振动沉桩锤的选型及应用
桩基工程之桩锤的选用

2.适于粉质粘土、松散砂土、黄土和软土,不宜用于岩石、砾石和密实的粘性土地基
射水沉桩
(利用水压力冲刷桩尖处土层,再配以锤击沉桩)
能用于坚硬土层,打桩效率高,桩不易损坏;但设备较多,当附近有建筑物时,水流易使建筑物沉陷;不能用于打斜桩
1.常用锤击法联合使用适于打大截面混凝土空心管桩
2.本表适用于20~60m长预制钢筋混凝土桩及40~60m长钢管桩,且桩尖进入硬土层有一定深度。
1.适于打各种桩
2.最适于套管法打就地灌筑混凝土桩
双动汽锤
(利用蒸汽或压缩空气的压力将锤头上举及下冲,增加夯击能量)
冲击次数多,冲击力大,工作效率高,但设备笨重,移动较困难
1.适于打各种桩,并可用于打斜桩
2.使用压缩空气时,可用于水下打桩
3.可用于拔桩,吊锤打桩
柴油桩锤
(利用燃油爆炸,推动活塞,引起锤头跳动夯击桩顶)
附有桩架、动力等设备,不需要外部能源,机架轻,移动便利,打桩快,燃料消耗少;但桩架高度低,遇硬土或软土不宜使用
1.பைடு நூலகம்适于打钢板桩、木桩
2.在软弱地基打12m以下的混凝土桩
振动桩锤
(利用偏心轮引起激振,通过刚性联结的桩帽传到桩上)
沉桩速度快,适用性强,施工操作简易安全,能打各种桩,并能帮助卷扬机拔桩;但不适于打斜桩
2.5~3.5
标准贯入击数N(未修正)
15~25
20~30
30~40
40~45
45~50
50
锤的常用控制贯入度(cm/10击)
-
2~3
-
3~5
4~8
-
设计单桩极限承载力(kN)
桩基技术交底中的振动锤操作与控制技巧

桩基技术交底中的振动锤操作与控制技巧引言:桩基技术作为一种重要的地基处理方案,已被广泛应用于各类工程中。
在桩基施工中,振动锤作为一种常用的施工设备,发挥着重要的作用。
本文旨在探讨桩基技术交底中的振动锤操作与控制技巧,以提高施工效率和保证施工质量。
一、振动锤的选型和准备工作在进行振动锤操作之前,首先需要选择合适的振动锤型号和参数。
振动锤的选型应根据桩基设计要求、地质条件、工程规模等因素综合考虑。
同时,要对振动锤进行检查和保养,确保其正常工作状态。
二、振动锤操作前的技术准备在实际操作中,振动锤操作前的技术准备非常重要。
首先要对施工场地进行勘察和测量,了解地质情况、荷载要求等。
其次,要进行施工方案的制定和计算,包括桩身、桩长、桩径等参数的确定。
这样可以确保振动锤操作的准确性和施工效果。
三、振动锤操作的基本步骤振动锤操作的基本步骤包括:安装振动锤和夹具、进行振动锤预压、开始振动锤工作、调整振动锤的施工参数、控制振动锤下降速度等。
每个步骤都需要依靠操作人员的经验和技巧,以确保施工的安全性和有效性。
四、振动锤操作中的问题与解决方法在振动锤操作的过程中,可能会出现一些问题,如振动锤无法正常启动、振动力不足、振动锤无法下降等。
针对这些问题,我们需要运用一些解决方法,如检查电源和电路连接、调整振动频率和振动力大小、检查液压系统等。
五、振动锤操作中的注意事项在进行振动锤操作时,需要注意一些事项,以确保施工的顺利进行。
首先,要遵守安全操作规程,并保持操作区域的整洁和通风良好。
其次,要定期检查振动锤的使用寿命和维护情况,及时更换损坏部件。
此外,还需要定期对操作人员进行技术培训和考核,以提高他们的操作技能和安全意识。
六、振动锤控制技巧的提升为了提高振动锤控制技巧,操作人员可以通过多练习和经验积累来提升自己的操作水平。
同时,可以借鉴他人的经验和技巧,并进行不断的学习和研究。
此外,还可以利用现代化的技术手段,如数据采集和分析系统,来监测和优化振动锤的操作过程。
振动锤施打塑料桩设备选型计算

振动锤施打塑料桩设备选型计算1. 引言振动锤是一种用于施打塑料桩的设备,具有施工效率高、施工质量好的特点。
在进行振动锤施打塑料桩操作前,需要进行设备选型计算,以确保选用合适的振动锤设备。
本文将介绍振动锤施打塑料桩设备选型的计算方法和步骤。
2. 设备选型计算步骤2.1 确定施打塑料桩的技术要求在进行设备选型计算前,首先需要明确施打塑料桩的技术要求,包括桩长、桩直径、施打深度等。
2.2 计算桩的体积和单位重量根据塑料桩的尺寸参数,计算桩的体积和单位重量。
根据桩的体积和单位重量,结合施工现场的地质情况,确定合适的振动锤设备。
2.3 根据施打塑料桩的技术要求选择振动锤设备根据施打塑料桩的技术要求,结合振动锤设备的参数和性能参数,选择适合的振动锤设备。
关键考虑因素包括振动频率、振动力、振动幅度等。
2.4 确定振动锤的施打能力根据振动锤的技术参数和施打塑料桩的技术要求,计算振动锤的施打能力,包括最大施打力和最大施打力矩。
2.5 确定振动锤的匹配性通过对比振动锤的施打能力和施打塑料桩的技术要求,确定振动锤的匹配性。
确保振动锤的施打能力满足施打塑料桩的技术要求,并符合施工安全要求。
3. 示例计算以下是一个示例计算的步骤:3.1 技术要求施打塑料桩的技术要求如下:- 桩长:10米- 桩直径:400毫米- 施打深度:8米3.2 计算桩的体积和单位重量根据桩的尺寸参数,计算桩的体积和单位重量:- 桩体积= π * (桩直径/2)^2 * 桩长- 单位重量 = 桩体积 * 塑料桩的密度3.3 选择振动锤设备根据施打塑料桩的技术要求和振动锤设备的参数和性能参数,选择合适的振动锤设备。
考虑因素包括振动频率、振动力、振动幅度等。
3.4 计算振动锤的施打能力根据振动锤的技术参数和施打塑料桩的技术要求,计算振动锤的施打能力,包括最大施打力和最大施打力矩。
3.5 确定振动锤的匹配性比较振动锤的施打能力和施打塑料桩的技术要求,确定振动锤的匹配性。
振动锤施打岩石桩设备选型计算

振动锤施打岩石桩设备选型计算背景在岩石桩施工过程中,振动锤是一种常用的设备。
它通过振动的方式将岩石桩沉入土壤中,提高施工效率和质量。
然而,在选择振动锤设备时,需要综合考虑多个因素,包括振动频率、振动力和施打深度等。
目的本文旨在通过计算和分析,确定振动锤施打岩石桩的最佳设备选型,以提高施工效率和质量。
设备选型计算根据振动锤施打岩石桩的工作原理和施工要求,我们需要考虑以下几个关键参数:1. 振动频率(Hz)振动频率决定了振动锤在单位时间内施打的次数。
根据施工经验,合理的振动频率范围为50Hz至100Hz。
2. 振动力(kN)振动力是振动锤提供的振动力量,直接影响到岩石桩的施打深度和质量。
通常,振动力需要根据岩石桩的尺寸和土壤条件等因素进行计算。
3. 施打深度(m)施打深度是指振动锤将岩石桩沉入土壤中的深度。
施工中需要根据工程要求和土壤条件等因素确定合理的施打深度。
基于以上参数,我们可以进行设备选型计算。
具体步骤如下:1. 确定工程要求和土壤条件等因素。
2. 根据工程要求和土壤条件等因素,选择合适的振动频率范围。
3. 根据岩石桩的尺寸和土壤条件,计算所需的振动力。
4. 根据工程要求和土壤条件等因素,确定合理的施打深度。
5. 根据振动频率、振动力和施打深度等参数,选择适合的振动锤设备。
结论通过设备选型计算,我们可以确定振动锤施打岩石桩的最佳设备选型。
选型准确并合理地配置振动频率、振动力和施打深度等参数,可以提高施工效率和质量,降低施工成本,并确保工程的安全和可靠。
参考文献- 张三, 李四. 岩石桩施工技术手册. 北京: ___, 2018.- 王五, 赵六. 振动锤选型与使用指南. 上海: ___, 2019.。
岩土施工中振动锤选型理论计算与实际应用

第43卷第35期 山 西建筑 V d . 43 No . 352 0 1 7 牟 1 2 月 SHANXI ARCHITECTURE Dec . 2017• 79 •文章编号:1009-6825 (2017) 35-0079-02岩土施工中振动锤选型理论计算与实际应用徐斌尹章权朱俊霏(宁波易通建设有限公司,浙江宁波315800)摘要:对于护筒长度大于5 m 的钻孔灌注桩,需要使用振动锤埋设护筒。
以某LNG 储气罐基桩施工为例,提出了振动锤选型的 理论计算方法。
选型时需要注意振动锤的激振力大小,保证激振力大于埋设护筒时所受到的动侧阻力;可采用极限侧阻力标准值乘以降低率来计算动侧阻力。
上述结论可作为施工同行在振动锤选型时参考。
关键词:振动锤,激振力,动侧阻力,极限侧阻力标准值中图分类号:TU 470文献标识码:A1概述钻孔灌注桩因具有“显著提高单桩承载力,减少桩和承台数量,降低成本;使用灵活、受力明确、计算简洁”等优点,使钻孔灌注桩在跨海桥梁、海上风力发电站、LNG 储气罐等建(构)筑物基 础中得到了广泛的应用,且桩直径、桩长越来越大。
钻孔灌注桩 成孔前需要在桩位处埋设护筒[1,2],护筒有三个作用:1) 控制桩位、导正钻具;2) 防止成孔时孔壁坍塌;3) 作为施工中的测量基准。
护筒埋设工作是钻孔灌注桩施工的开端,护筒位置与垂直度 准确与否,对成孔、成桩质量都有重大影响。
当护筒埋深小于5 m 时,可采用挖埋法,即先在桩位处挖出比护筒外径大30 cm 的圆 坑,然后将护筒竖直向下压到要求深度,用黏土填实护筒与周围 土的间隙。
而跨海桥梁、海上风力发电站、LNG 储气罐钻孔灌注 桩桩长远大于5 m ,护筒埋深一般大于5 m ,需要使用振动锤埋设 护筒。
目前施工中振动锤选型计算尚无规定,计算理论依据也尚不 充分。
本文介绍一种简便实用的方法并以某LNG 储蓄罐桩基工 程为案例介绍振动锤选型,可供同行们参考。
2振动锤组成及工作原理振动锤的组成见图1。
振动锤施打聚合物桩设备选型计算

振动锤施打聚合物桩设备选型计算1. 引言振动锤是一种常用的施打聚合物桩的设备,它通过振动能将桩体与周围土壤分离,使桩体能更容易地施放入地中,并能以较少的阻力达到设计要求。
本文将介绍振动锤在施打聚合物桩时的选型计算方法。
2. 设备选型计算方法在选择振动锤时,需要考虑以下几个关键因素:2.1 桩体特性在计算振动锤的选型时,首先需要明确所施放的聚合物桩的特性,包括桩长、桩径、桩体材料强度、桩身几何形状等。
这些特性将直接影响振动锤的选型。
2.2 桩体的地基情况除了考虑桩体本身的特性外,还需要了解施工地区的地基情况。
地基的类型、土壤的密实程度和层厚度等因素将决定振动锤的选型和施工参数的确定。
2.3 设备参数振动锤的参数也是选型的重要考虑因素,包括振动力大小、频率、摆宽等。
这些参数需要根据施工要求和振动锤的技术指标进行匹配。
2.4 相关标准和规范在选型计算过程中,还需要参考相关的标准和规范,确保设备的选型符合安全和施工质量的要求。
3. 选型计算步骤3.1 基本数据收集收集所需的基本数据,包括聚合物桩的特性、地基情况和施工要求等。
3.2 参数计算根据收集到的数据,进行参数计算。
根据振动锤的特性和地基情况,计算出振动锤的选型参数,包括振动力、频率、摆宽等。
3.3 选型确认根据计算结果,选择符合要求的振动锤型号,并核对所选振动锤的技术指标是否符合标准和规范要求。
3.4 结果分析与优化对计算结果进行分析,评估设备选型的合理性,并根据实际情况进行必要的优化。
4. 结论本文介绍了振动锤施打聚合物桩设备选型计算的方法和步骤。
通过合理的选型计算,可以选择适合施工要求的振动锤设备,提高施打聚合物桩的效率和质量。
桩基工程之桩锤的选用

2.可压截面40cm×40cm以下的钢筋混凝土空心管桩、实心桩
锤重选择表表7-46
锤型
柴油锤(t)
2.0
2.5
3.5
4.5
6.0
7.2
锤的动力性能
冲击部分重(t)
2.0
2.5
3.5
4.5
6.0
7.2
总重(t)
4.5
6.5
7.2
9.6
15.0
18.0
冲击力(kN)
2000
2000~2501
2500~400
4000~5000
5000~7000
7000~10000
常用冲程(m)
1.8~2.3
1.8~2.3
1.8~2.3
1.8~2.3
1.8~2.3
1.8~2.3
适用的桩规格
预制方桩、预应力管桩的边长或直径(cm)
25~35
35~40
40~45
45~50
附有桩架、动力等设备,不需要外部能源,机架轻,移动便利,打桩快,燃料消耗少;但桩架高度低,遇硬土或软土不宜使用
1.最适于打钢板桩、木桩
2.在软弱地基打12m以下的混凝土桩
振动桩锤
(利用偏心轮引起激振,通过刚性联结的桩帽传到桩上)
沉桩速度快,适用性强,施工操作简易安全,能打各种桩,并能帮助卷扬机拔桩;但不适于打斜桩
2.5~3.5
标准贯入击数N(未修正)
15~25
20~30
30~40
40~45
45~50
50
锤的常用控制贯入度(cm/10击)
-
2~3
-
3~5
振动设备选型原则

1、振动设备选型原则(1)振动设备起振力>桩土之间摩擦力;(2)设备重力、桩重力及摩擦阻力之和小于所选起吊设备起重力。
2、振动锤选型参数直径1000mm,壁厚12mm,长27m的钢管桩选型计算如下。
(1)振幅A0振动沉入钢管桩时,使桩发生振动的必要振幅A0,要大于桩接触上的瞬间全部弹性压力,必要振幅对地基的硬度比为:A0≥N/125+0.3=0.342cm其中N为相应土层的标贯击数,本次计算相应土层标贯击数为N=5.25。
(2)偏心力矩K及振动锤必要重力Q B的确定确定了必要振幅A0,便可求出振动锤的偏心力矩K。
K≥A0(QB+QC)式中:Q B为振动锤重力,QB=1644√K;QC为钢管桩重力,钢管桩长27m时重76400N。
从而解得K=366.7N•m,QB=31483N。
(3)起振力P0的确定起振力必须大于土与钢管桩之间的动摩擦力T V,即:P0≥T V=μT式中:T V为动摩擦力;μ为动摩擦系数,与振动加速度η=P0 Q B+Q C =μTQ B+Q C有关;T为静摩擦力,按钢管桩单桩承载力的2倍取值,依据地质及桩入土深度计算单桩承载力为1946.8kN,计算得T=3893.6kN。
将T、Q B、QC代入η=μTQ B+QC得:η=36.1μ(a)又μ=μmin+(1−μ)e−βη式中μmin为动摩擦力系数,取0.05;β为降低系数,钢管桩为0.52。
因此可得:μ=0.05+0.95e−0.52η (b)由式(a)和式(b)得出μ——η曲线,如图。
图中横坐标为η值,纵坐标为μ值。
图中交点即为解值,计算得:μ=0.1311,η=4.7325由此得到P0=η(Q B+Q C)=510.6kN3、振动锤的确定综上所述,所选液压振动锤必须满足以下条件:a.振幅A0≥N/125+0.3=0.342cm;b.偏心力矩K≥366.7N•m;c.振动锤必要质量Q B(包括夹桩器质量)≥3148.3kg;d.起振力P≥P0=510.6kN。