逆命题、否命题、逆否命题的表达格式.当命题较简单时,可直接判断其真假,若命题本身复杂或不易直接判断时,可利用其等价命题——逆否命题进行真假判断.答案 D解析 命题“若函数f (x )=e x-mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m >1,则函数f (x )=e x-mx 在(0,+∞)上不是增函数”是真命题. 探究提高 (1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数 答案 C解析 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C. 题型二 充要条件的判断例2 已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点 B .p :f -xf x=1;q :y =f (x )是偶函数C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A思维启迪:首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断. 答案 D解析 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件; 对于B ,由f -xf x=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f -xf x=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ; 反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A . 所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.探究提高 判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件; ②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件; ③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件. 其中真.命题的序号是________. 答案 ①④解析 对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列 {a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④. 题型三 利用充要条件求参数例3 已知集合M ={x |x <-3或x >5},P ={x |(x -a )·(x -8)≤0}.(1)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件. 思维启迪:解决此类问题一般是先把充分条件、必要条件或充要条件转化为集合之间的关系,再根据集合之间的关系列出关于参数的不等式求解. 解 (1)由M ∩P ={x |5<x ≤8},得-3≤a ≤5, 因此M ∩P ={x |5<x ≤8}的充要条件是{a |-3≤a ≤5}.(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件,就是在集合{a |-3≤a ≤5}中取一个值,如取a =0,此时必有M ∩P ={x |5<x ≤8};反之,M ∩P ={x |5<x ≤8}未必有a =0,故“a =0”是“M ∩P ={x |5<x ≤8}”的一个充分但不必要条件.探究提高 利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.已知p :x 2-4x -5≤0,q :|x -3|<a (a >0).若p 是q 的充分不必要条件,求a 的取值范围.解 设A ={x |x 2-4x -5≤0}={x |-1≤x ≤5},B ={x |-a +3<x <a +3},因为p 是q 的充分不必要条件,从而有A B .故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a >4.等价转化思想在充要条件关系中的应用典例:(12分)已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m >0),且綈p 是綈q 的必要而不充分条件,求实数m 的取值范围.审题视角 (1)先求出两命题的解集,即将命题化为最简.(2)再利用命题间的关系列出关于m 的不等式或不等式组,得出结论. 规范解答解 方法一 由q :x 2-2x +1-m 2≤0, 得1-m ≤x ≤1+m ,[2分] ∴綈q :A ={x |x >1+m 或x <1-m ,m >0}, [3分] 由p :⎪⎪⎪⎪⎪⎪1-x -13≤2,解得-2≤x ≤10, [5分] ∴綈p :B ={x |x >10或x <-2}.[6分]∵綈p 是綈q 的必要而不充分条件.∴A B ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10,或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9.[12分]方法二 ∵綈p 是綈q 的必要而不充分条件, ∴p 是q 的充分而不必要条件,[2分]由q :x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m ,∴q :Q ={x |1-m ≤x ≤1+m }, [4分]由p :⎪⎪⎪⎪⎪⎪1-x -13≤2,解得-2≤x ≤10, ∴p :P ={x |-2≤x ≤10}.[6分]∵p 是q 的充分而不必要条件,∴P Q ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10,或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9.[12分]温馨提醒 本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1. 当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2. 数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的. 3. 命题的充要关系的判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与綈B ⇒綈A ,B ⇒A 与綈A ⇒綈B ,A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 失误与防范1. 判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q ”的形式.2. 判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由原命题与其逆否命题之间的关系可知,原命题的逆否命题: 若tan α≠1,则α≠π4.2. (2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ) A .x =-12B .x =-1C .x =5D .x =0答案 D解析 ∵a =(x -1,2),b =(2,1), ∴a ·b =2(x -1)+2×1=2x . 又a ⊥b ⇔a ·b =0,∴2x =0,∴x =0.3. 已知集合M ={x |0<x <1},集合N ={x |-2<x <1},那么“a ∈N ”是“a ∈M ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N ”是“a ∈M ”的必要而不充分条件.故选B.4. 下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x >1”的逆否命题 答案 A解析 对于A ,其逆命题:若x >|y |,则x >y ,是真命题,这是因为x >|y |=⎩⎪⎨⎪⎧yy -yy,必有x >y ;对于B ,否命题:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x ≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题的逆否命题是假命题,故选A.二、填空题(每小题5分,共15分) 5. 下列命题:①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f (x )=log 2x ,则f (|x |)是偶函数. 其中正确命题的序号是________. 答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°D ⇒/30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6. 已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________. 答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 解得m ≥3;又因为p (2)是真命题,所以4+4-m >0, 解得m <8.故实数m 的取值范围是3≤m <8.7. (2011·陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =________. 答案 3或4解析 ∵x 2-4x +n =0有整数根, ∴x =4±16-4n 2=2±4-n ,∴4-n 为某个整数的平方且4-n ≥0,∴n =3或n =4. 当n =3时,x 2-4x +3=0,得x =1或x =3;当n =4时,x 2-4x +4=0,得x =2. ∴n =3或n =4. 三、解答题(共22分)8. (10分)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假.解 原命题:若a ≥0,则x 2+x -a =0有实根. 逆否命题:若x 2+x -a =0无实根,则a <0. 判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a <0,∴a <-14<0,∴“若x 2+x -a =0无实根,则a <0”为真命题.9. (12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若綈p 是綈q 的充分而不必要条件,求实数m 的取值范围.解 由题意得p :-2≤x -3≤2,∴1≤x ≤5. ∴綈p :x <1或x >5.q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.又∵綈p 是綈q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5,且等号不能同时取到,∴2≤m ≤4.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·上海)对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵mn >0,∴⎩⎪⎨⎪⎧m >0,n >0或⎩⎪⎨⎪⎧m <0,n <0,当m >0,n >0且m ≠n 时,方程mx 2+ny 2=1的曲线是椭圆, 当m <0,n <0时,方程mx 2+ny 2=1不表示任何图形, 所以条件不充分;反之,当方程mx 2+ny 2=1表示的曲线是椭圆时有mn >0,所以“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的必要不充分条件.2. 已知p :1x -2≥1,q :|x -a |<1,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(-∞,3] B .[2,3] C .(2,3]D .(2,3)答案 C 解析 由1x -2≥1,得2<x ≤3; 由|x -a |<1,得a -1<x <a +1.若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧a -1≤2a +1>3,即2<a ≤3.所以实数a 的取值范围是(2,3],故选C.3. 集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4.a >4D /⇒a >5,但a >5⇒a >4.故“A ⊆B ”是“a >5”的必要不充分条件. 二、填空题(每小题5分,共15分)4. 设有两个命题p 、q .其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f (x )=(4a -3)x 在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫34,1∪(1,+∞)解析 当a =0时,不等式为2x +1>0,显然不能恒成立,故a =0不适合; 当a ≠0时,不等式ax2+2x +1>0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=22-4a <0, 解得a >1.若命题q 为真,则0<4a -3<1,解得34<a <1.由题意,可知p ,q 一真一假. 当p 真q 假时,a 的取值范围是 {a |a >1}∩{a |a ≤34或a ≥1}={a |a >1};当p 假q 真时,a 的取值范围是 {a |a ≤1}∩{a |34<a <1}={a |34<a <1};所以a 的取值范围是⎝ ⎛⎭⎪⎫34,1∪(1,+∞). 5. 若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的取值范围是________.答案 [1,2)解析 x ∉[2,5]且x ∉{x |x <1或x >4}是真命题.由⎩⎪⎨⎪⎧x <2或x >5,1≤x ≤4,得1≤x <2.点评 “A 或B ”的否定是“綈A 且綈B ”.6. “m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0, 即m ≤14,∵m <14⇒m ≤14,反之不成立.故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.三、解答题7. (13分)已知全集U =R ,非空集合A =⎩⎨⎧⎭⎬⎫x |x -2x -a +<0,B =⎩⎨⎧⎭⎬⎫x |x -a 2-2x -a <0.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -52<0=⎩⎨⎧⎭⎬⎫x |2<x <52, B =⎩⎨⎧⎭⎬⎫x |x -94x -12<0=⎩⎨⎧⎭⎬⎫x |12<x <94, ∴∁U B =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥94.∴(∁U B )∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52. (2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}. ①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎪⎨⎪⎧a ≤23a +1≤a 2+2,即13<a ≤3-52.②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a <13.综上所述,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1函数及其表示2014高考会这样考 1.考查函数的定义域、值域、解析式的求法;2.考查分段函数的简单应用;3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.复习备考要这样做 1.在研究函数问题时,要树立“定义域优先”的观点;2.掌握求函数解析式的基本方法;3.结合分段函数深刻理解函数的概念.1.函数的基本概念(1)函数的定义设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、对应关系和值域.(4)函数的表示法表示函数的常用方法有解析法、图象法、列表法.2.映射的概念设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.3.函数解析式的求法求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 4. 常见函数定义域的求法(1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .(6)函数f (x )=x a的定义域为{x |x ∈R 且x ≠0}. [难点正本 疑点清源] 1. 函数的三要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定 的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等. 2. 函数与映射(1)函数是特殊的映射,其特殊性在于,集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函 数. 3. 函数的定义域(1)解决函数问题,函数的定义域必经优先考虑; (2)求复合函数y =f (t ),t =q (x )的定义域的方法:①若y =f (x )的定义域为(a ,b ),则解不等式得a <q (x )<b 即可求出y =f (q (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (t )的定义域.1. (2011·浙江)设函数f (x )=41-x,若f (a )=2,则实数a =________.答案 -1 解析 ∵f (x )=41-x ,∴f (a )=41-a=2,∴a =-1. 2. (课本改编题)给出四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④f (x )=x 2x与g (x )=x 是同一个函数.其中正确命题的序号有________. 答案 ①②解析 对于①函数是映射,但映射不一定是函数; 对于②f (x )是定义域为{2},值域为{0}的函数. 对于③函数y =2x (x ∈N )的图象不是一条直线;对于④由于这两个函数的定义域不同,所以它们不是同一个函数.3. 函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5] 4. (2012·江西)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin x B .y =ln x xC .y =x e xD .y =sin x x答案 D 解析 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0},故选D. 5. (2012·福建)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为 ( )A .1B .0C .-1D .π 答案 B解析 根据题设条件,∵π是无理数,∴g (π)=0, ∴f (g (π))=f (0)=0.题型一 函数与映射 例1 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0-1 x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________.思维启迪:可从函数的定义、定义域和值域等方面对所给结论进行逐一分析判断. 答案 (2)(3)解析 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 x ≥0-1 x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y=f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x=1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3).探究提高 函数的三要素:定义域、值域、对应关系.这三要素不是独立的,值域可由 定义域和对应关系唯一确定;因此当且仅当定义域和对应关系都相同的函数才是同一函 数.特别值得说明的是,对应关系是就效果而言的(判断两个函数的对应关系是否相同, 只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函 数值是否相同)不是指形式上的.即对应关系是否相同,不能只看外形,要看本质;若是用解析式表示的,要看化简后的形式才能正确判断.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于 ( )A .1B .2C .3D .4 答案 D解析 由已知可得M =N ,故⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0,所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4. 题型二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x );(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式;(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.思维启迪:求函数的解析式,要在理解函数概念的基础上,寻求变量之间的关系. 解 (1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1. (2)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.(3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).探究提高 函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)消去法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(2012·武汉模拟)给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0),又f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1,∴f (x )=x 2-x +3. 题型三 函数的定义域 【例3】 (1)函数y =ln x +1-x 2-3x +4的定义域为______________. (2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2x x -1的定义域是 ( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)思维启迪:函数的定义域是使解析式有意义的自变量的取值集合;抽象函数的定义域要 注意自变量的取值和各个字母的位置. 答案 (1)(-1,1) (2)B解析 (1)由⎩⎪⎨⎪⎧x +1>0-x 2-3x +4>0,得-1<x <1.(2)依已知有⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解之得0≤x <1,定义域为[0,1).故选B.探究提高 (1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].(1)若函数f (x )=x -4mx +4mx +3的定义域为R ,则实数m 的取值范围是__________.答案 ⎣⎢⎡⎭⎪⎫0,34解析 f (x )的定义域为R ,即mx 2+4mx +3≠0恒成立. ①当m =0时,符合条件.②当m ≠0时,Δ=(4m )2-4×m ×3<0, 即m (4m -3)<0,∴0<m <34.综上所述,m 的取值范围是⎣⎢⎡⎭⎪⎫0,34. (2)已知f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是__________. 答案 [1,3]解析 由⎩⎪⎨⎪⎧0≤x +1≤40≤x -1≤4,得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3]. 题型四 分段函数【例4】 )定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 21-x , x ≤0,f x -1-f x -2, x >0,则f (2014)的值为________.思维启迪:注意到2 014较大,较难代入计算求出值,所以可通过x 取较小数值探究函 数f (x )值的规律性,再求f (2 014).也可以先用推理的方法得出f (x )的规律性,再求f (2 014).答案 1解析 方法一 由已知得f (-1)=log 22=1,f (0)=log 21=0,f (1)=f (0)-f (-1)=-1,f (2)=f (1)-f (0)=-1, f (3)=f (2)-f (1)=0,f (4)=f (3)-f (2)=1, f (5)=f (4)-f (3)=1,f (6)=f (5)-f (4)=0, f (7)=f (6)-f (5)=-1,f (8)=f (7)-f (6)=-1,…,所以f (x )的值以6为周期重复出现, 因此,f (2 014)=f (4)=1.方法二 ∵x >0时,f (x )=f (x -1)-f (x -2), ∴f (x +1)=f (x )-f (x -1). 两式相加得f (x +1)=-f (x -2),∴f (x +3)=-f (x ),f (x +6)=-f (x +3)=f (x ), ∴f (x )的周期为6.因此,f (2 014)=f (6×335+4)=f (4)=1.探究提高 求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.若给出函数值求自变量的值,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤2,log 81x ,x >2,则满足f (x )=14的x 值为( )A .2B .3C .2或3D .-2 答案 C解析 当x ≤2时,由f (x )=14,得2-x=14.解得x =2.当x >2时,由f (x )=14,得log 81x =14,解得x =3.3.忽视函数的定义域 典例:求函数y =log 13(x 2-3x )的单调区间.易错分析 忽视函数的定义域,认为x 的范围是全体实数,导致错误.解 设t =x 2-3x ,由t >0,得x <0或x >3,即函数的定义域为(-∞,0)∪(3,+∞).函 数t 的对称轴为直线x =32,故t 在(-∞,0)上单调递减,在(3,+∞)上单调递增.而函数y =log 13t 为单调递减函数,由复合函数的单调性可知,函数y =log 13(x 2-3x )的单调递增区间是(-∞,0),单调递减区间是(3,+∞).温馨提醒 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先 求出函数的定义域.如果是复合函数,应该根据复合函数单调性的判断方法,首先判断 两个简单函数的单调性,根据同增异减的法则求解函数的单调区间.由于思维定势的原 因,容易忽视定义域,导致错误. 4.分段函数意义理解不清典例:设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-2)=f (0),f (-1)=-3,求关于x 的方程f (x )=x 的解.易错分析 (1)条件中f (-2),f (0),f (-1)所适合的解析式是f (x )=x 2+bx +c .所以可构建方程组求出b ,c 的值.(2)在方程f (x )=x 中,f (x )用哪个解析式,要进行分类讨论,不能忽视自变量的限制条件. 规范解答解 当x ≤0时,f (x )=x 2+bx +c ,因为f (-2)=f (0),f (-1)=-3,∴⎩⎪⎨⎪⎧-22-2b +c =c -12-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2,[4分]∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2x ≤0,2 x >0.[6分]当x ≤0时,由f (x )=x 得,x 2+2x -2=x , 得x =-2或x =1.由x =1>0,所以舍去.[8分] 当x >0时,由f (x )=x 得x =2,[10分] 所以方程f (x )=x 的解为-2、2.[12分]温馨提醒 (1)对于分段函数问题,是高考的热点.在解决分段函数问题时,要注意自变量的限制条件.(2)就本题而言,当x ≤0时,由f (x )=x 得出两个x 值,但其中的x =1不符合要求,上述解法中没有舍去此值,因而导致了增解.分段函数问题分段求解,但一定注意各段的限制条件.方法与技巧1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域相同;二是对应关系相同. 2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3.函数的解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. 失误与防范求分段函数应注意的问题:在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.(时间:60分钟) A 组 专项基础训练一、选择题(每小题5分,共20分) 1.(2012·山东)函数f (x )=1ln x +1+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2] 答案 B解析 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0得-1<x ≤2,且x ≠0.2. (2012·江西)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 由题意知f (3)=23,f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=139,∴f (f (3))=f ⎝ ⎛⎭⎪⎫23=139.3. 设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( )A .-2x +1B .2x -1C .2x -3D .2x +7 答案 D解析 由g (x )=2x +3,知f (x )=g (x +2)=2(x +2)+3=2x +7.4. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案. 二、填空题(每小题5分,共15分)5. 已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________.答案 6解析 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧12+p +q =022+2p +q =0,∴⎩⎪⎨⎪⎧p =-3q =2,∴f (x )=x 2-3x +2.∴f (-1)=(-1)2+3+2=6.6. 已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式为____________. 答案 f (x )=2x1+x2解析 令t =1-x 1+x ,由此得x =1-t 1+t ,所以f (t )=1-⎝ ⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=2t 1+t 2,从而f (x )的解析式为f (x )=2x 1+x2. 7. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 三、解答题(共25分)8. (12分)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx .又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎪⎨⎪⎧a =12b =12.∴f (x )=12x 2+12x .9. (13分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )=1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N .解 (1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32,N =⎩⎨⎧⎭⎬⎫x |1-2x -1≥0={x |x ≥3或x <1}; (2)M ∩N ={x |x ≥3},M ∪N ={x |x <1或x >32}.B 组 专项能力提升一、选择题(每小题5分,共15分)1. 已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是 ( )A .k >1B .k ≥1C .k <1D .k ≤1答案 A解析 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴Δ=4(1-k )<0,∴k >1时满足题意.2. (2011·福建)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3 答案 A解析 由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a+2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3.3. 设f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞) 答案 C解析 f (x )的图象如图.g (x )是二次函数,且f (g (x ))的值域是[0,+∞),∴g (x )的值域是[0,+∞).二、填空题(每小题4分,共12分)4. (2012·江苏)函数f (x )=1-2log 6x 的定义域为________.答案 (0,6]解析 要使函数f (x )=1-2log 6x 有意义,则⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0.解得0<x ≤ 6.5. 对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a a ≤b b a >b ,则函数f (x )=log12(3x -2)*log 2x 的值域为________. 答案 (-∞,0]解析 f (x )=log 213x -2*log 2x=⎩⎪⎨⎪⎧log 213x -2 x ≥1log 2x 23<x <1.∴当x ≥1时,13x -2≤1,f (x )≤0;当23<x <1时,log 223<f (x )<0. ∴f (x )的值域为(-∞,0].6. (2011·江苏)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为______. 答案 -34解析 当a <0时,1-a >1,1+a <1, 所以f (1-a )=-(1-a )-2a =-1-a ;f (1+a )=2(1+a )+a =3a +2.因为f (1-a )=f (1+a ),所以-1-a =3a +2, 所以a =-34.当a >0时,1-a <1,1+a >1, 所以f (1-a )=2(1-a )+a =2-a ;f (1+a )=-(1+a )-2a =-3a -1.因为f (1-a )=f (1+a ),所以2-a =-3a -1,所以a =-32(舍去).综上,满足条件的a 的值为-34.三、解答题(13分)7. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >02-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解 (1)∵g (2)=1,∴f (g (2))=f (1)=0, ∵f (2)=3,∴g (f (2))=g (3)=2. (2)f (g (x ))=(g (x ))2-1=⎩⎪⎨⎪⎧x -12-1, x >02-x 2-1, x <0.∴f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0x 2-4x +3,x <0.g (f (x ))=⎩⎪⎨⎪⎧f x -1,f x >02-f x ,f x <0.=⎩⎪⎨⎪⎧x 2-1-1,x 2-1>02-x 2-1,x 2-1<0.∴g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-13-x 2,-1< x <1.。

相关文档
最新文档