光电成像原理与技术__24荧光屏_

合集下载

光电成像原理范文

光电成像原理范文

光电成像原理范文光电成像技术是一种通过光电子器件将光信号转化为电信号的技术,广泛应用于工业、医疗、军事等领域。

其原理主要包括光的捕捉、光信号转化和图像显示三个过程。

光的捕捉是光电成像的第一步,通常通过使用光学元件如透镜或反射镜来收集光线。

透镜能够通过折射将光线聚焦于光电子器件的活动面上,而反射镜则通过反射将光线聚焦于光电子器件上。

这样,光电子器件就能够接收到来自物体的光信号。

光信号转化是光电成像的关键步骤,主要通过光电子器件来完成。

常用的光电子器件有光电二极管、光电导、光电二极管阵列等。

当光信号通过光电子器件时,光能会被转化为电能,从而产生电信号。

这就是光电转换原理。

光电子器件通常通过半导体材料,如硅、锗等制成,其半导体材料的导电性能随光照射而变化,从而产生电流或电压信号。

图像显示是光电成像的最后一步,通过处理和展示光电转换得到的电信号来实现。

电信号经过放大、滤波等处理后,可以被传输到显示屏上,并将电信号转化为光信号。

显示屏通常采用液晶技术、LED技术等来实现图像的显示。

光电成像的图像显示质量取决于光电子器件的灵敏度和分辨率,以及显示屏的显示效果。

光电成像技术的应用非常广泛。

在工业领域,光电成像被用于非接触式检测、物体识别、质量检测等。

在医疗领域,光电成像可以进行医学影像和内窥镜检查,帮助医生进行临床诊断和治疗。

在军事领域,光电成像被应用于无人机、夜视仪、导航设备等,提高战场的侦察和作战能力。

然而,光电成像技术也存在一些局限性。

例如,光电子器件的灵敏度和图像分辨率有限,可能无法捕捉到细节较小或光线较弱的物体;光电子器件对环境光的干扰比较敏感,可能会影响图像质量;此外,光电成像技术也受制于光线传输的距离和介质等。

总而言之,光电成像技术是一种通过光电转换将光信号转化为电信号,并通过处理和显示实现图像展示的技术。

其原理包括光的捕捉、光信号转化和图像显示三个过程。

光电成像技术具有广泛的应用前景,在工业、医疗、军事等领域发挥着重要的作用。

光电成像原理与技术考试要点概要

光电成像原理与技术考试要点概要

光电成像原理与技术考试要点第一章:1. 试述光电成像技术对视见光谱域的延伸以及所受到的限制。

答 :[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题[2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。

对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。

因此实际上己排除了波长较长的电磁波的成像作用。

目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。

除了衍射造成分辨力下降限制了将长波电磁波用于成像外, 用于成像的电磁波也存在一个短波限。

通常把这个短波限确定在 X 射线 (Roentgen 射线与 y 射线 (Gamma 射线波段。

这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。

2. 光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?答:[1]应用:(1人眼的视觉特性 (2各种辐射源及目标、背景特性 (3大气光学特性对辐射传输的影响 (4成像光学系统 (5光辐射探测器及致冷器 (6信号的电子学处理 (7图像的显示[2]突破了人眼的限制 :(1可以拓展人眼对不可见辐射的接受能力 (2可以拓展人眼对微弱光图像的探测能力 (3可以捕捉人眼无法分辨的细节 (4可以将超快速现象存储下来3. 光电成像器件可分为哪两大类?各有什么特点?答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管 .[2]电视型:于电视摄像和热成像系统中。

器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像 .4. 什么是变像管?什么是像增强器?试比较二者的异同。

答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。

光电成像原理与技术

光电成像原理与技术
光电成像原理与技术
第一章 绪论
1.1 关于光电成像技术
什么是光电成像技术
AN/AVS-9
AN/PVS-7D
什么是光电成像技术
AN/AVS-9
AN/PVS-7D
什么是光电成像技术
• 以光电子理论、半导体物理和光电转换技术为基础,通 过各类光电成像器件将景物三维的自然反射、辐射转 换 成完成二维景物图像的技术。
长波限:亚毫米波成像(THz波段),分辨率低 短波限:X射线(Roentgen射线) 射线(Gamma射线)
具有强穿透力 (宇宙射线难以在普通条件下成像) 光电成像电磁波谱范围:无线电超短波到射线 有效波谱:亚毫米波、红外辐射、可见光、紫外辐射、X射线、 射线
1.1 关于光电成像技术
1.1.2 光电成像技术的分类与应用 领域




热痕成像

可透过伪装和复杂背景
红外热成像应用领域
❖ 军事应用 ❖警用安防 ❖电力 ❖冶金 ❖石化 ❖制造业
在线过程监控
❖ 建筑检测 ❖食品检测 ❖ 消防救援、海上搜救 ❖ 科研研究、遥感监测 ❖ 动物研究与诊疗 ❖ 医疗诊断、运动康复
红外热成像应用领域
❖ 军事应用
红外热成像应用领域
❖ 警用安防
光电成像技术的本质-扩展人眼的视觉性能
❖ 视见光谱域的延伸(图像变换技术) ❖ 视见灵敏阈的扩展(图像增强技术) ❖ 视见响应时间的拓展 (图像记录、存储技术) ❖ 视见距离的延伸 (图像传输技术) ❖ 视见分辨力的提升(同时使用图像增强与视角放大,提升对比度)
视见光谱域的延伸——受到一定限制
d 0.61 nsin( )
小结
❖ 光电成像技术通过图像增强、变换、记录、存储、传输等技术 手 段,从视觉灵敏度上光谱响应范围上、时间上、空间上纷纷 拓展 了人眼视觉的局限,广泛应用于人类生活的各个领域。

光电成像

光电成像
分辨力 点扩散函数与光学传递函数
光电成像器件的特性
光电转换特性 转换系数(增益)G:评价直视型光电成像器件的输入量与
输出量的依存关系的重要参数--光电成像器件在法线 方向输出的亮度L与输入的辐照度E的比值。
G=
L E
,Gl
L El
,G=
L E
G
表示L 单色光的增益 E
光电成像器件的特性
光电转换特性 光电灵敏度(响应率):评价电视型光电成像器件的输入量
光电成像技术的应用
红外热成像:光线是大家熟悉的。光线是什么?光线就是可见 光,是人眼能够感受的电磁波。可见光的波长为:0.38—0.78 微米。比0.38微米短的电磁波和比0.78微米长的电磁波,人眼 都无法感受。比0.38微米短的电磁波位于可见光光谱紫色以外, 称为紫外线,比0.78微米长的电磁波位于可见光光谱红色以外, 称为红外线。红外线,又称红外辐射,是指波长为0.78~1000 微米的电磁波。其中波长为0.78~2.0微米的部分称为近红外, 波长为2.0~1000微米的部分称为热红外线。
光电成像技术的应用
目标的热图像和目标的可见光图像不同,它不是人眼所能看到 的目标可见光图像,而是目标表面温度分布图像,换一句话说, 红外热成像使人眼不能直接看到目标的表面温度分布,变成人 眼可以看到的代表目标表面温度分布的热图像。
我们周围的物体只有当它们的温度高达1000℃以上时,才能 够发出可见光。相比之下,我们周围所有温度在绝对零度(273℃)以上的物体,都会不停地发出热红外线。例如,我们可 以计算出,一个正常的人所发出的热红外线能量,大约为100瓦。 所以,热红外线(或称热辐射)是自然界中存在最为广泛的辐 射。热辐射除存在的普遍性之外,还有另外两个重要的特性。

光电成像原理与技术答案

光电成像原理与技术答案

光电成像原理与技术答案【篇一:光电成像原理与技术总复习】t>一、重要术语光电成像技术、像管、变像管、像增强器、摄像管(器)、明适(响)应、暗适(响)应、人眼的绝对视觉阈、人眼的阈值对比度、人眼的光谱灵敏度(光谱光视效率)、人眼的分辨率、图像的信噪比、凝视、凝视中心、瞥见时间、瞥见孔径、辐射度量、辐射功率、辐射强度、辐亮度、辐照度、辐射出照度、光度量、光能、光能密度、光通量、光亮度、光出射度,照度,发光强度,光亮度;坎(凯)德拉、流明、勒克司、视见函数、朗伯辐射体、气溶胶粒子、云、雾、霾、霭、大气消光、大气散射、大气吸收、大气能见度(能见距离)、大气透明度、电子透镜、光电子图像、亮度增益、等效背景照度、畸变、像管分辨力(率)、正(负)电子亲(素)和势、负电子亲和势、光电发射的极限、电流密度、mcp的饱和电流密度、荧光、磷光、表面态、微光夜视仪、照明系统的光强分布、成像系统的极限分辨力、选通技术、靶、惰性(上升惰性、衰减惰性)、摄像管的分辨力、动态范围、靶网、居里温度、热释电靶的单畴化、ccd的开启电压、ccd的转移效率、界面态“胖0”工作模式、光注入、电注入。

二、几个重要的效应1. 光电转换效应(内/外)2. 热释电能转换效率(应)3. 三环效应4. mcp的电阻效应/充电效应三、几个重要定律1. 朗伯余弦2. 基尔霍夫3. 黑体辐射(共4个)4. 波盖尔15. 斯托列托夫6. 爱因斯坦四、重要结构及其工作原理、特点1. 直视型光电成像器件的基本结构、工作原理2. 非直视型(电视型)光电成像器件的基本结构、工作原理3. 人眼的结构及其图像形成过程4. 大气层的基本构成、结构特点5. 像管的结构及其成像的物理过程6. 光阴极实现辐射图像光电转换的物理过程(光电发射过程)7. 电子光学系统的基本结构及其成像过程8. 荧光屏的结构及其发光过程9. 光谱纤维面板的结构及其成像原理10. 微通道板(mcp的结构及其电子图像的倍增原理)11. 主动红外成像系统结构及其成像过程12. 夜视成像系统结构及其成像过程13. 摄像管的结构及其工作原理14. 光电导摄像管的结构及其工作原理15. 热释电摄像管的结构及其工作原理16. 电子枪的结构及其工作原理17. mos电容器的结构及其电荷存储原理、18. ccd的结构及其电荷传输原理19. 埋沟ccd(bccd)的结构及其工作原理220. 线阵ccd的结构及其成像原理五、关键器件、系统的性能参数1. 表征光电成像器件的性能参数2. 大气辐射传输过程中,影响光电成像系统的因素3. 表征像管的性能参数4. 表征mcp的性能参数5. 微光成像系统的性能影响因素6. 摄像管的主要性能参数7. 热释电靶的主要性能参数8. 表征ccd的物理性能参数六、其他1. 辐射源的辐射能量所集中的波段2. mcp的自饱和特性3. 像管的直流高压电源的要求4. 受激辐射可见光的条件5. 计算第三章、第四章题型及分值分布:1. 术语解释(15分)2. 选择题(20分)3. 简述题(35分)4. 计算题(30分)各章习题:3第一章(29页):4、5、6、7第二章(53页):6、9第三章(84页):2、3、8、9、13、14第四章(106页):1、6第五章(209页):1、3、4、8、10第六章(244页):1、3、5、24、26第七章(295页):1、2、5、6、7、10、12、16、18第八章(366页):1、2、4、6、7整理by:??/???4【篇二:《光电成像原理与技术》教学大纲】英文名称:principle and technology of photoelectric imaging学分:3.5 学时:56(理论学时:56)先修课程:半导体物理、电动力学、应用光学、物理光学一、目的与任务本课程为电子科学与技术专业(光电子方向)的专业教育必修课程。

光电成像原理与技术答案

光电成像原理与技术答案

光电成像原理与技术答案【篇一:光电成像原理与技术总复习】t>一、重要术语光电成像技术、像管、变像管、像增强器、摄像管(器)、明适(响)应、暗适(响)应、人眼的绝对视觉阈、人眼的阈值对比度、人眼的光谱灵敏度(光谱光视效率)、人眼的分辨率、图像的信噪比、凝视、凝视中心、瞥见时间、瞥见孔径、辐射度量、辐射功率、辐射强度、辐亮度、辐照度、辐射出照度、光度量、光能、光能密度、光通量、光亮度、光出射度,照度,发光强度,光亮度;坎(凯)德拉、流明、勒克司、视见函数、朗伯辐射体、气溶胶粒子、云、雾、霾、霭、大气消光、大气散射、大气吸收、大气能见度(能见距离)、大气透明度、电子透镜、光电子图像、亮度增益、等效背景照度、畸变、像管分辨力(率)、正(负)电子亲(素)和势、负电子亲和势、光电发射的极限、电流密度、mcp的饱和电流密度、荧光、磷光、表面态、微光夜视仪、照明系统的光强分布、成像系统的极限分辨力、选通技术、靶、惰性(上升惰性、衰减惰性)、摄像管的分辨力、动态范围、靶网、居里温度、热释电靶的单畴化、ccd的开启电压、ccd的转移效率、界面态“胖0”工作模式、光注入、电注入。

二、几个重要的效应1. 光电转换效应(内/外)2. 热释电能转换效率(应)3. 三环效应4. mcp的电阻效应/充电效应三、几个重要定律1. 朗伯余弦2. 基尔霍夫3. 黑体辐射(共4个)4. 波盖尔15. 斯托列托夫6. 爱因斯坦四、重要结构及其工作原理、特点1. 直视型光电成像器件的基本结构、工作原理2. 非直视型(电视型)光电成像器件的基本结构、工作原理3. 人眼的结构及其图像形成过程4. 大气层的基本构成、结构特点5. 像管的结构及其成像的物理过程6. 光阴极实现辐射图像光电转换的物理过程(光电发射过程)7. 电子光学系统的基本结构及其成像过程8. 荧光屏的结构及其发光过程9. 光谱纤维面板的结构及其成像原理10. 微通道板(mcp的结构及其电子图像的倍增原理)11. 主动红外成像系统结构及其成像过程12. 夜视成像系统结构及其成像过程13. 摄像管的结构及其工作原理14. 光电导摄像管的结构及其工作原理15. 热释电摄像管的结构及其工作原理16. 电子枪的结构及其工作原理17. mos电容器的结构及其电荷存储原理、18. ccd的结构及其电荷传输原理19. 埋沟ccd(bccd)的结构及其工作原理220. 线阵ccd的结构及其成像原理五、关键器件、系统的性能参数1. 表征光电成像器件的性能参数2. 大气辐射传输过程中,影响光电成像系统的因素3. 表征像管的性能参数4. 表征mcp的性能参数5. 微光成像系统的性能影响因素6. 摄像管的主要性能参数7. 热释电靶的主要性能参数8. 表征ccd的物理性能参数六、其他1. 辐射源的辐射能量所集中的波段2. mcp的自饱和特性3. 像管的直流高压电源的要求4. 受激辐射可见光的条件5. 计算第三章、第四章题型及分值分布:1. 术语解释(15分)2. 选择题(20分)3. 简述题(35分)4. 计算题(30分)各章习题:3第一章(29页):4、5、6、7第二章(53页):6、9第三章(84页):2、3、8、9、13、14第四章(106页):1、6第五章(209页):1、3、4、8、10第六章(244页):1、3、5、24、26第七章(295页):1、2、5、6、7、10、12、16、18第八章(366页):1、2、4、6、7整理by:??/???4【篇二:《光电成像原理与技术》教学大纲】英文名称:principle and technology of photoelectric imaging学分:3.5 学时:56(理论学时:56)先修课程:半导体物理、电动力学、应用光学、物理光学一、目的与任务本课程为电子科学与技术专业(光电子方向)的专业教育必修课程。

光电成像原理

光电成像原理

光电成像原理
光电成像原理是一种利用光电效应将光信号转换为电信号的技术。

这种技术已
经广泛应用于摄影、医学影像、安全监控等领域,成为现代科技发展中不可或缺的一部分。

光电成像原理的基本原理是利用光电二极管或者光电传感器等器件,将光信号
转换为电信号。

当光线照射到光电二极管或者光电传感器上时,光子的能量会激发器件内部的电子,从而产生电流。

通过测量这些电流的大小和变化,就可以得到光信号的信息,从而实现光电成像。

在摄影领域,光电成像原理被应用于数码相机和摄像机中。

传感器接收到光信
号后,会将其转换为数字信号,再经过处理和存储,最终呈现为清晰的图像或视频。

这种技术不仅提高了图像的质量和分辨率,还使得摄影和摄像更加方便和便捷。

在医学影像领域,光电成像原理被应用于X光机、CT扫描仪和MRI等设备中。

这些设备能够通过光电成像原理获取人体内部的影像信息,帮助医生进行诊断和治疗。

光电成像技术的发展,使得医学影像诊断更加准确和可靠。

在安全监控领域,光电成像原理被应用于监控摄像头和红外夜视设备中。

这些
设备能够通过光电成像原理获取周围环境的图像信息,帮助监控人员进行安全监控和防范。

光电成像技术的应用,提高了安全监控的效率和精度。

总的来说,光电成像原理是一种非常重要的技术,它在各个领域都发挥着重要
的作用。

随着科技的不断发展,相信光电成像技术将会有更广阔的应用前景,为人类的生活和工作带来更多的便利和帮助。

第一章_光电成像技术概论

第一章_光电成像技术概论

第一章_光电成像技术概论光电成像技术是指利用光电转换技术,将物体表面反射、散射、透射的光线转化为电信号,再经过信号处理、显示等环节,最终形成清晰可见的物体图像的一种技术手段。

光电成像技术广泛应用于军事、安防、医疗、工业等领域,对于实现目标检测、监控与控制、医学影像、工业检测等方面起着重要作用。

它通过将光信号转化为电信号,能够大大提高物体探测和识别的灵敏度和准确性,并且能够在远距离和恶劣环境条件下工作。

光电成像技术的基本原理是利用光电转换器件将可见光信号转化为电信号。

常见的光电转换器件包括光电二极管、CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)等。

其中,CCD和CMOS是最为常见和重要的光电转换器件。

CCD(Charge-Coupled Device)是一种利用电荷耦合来传输和存储电荷的器件。

它由若干个微小的感光单元组成,每个感光单元可以将光信号转化为电荷信号,并将其存储在感光单元中。

随后,通过移位寄存器的操作,将电荷信号逐个传递到输出端,最终形成整个图像。

CCD具有高灵敏度、低噪声等优点,被广泛应用于照相机、摄像机等成像设备中。

除了光电转换器件,光电成像技术还需要配备适当的光源。

常见的光源包括白炽灯、荧光灯、激光等。

光源的选择要根据不同的应用需求,如照明要求、环境条件等进行合理选择。

光电成像技术不仅仅局限于可见光范围,还可以应用于红外、紫外、X射线等不同波段的成像。

例如,红外光电成像技术可以实现夜视、隐蔽目标探测、热成像等功能;X射线成像技术可以应用于医学影像、安全检查等领域。

总结起来,光电成像技术是利用光电转换器件将物体表面反射、散射、透射的光信号转化为电信号,再经过信号处理和显示等环节,最终形成清晰可见的图像的一种技术手段。

它在军事、安防、医疗、工业等领域有着广泛的应用,并且能够应用于多种波段的成像。

随着科技的不断进步和需求的增加,光电成像技术也将不断发展和完善,为人们的生活和工作带来更多的便利和安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 荧光屏
2.4.1荧光屏的基本结构与发光基本原理
荧光屏的基本结构与发光基本原理
荧光屏上的发光物质
➢晶态磷光体:某些硫化物、氧化物或硅酸盐等粉末状晶体在适当掺杂后具有受激发光的特性,这些材料称为晶态磷光体。

➢荧光:晶态磷光体在受电子激发时,产生的光
发射为荧光;
➢磷光:当电子激发停止后,所持续产生的光发射称为磷光。

❖荧光屏的底层是由晶态磷光体微细颗粒沉积而成的薄层,厚度(5~8μm)略大于颗粒直径(1~5 μm) 。


荧光屏的表层蒸镀了一层厚度约0.1μm 铝膜。

❖蒸镀铝膜的作用:
➢引走积累的负电荷
➢防止光反馈到光阴极
➢使荧光屏形成等电位
➢将光反馈到输出方向荧光屏的构成镀铝荧光屏的剖面图1-铝膜;2-荧光粉层;3-玻璃或光纤面板
荧光层的发光机理-复合发光的固体能带模型
激活剂杂质所构成的局部能态称为发光中心。

①基质中的原子在高能电子轰击下产生电离,会使电离出的电子跃
迁到导带,并在价带留下空穴①,杂质能级的电子受激也会跃迁;⑩
②产生出的空穴和电子分别在价带和导带内进行扩散②④;
③当价带中的空穴扩散到杂质原子附近,就会与局部杂质能级上
的电子相复合,形成了受激电离的发光中心③;
④靠近发光中心产生的受激电子,很容易和近距离的发光中心复合,
而发出短瞬的光,是发光的主体⑨;。

相关文档
最新文档