稀土材料及其应用A--第五章-热还原制备稀土金属

合集下载

稀土及过渡金属功能配合物的合成与应用研究

稀土及过渡金属功能配合物的合成与应用研究

稀土及过渡金属功能配合物的合成与应用研究稀土及过渡金属功能配合物的合成与应用研究引言:稀土及过渡金属功能配合物在化学、材料科学、生物医学和环境保护等领域具有广泛的应用前景。

它们以其独特的性质,如光电性、荧光性、磁性、催化性和生物活性等,被广泛地应用于传感器、催化剂、发光材料、药物控释和持久污染物的修复等。

本文将介绍稀土及过渡金属功能配合物的合成方法,并探讨其在不同领域中的应用现状和前景。

一、功能配合物的合成方法稀土及过渡金属功能配合物的合成方法多种多样,下面将介绍一些常见的方法。

1. 溶剂热法:溶剂热法是在高温高压条件下合成稀土及过渡金属功能配合物的一种常见方法。

通过选择合适的溶剂和反应条件,可以控制反应过程中的温度和反应速率,从而得到不同形貌和结构的功能配合物。

该方法适用于合成纳米材料和复杂结构的配合物。

2. 水热法:水热法是在高温高压的水介质条件下进行反应合成功能配合物的方法。

水热法不需要有机溶剂,操作简单,具有环境友好的特点。

同时,水热法可以控制物质的结晶生长和形貌形成,制备出具有特殊形貌和结构的功能配合物。

3. 沉淀法:沉淀法是通过控制反应温度、反应时间和溶液pH值等条件,使反应物生成沉淀物,再通过沉淀物的分离和洗涤得到功能配合物。

沉淀法操作简便,适用于大规模合成和工业生产需求。

二、功能配合物在传感领域中的应用1. 光电传感器:稀土及过渡金属功能配合物的荧光性质使其成为理想的荧光探针。

通过设计与合成不同配合物,可以用于气体传感、离子传感和生物传感等方面。

例如,利用稀土配合物的荧光性质,可以实现对金属离子和有机分子的高效检测和分析。

2. 催化剂:稀土及过渡金属功能配合物的催化性质使其在化学合成和能源转化等领域中得到广泛应用。

通过调控配合物的结构和组分,可以实现对于有机反应和氧化还原反应的催化活性提升。

例如,钼系配合物在不对称催化合成领域中具有重要应用,可以用于合成高附加值的有机化合物。

三、功能配合物在材料科学中的应用1. 光电材料:稀土及过渡金属功能配合物在光电领域中被广泛应用。

稀土冶金学第第七章稀土金属及其合金的制取

稀土冶金学第第七章稀土金属及其合金的制取

05
槽型
06
影响电流效率的主要因素
2020

02
2022
出金属及阳极和电解质更换
03
稀土氯化物熔盐电解工艺
稀土氯化物熔盐电解工艺流程
稀土氯化物熔盐电解设备
含氯浓度10~30%的电解尾气,可以采用适当的溶剂(如四氯化碳)吸附尾气中的氯,然后将含氯的溶剂加热或减压,使氯气解析出来,成为高浓度的氯气进行利用。 对含氯浓度小于10%的电解尾气的吸收方法有两种:一是使含氯尾气通过灼热的铁屑制取三氯化铁;二是使含氯尾气通入氢氧化钠或石灰水溶液中,回收次氯酸钠或漂白粉。
影响电流效率的因素:
该工艺是以粉末状的稀土氧化物为溶质,以同种稀土元素的氟化物为主要溶剂、氟化锂、氟化钡为混合熔盐的添加成分。
01
02
03
04
电解工艺:
阴极通常选用钼或钨的金属型材。阳极材质都是石墨,但形式多样。
氟化物熔盐在高温下具有很强的腐蚀性,传统的工业耐火材料都难以用来做稀土氧化物电解槽槽体材料。在生产规模不大的情况下,都用石墨坩埚作电解槽。
3 自耗阴极电解制取稀土合金(Nd-Fe)
7.3 热还原法制取稀土金属
利用活性较强的金属作为还原剂,还原其它金属化合物,制取金属的方法,通称为金属热还原法。 1 金属钙还原REF3制备稀土金属 3Ca + 2REF3 3CaF2 + 2 RE (1450—1750℃) CaF2与RE金属熔点接近,且蒸汽压较低,从而使得反应过程进行得较平稳,热量不易散失,金属易于聚集且易于观察操作。 CaF2渣的流动性好,易与金属的分离,还原剂钙易得又易提纯。 REF3 较RECl3不易吸水。
由于金属呈液态聚集,电解质温度比金属熔点高,这就使电解槽槽体材料和电极材料在选择上受到限制,对于上万安培规模的大型工业槽可能要采用某些难熔金属的材质作槽衬或者采用凝壳技术。

稀土金属及其合金的制取

稀土金属及其合金的制取

电解过程中的总反应式可以表示如下:
RE Cl3 = RE +3/2Cl2
(7-6)
13
在稀土氯化物和碱金属氯化物混合熔体电解中,研究钼 阴极电流密度和电位(相对于氯参比电极)关系的极化曲 线时,可以看出整个阴极过程要比上述情况复杂得多,大 致可以分成如下三个阶段:
(1)较稀土金属平衡电位更正的区间,即阴极电位是在1.0到-2.6伏,阴极电流密度为10-4~10-2A/cm2(通常叫做 残余电流)范围内,电位较正的那些阳离子会在阴极上析 出,例如:
11
二、稀土氯化物熔盐电解的电极过程
根据电解质能够发生电离的原理,由RECl3—KCl组成的电
解质,在熔融状态下也会发生电离作用,化合物离解为能 自由运动的阳离子和阴离子。
氯化稀土将按如下方式离解:
RECl3 = RE+3+3Cl-
氯化钾将按如下方式离解:
(7-1)
KCl = K++ Cl-
4
3、电解质粘度 电解质粘度对稀土电解工艺技术有着不可忽视的影
响。粘度大,金属液滴同电解质难分离,阳极气体逸 出受到的阻力大,难排出。也不利于电解渣泥的沉降, 还会阻碍电解质的循环和离子扩散,因而影响电解的 传热、传质过程。在900℃时,PrCl3和NdCl3的粘度分 别为11.90厘泊和40.80厘泊。而CaCl2和KCl在800℃分 别为4.49和1.08厘泊,NaCl在816℃为11.49厘泊。可见 稀土氯化物比碱金属和碱土金属氯化物的粘度要大得 多。在讨论稀土熔盐电解时,常提到电解质粘度变化 的问题,可惜较少见到有关稀土电解质粘度及其对电 解影响的资料。某些熔融氯化物的粘度见表7-2。它们 显然比常见碱金属和碱土金属氯化物的粘度大。工业 生产混合稀土金属的RECl3-KCl-CaCl2体系比RECl3-KCl体 系的粘度更大一些。

《稀土材料及应用》教学大纲

《稀土材料及应用》教学大纲

《稀土材料及应用》教学大纲一、《稀土材料及应用》课程说明(一)课程代码:08131022(二)课程英文名称:Rare-Earth Material and Application(三)开课对象:材料物理专业方向(四)课程性质:《稀土材料及应用》是材料物理专业的专业选修课程之一,本课程旨在使学生掌握各种稀土材料的性能、制备工艺的同时,培养学生实践能力,培养自学、讲解、协作和分析的综合能力。

要求学习本课程前应修完普通物理、材料物理、普通化学、材料科学基础、无机材料化学、材料制备技术等课程。

(五)教学目的:稀土是我国的优势资源。

目前稀土材料已在国民经济的各个领域获得了广泛的应用。

通过开设本课程,讲授各种稀土材料的设计、制备技术、稀土在新材料开发中的作用机理,了解稀土材料在各个领域的应用现状和发展趋势,从而掌握稀土材料的应用知识,为充分利用我国的稀土资源,发展我国自有知识产权的新型稀土材料培养人才。

(六)教学内容:本课程主要学习稀土材料的基础理论、组织结构、材料性能、制备工艺以及稀土材料在各个领域的应用现状和发展趋势。

内容共分四部分,第一部分介绍稀土的一般物理化学性质、冶炼特点和发展简史;第二部分介绍稀土化合物生产的工艺方法;第三部分稀土金属及合金的制备方法;最后一部分介绍稀土材料的制备和应用。

(七)学时数、学分数及学时数具体分配学时数: 72学时分数: 4学分(八)教学方式以多媒体教学手段为主要形式的课堂教学。

(九)考核方式和成绩记载说明考核方式为考试。

严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。

综合成绩根据平时成绩和期末成绩评定,平时成绩占40% ,期末成绩占60% 。

二、讲授大纲与各章的基本要求第一章稀土概述教学要点:通过本章的教学,使学生初步了解稀土材料的物理化学性质、冶炼特点以及发展历史和前景,了解稀土在地壳中的分布及其在矿物中的赋存状态,了解稀土的主要工业矿物和矿床。

教学时数:8学时教学内容:第一节稀土诸元素和它们的发展简史第二节稀土的一般物理和化学性质及冶炼特点第三节稀土矿物一、稀土在地壳中的分布及其在矿物中的赋存状态二、稀土的主要工业矿物和矿床考核要求:第一节稀土诸元素和它们的发展简史(了解)第二节稀土的一般物理和化学性质及冶炼特点(识记)第三节稀土矿物一、稀土在地壳中的分布及其在矿物中的赋存状态(了解)二、稀土的主要工业矿物和矿床(了解)第二章稀土化合物生产的工艺方法教学要点:通过本章的教学使学生了解稀土化合物生产的工艺方法,掌握稀土精矿的分解方法,掌握稀土精矿的分解方法,掌握单一稀土的分离方法。

《稀土材料及其应用A》-第五章-热还原制备稀土金属

《稀土材料及其应用A》-第五章-热还原制备稀土金属

稀土氧化物氟化炉及旋转机构
1-HF气瓶;2-喷射室;3-电磁线圈;4-压力计;5-联接件;6-四氟乙烯通用密封 件;7-Ni基合金外管;8一Ni基合金内管;9-电炉;l0-收尘器;11-链轮;12-Ni基 合金进口管; 13-水冷吸气剂;14-中和槽; 15-苏打中和液;16-pH计;7- 连结pH计的控制阀;18-阀;19-电动机; 20-连接管;21-轴承支撑件;22 -四氟乙烯密封件
氟化氢铵氟化法的基本特点是氟化率很高,一般可达99% 以上。另外,工艺过程和设备都比较简单,易于操作,反 应温度较低,设备寿命长,劳动条件较好。
RE2O3NH4F.HF氟化炉
1-Ni基合金管;2-电阻炉;3-热电偶;4-干燥空气进口;
5-Ni基合金挡板;6-装有料的容器;7-Ni基合金挡板;8一废气出口
近年来,有人认为要制备高纯无水稀土氟化物,工业上所 用的传统工艺将被淘汰。最佳工艺是将无水氟化氢气体在 低温下与稀土氧化物反应,然后,将得到的氟化物在氩气 和氟化氢混合气氛下在铂坩埚内熔融。
还原剂
稀土金属钙热还原的还原剂常用金属钙,这也是钙热还原的工艺名称的来由。 为制取纯度较高的稀土金属,还原剂钙要进行净化处理,一般制备工业纯稀 土金属,使用蒸馏钙即可满足要求。常用的净化处理采用真空蒸馏的方法, 最后纯度达质量百分数99.9%,其氧、氮等杂质含量要低。但对其具体杂质 含量要求,应视被还原金属的纯度而定。
(G / T) T P

H T2
如参加反应的物质均处于标准态,将范特霍夫等温方程式代入,平衡 常数K与压力无关,并忽略压力对反应热影响。
d ln K H dT RT 2
上式表明温度对平衡常数的影响与反应热有关。

稀土材料第5章

稀土材料第5章

4.中间合金法制取稀土金属 与钙Ca还C原l2生生成成低的熔重点RE低金密属度与的镁炉形渣成,与低R熔E点镁合合金金,分而离Ca。F2 RE镁合金用真空蒸馏法除去Mg、Ca后就可得到海绵 状的重RE金属。通过电弧炉熔化后就得到致密的重RE 金属。该法尤适于制备熔点高、沸点低的钇族RE金属, 如钇、镝镥等金属。
二.熔盐电解法制备稀土金属 熔盐电解法与金属热还原法相比,它具有不使用 金属还原剂、经济方便、可连续生产等优点。因 而被广泛用来制取大量混合RE金属(REM)、单 一RE金属(钐除外)和RE合金。主要是生产铈组 混合RE金属,其次是镧、铈、镨和钕金属。特别 是1983年发明了钕-铁-硼永磁材料以来,作为其 原料的Nd-Fe合金和Pr-Nd-Fe合金等已用熔盐 电解法大量生产。这种方法是在熔盐体系中进行 的,目前常用的有氯化物熔盐体系RECl3KCl(NaCl)和氟化物体系REF3-LiF-BaF2两种类 型。
③任何一种提纯稀土金属的工艺方法都不能同时去除 稀土金属中的各种杂质。即选用上述任何一种提纯方法, 都只能对某些杂质有效,而且提纯效果都是有限的。因 此,在选择提纯方法时应综合考虑杂质的种类、纯度要 求以及所采用的方法对杂质的去除效果,可采用几种方 法相合除去杂质,以制得纯度更高的稀土金属。
五.稀土单晶的制备 稀土金属单晶在稀土金属的磁、电性质的测定和研究 等方面有着重要的应用。稀土金属单晶的制备比起其 它金属单晶的制备却更困难,其主要原因是:①稀土金属 活泼、易被杂质污染;②某些稀土金属蒸气压高;③稀土 金属有相变。 通常金属单晶的制备方法一般都可用来制备稀土金属 单晶,其中主要有电弧熔炼-退火再结晶法,区域熔炼法 和直拉单晶法等。
采用稀土氟化物的钙热还原法制备稀土金属有 以下优点:反应速度快、金属回收率高;热还原产 物稀土金属和氟化钙的熔点相近,氟化钙的蒸气压 低,使反应过程进行得平稳,氟化钙流动性好,便于 金属凝聚和分离;使用的还原剂金属钙易提纯、货 源稳定;稀土氟化物较氯化物不易水解,且还原过 程易于操作。

稀土元素的应用

稀土元素的应用

稀土元素的应用镧的应用非常广泛,应用于各种合金材料、贮氢材料、热电材料、磁阻材料、发光材料、屏蔽涂料、光学玻璃等。

它也应用到制备许多有机化工产品的催化剂中。

在农业上,有科学家把镧对农作物的作用赋与“超级钙”的美称。

1、传统应用(1)钢铁改质剂金属镧加入钢中可脱硫和脱氧,可细化晶粒,形成微合金并改变夹杂物的形态及分布,提高抗氢脆和抗腐蚀能力;加入到铁中可净化铁水,改变石墨形态,防止杂质元素破坏球化作用。

由于钢铁在各个领域应用广泛,金属镧在钢、铸铁等高性能产品发展过程中均扮演着重要的色。

(2)还原剂金属镧与氧在高温下发生还原反应,利用蒸气压差可真空蒸馏分离提纯制备金属钐、金属铥等高蒸气压金属,该工艺简单,污染少。

(3)石油炼制催化剂为了从原油中获得更多的汽油、柴油等轻质油, 必须在石油精炼加工中对重质油采用催化裂化处理, 就必需使用石油裂化催化剂, 稀土分子筛裂化催化剂比不含稀土的催化剂催化活性和热稳定性均有明显提高, 可使轻质油收率提高4%, 使催化剂寿命延长2倍, 炼油成本降低20%, 并使裂化装置生产能力提高30%-50%。

(4)功能陶瓷镧在功能陶瓷材料中具有特别好的应用前景;如在钛酸钡(BaTiO3)电容器陶瓷中加入氧化镧,可明显提高电容器的稳定性和使用寿命,加入1%氧化镧,可延长使用寿命400-500倍。

镧作为固体电解质可用于固体氧化物燃料电池。

他们都具有良好的抗断裂韧性、热稳定性和抗循环疲劳性。

把镧作为主成分加入锆钛酸铅制备(Pb, La)(Zr,Ti)O3, 即电光陶瓷, 可用于强核辐射护目镜、光通讯调制器、全息记录等。

2、应用于新型材料(1)光学玻璃光学玻璃中应用镧既是经典用途,也是目前主要应用领域之一。

镧系光学玻璃具有高折射率和低色散的优良光学特性,可简化光学仪器镜头、消除球差、色差和像质畸变,扩大视场角,提高鉴辨率和成像质量,已广泛用于航空摄像机、高档相机、高档望远镜、高倍显微镜、变焦镜头、广角镜头和潜望镜头等方面,已成为光学精密仪器和设备不可缺少的镜头材料。

金属热还原法制取稀土金属

金属热还原法制取稀土金属

金属热还原法制取稀土金属金属热还原法制取稀土金属(preparation of rare earth metal by metallot}letmic reduction)在高温下用活性较稀土强的金属还原剂将稀土化合物还原成金属的过程。

这是稀土金属制取的重要方法,所用的金属还原剂有钙、锂、镧和铈等。

1826年莫桑德(C.G.Mosande,’)首次用金属钾在氢气气氛下还原氯化铈制得金属铈。

此后一百余年间相继制得金属钆、镧、镨、钕等金属。

1953年达恩(A.H.Daane)和斯佩丁(F.H.Spedding)~.I钙还原稀土氟化物制得致密状金属钇和其他重稀土金属。

同年达恩等又用镧还原氧化钐和氧化镱制得金属钐和镱。

1956年美国卡尔森(O.N.carlson)等人采用钙还原钇的中间合金法制得金属钇。

至20世纪60年代已能用金属热还原法制取纯度超过99%的全部稀土金属。

制取规模为每批数十克至数十千克。

中国从20世纪60年代末开始进行金属热还原法制取稀土金属的研究,70年代初已能制得全部稀土金属,80年代实现大批量生产。

原理用金属还原剂还原稀土化合物,只有当反应的自由能变化AG为负值时,还原反应方可进行。

镁、钙、锂还原稀土卤化物和氧化物的AG值与温度的关系曲线如图。

图中曲线表明,金属镁与稀土卤化物和氧化物反应的AG具有正值或较小的负值,而钙、锂与稀土卤化物反应的AG为负值。

因此,钙、锂可作为还原剂将稀土卤化物还原成稀土金属。

镧和铈能将其他稀土氧化物还原成金属。

方法采用金属热还原法制取稀土金属的前提条件是:被还原的稀土化合物易于制备,纯度高;反应物中非稀土杂质含量少,还原剂纯度在99.9%以上;反应容器与稀土金属及反应物作用小;还原反应须在惰性气体保护下进行(制备钐等在真空下进行)。

主要有稀土氟化物钙热还原法、稀土氯化物钙热还原法、稀土氯化物锂热还原法和稀土氧化物镧、铈热还原法。

稀土氟化物钙热还原法用还原剂金属钙将稀土氟化物还原金属的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档