Probe D-branes in Superconformal Field Theories
用于磁共振成像的运动校正的方法和系统[发明专利]
![用于磁共振成像的运动校正的方法和系统[发明专利]](https://img.taocdn.com/s3/m/b8eb18ca2af90242a995e5c8.png)
专利名称:用于磁共振成像的运动校正的方法和系统
专利类型:发明专利
发明人:卡姆莱什·帕瓦尔,陈兆林,纳迪姆·乔尼·沙阿,加里·弗朗西斯·伊根
申请号:CN201980043565.9
申请日:20190514
公开号:CN112368715A
公开日:
20210212
专利内容由知识产权出版社提供
摘要:一种用于减少或去除磁共振(MR)图像中的运动伪影的方法和系统,该方法包括以下步骤:接收运动损坏的MR图像;通过使用神经网络来确定该运动损坏的MR图像中的每个像素的校正的强度值;以及基于针对运动损坏的MR图像中的像素所确定的校正的强度值,来生成运动校正的MR图像。
申请人:蒙纳士大学
地址:澳大利亚维多利亚克莱顿
国籍:AU
代理机构:北京高沃律师事务所
代理人:王爱涛
更多信息请下载全文后查看。
原子力显微镜

2 3
21
24ຫໍສະໝຸດ R[z2 2
1 30
z
8 8
]
F (z)
F (z) z
3 4
21
2
3
R[
z
3 3
2 15
z
9 9
]
3.4 毛细力和AFM在液体中测量
1. 试件表面旳吸附层
化学吸附
物理吸附
亲水
疏水
2. 毛细力及其对AFM测量旳影响
Fa 2Rh / r
在R = 50~100 nm,相对湿度在40~80% 时,毛细力大约在几十nN数量级。
2. 作用力旳检测模式
1) 恒力测量模式;
2) 测量微悬臂形变量旳测量模式; 3) 恒力梯度测量模式;
4) 力梯度测量模式。
3. AFM检测时旳扫描成像模式
AFM检测试件表面微 观形貌时,目前采用 三种不同旳扫描成像 模式: 1)接触扫描成像模式 (contact mode), 2)非接触扫描成像模 式或抬高扫描成像模 式 (non-contact mode或 lift mode), 3)轻敲扫描成像模式
3)轻敲扫描成像模式
AFM轻敲扫描针尖振荡示意图
3.3 探针与试件间旳作用力
1. 探针与试件间旳多种作用力
1)多种长程力和短程力
作用力
磁力
静电力
长
程
毛细力
力
液固界面力
范德华力
粘附力
短
排斥力
程
弱相互作用力
力 强相互作用力
举例 生物铁磁体 磁畴 针类—试件间电容 玻璃上水膜 针尖和试件间凹面
针尖一试件间(R>>Z) 跳跃接触 针尖试件接触
具有功能化栅电极和基电极的纳米柱场效应和结型晶体管[发明专利]
![具有功能化栅电极和基电极的纳米柱场效应和结型晶体管[发明专利]](https://img.taocdn.com/s3/m/55252ea069eae009591bec14.png)
专利名称:具有功能化栅电极和基电极的纳米柱场效应和结型晶体管
专利类型:发明专利
发明人:阿迪蒂亚·拉贾戈帕,杰峰·常,奥利佛·普拉特布格,斯蒂芬·彼得里,阿克塞尔·谢勒,查尔斯·L·奇尔哈特
申请号:CN201380039616.3
申请日:20130712
公开号:CN105408740A
公开日:
20160316
专利内容由知识产权出版社提供
摘要:描述了用于分子感测的系统和方法。
描述的分子传感器基于场效应晶体管或双极结型晶体管。
这些晶体管具有带有与基电极或栅电极接触的功能化层的纳米柱。
该功能化层能够结合分子,这会在传感器中引发电信号。
申请人:加州理工学院,赛诺菲美国服务公司
地址:美国加利福尼亚州
国籍:US
代理机构:北京安信方达知识产权代理有限公司
更多信息请下载全文后查看。
AdsCft在凝聚态中应用简介

Why AdS/CMT ?
• Understand strongly coupled quantum many body systems is difficult.
(Non-fermion liquid, High T SC, interplay between disorder and interaction, metal/insulator phase transition)
The Duality Dictionary
Finite Temperature
Gauge/Gravity Duality as a LAB
Black hole full of answers (Nature 448, 1000-1001 (30 August 2007))
Some Applications
Another example: Area laws for the entanglement entropy - a review,J. Eisert, M. Cramer, M.B. Plenio, arXiv:0808.3773
Ancient thoughts源自• 天地万物莫大于秋毫。《庄子》 • 一花一世界。 •
• What is AdS/CFT?
Applied AdS/CFT
• How it works? • Two typical examples of AdS/CMT • Conclusion and future
What is Gauge/Gravity duality and the position of it
The Conclusion Of Gauge/Gravity (AdS/CFT) Duality Maldacena 1997
PrinciplesofElectronicMaterialsandDevices第三版课后练习题含

Principles of Electronic Materials and Devices 第三版课后练习题含答案1. 课后练习题解答Chapter 1: Introduction1.1 Why are doped semiconductors more conductive than pure semiconductors?Doping introduces impurities into the semiconductor which create either extra electrons (n-type doping) or electron holes (p-type doping). These extra carriers increase the conductivity of the material.1.2 What is the difference between an intrinsic semiconductor and an extrinsic semiconductor?An intrinsic semiconductor is a pure semiconductor without any intentional impurities. An extrinsic semiconductor is a semiconductor with intentionally added impurities.1.3 What are the differences between a metal and a semiconductor?Metals have a high conductivity and a low bandgap, meaning they have many free electrons and can conduct electricity easily. Semiconductors have a moderate conductivity and a moderate bandgap, meaning theyconduct electricity under certn conditions.1.4 What is the difference between a conductor and an insulator?Conductors have a high conductivity and allow electricity to flow easily. Insulators have a low conductivity and do not allow electricity to flow easily.1.5 What are valence electrons?Valence electrons are the outermost electrons in an atom that are involved in chemical bonding.Chapter 2: Crystal Structures2.1 What is a crystal lattice?A crystal lattice is the regular arrangement of atoms in a crystal.2.2 What is a unit cell?A unit cell is the smallest repeating unit of a crystal lattice.2.3 What is coordination number?Coordination number is the number of nearest neighbor atoms surrounding a given atom in a crystal lattice.2.4 What is a Miller index?Miller index is a notation used to describe planes and directions ina crystal lattice.2.5 What is a defect in a crystal lattice?A defect is an irregularity or imperfection in the crystal lattice structure.Chapter 3: Semiconductor Physics3.1 What is Fermi level?Fermi level is the energy level at which there is a 50% chance of an electron being occupied.3.2 What is intrinsic carrier concentration?Intrinsic carrier concentration is the concentration of electrons and holes in an intrinsic semiconductor at a certn temperature.3.3 What is a doping concentration?Doping concentration is the concentration of impurities (dopants) added to a semiconductor to increase conductivity.3.4 What is drift current?Drift current is the current generated by the movement of charge carriers in an electric field.3.5 What is diffusion current?Diffusion current is the current generated by the movement of charge carriers from an area of high concentration to an area of low concentration.2. 参考文献1.S.O. Kasap,。
中南大学汪炼成教授课题组:三维金属-半导体-金属AlN深紫外探测器

中南大学汪炼成教授课题组:三维金属-半导体-金属AlN深紫外探测器汪炼成,物理电子学博士,中南大学特聘教授,博士生导师,微电子科学与工程系副主任,高性能复杂制造国家重点实验室研究员。
博士毕业于中科院半导体研究所, 先后在新加坡南洋理工大学,新加坡科技大学和英国谢菲尔德大学从事博士后研究工作,科研方向为第三代半导体电子/光电子器件和系统集成。
近日,中南大学汪炼成教授(通讯作者)课题组采用MOCVD 在蓝宝石(002)上外延生长了1.5 μm厚的AlN材料,AlN材料相关参数测试为电子浓度1×1014 cm-3,电子迁移率135 cm2V-1s-1,载流子寿命1×10-8 s,对应200 nm光吸收系数1×105 cm-1,XRD测试结果AlN为002面半高宽0.22度,透过率测试结果显示材料吸收波长在200 nm处急速下降。
在材料参数测试完以后,作者对AlN材料进行光刻,形成叉指电极图案,然后采用ICP(ICP Power (W): 450; (RF) / 75, Cl2: 40 sccm, BCl3: 5sccmAr2: 5sccm)刻蚀深度分别为0.5 μm、1.0 μm和1.3 μm。
再采用磁控溅射沉积1.4 μm厚的Ni金属,最后采用丙酮去除光刻胶和多余Ni金属得到3D-MSM器件,并且把刻蚀1.3 μm器件倒装键合在有基板电路的硅衬底上,形成背入射式FC-3DMSM 器件。
同时,作者也制作了未刻蚀的MSM器件作为对比。
器件制作完成后,采用紫外测试系统对器件进行光电特性测试,测试系统包括光学平台、卓立汉光氘灯(ZOLIX LSDS-30-DZ01, Spectrum: 180-400 nm, Power: 30 W)、单色仪(Bandpass: 5 nm),光功率计、屏蔽箱和吉时利4200 SCS参数分析仪。
测试结果显示在8V偏压下FC-3DMSM、3D-MSM (0.5 μm)、3D-MSM (1 μm)光电流比未刻蚀MSM器件分别增大78%、52%、48%;在2V偏压下200 nm光波长处MSM、3D-MSM (0.5 μm)、FC-3DMSM器件响应度分别为0.0065 A/W、0.008 A/W和0.0096 A/W,3D-MSM(0.5 μm)和FC-3DMSM 器件比MSM器件响应度提高23%和47%。
光学超分辨突破光学衍射极限的挑战

光学超分辨突破光学衍射极限的挑战光学超分辨技术一直以来都面临着一个重大挑战,即光学衍射极限的限制。
根据光学原理,当物体的尺寸小于光波的波长时,光学显微镜无法观察到其细节。
然而,随着科技的不断发展,人们对于超越光学衍射极限的需求也越来越迫切。
在近年来,随着光学超分辨技术的不断突破,一种全新的视野正在展开。
光学超分辨技术的突破主要依赖于两种关键技术,即近场光学显微镜和荧光标记。
1. 近场光学显微镜近场光学显微镜是一种能够绕过光学衍射极限的显微镜技术。
光学显微镜为我们提供了观察微观世界的途径,然而,其分辨率一直受到限制。
近场光学显微镜通过在物体和探测器之间引入纳米刻度的探测器探头,使得探测器能够接近或直接接触被观察物体表面,从而绕过了光学衍射极限。
这种技术的发展极大地拓宽了我们对微观领域的认知。
2. 荧光标记技术荧光标记技术是另一种突破光学衍射极限的重要技术。
利用荧光标记,科学家们能够将荧光标记剂附着在被观察对象的表面或内部,从而对其进行标记。
这些荧光标记剂能够发光,并且能够通过特定的光源进行激发。
通过对荧光标记的观察和分析,科学家们能够获得超过光学衍射极限的分辨率。
这一技术的应用广泛,涵盖了生物医学研究、纳米材料研究等领域。
然而,值得注意的是,光学超分辨技术的突破并非毫无限制。
其存在一定的条件限制和技术难题。
例如,对于近场光学显微镜来说,由于纳米刻度探测器的制造和操作难度较大,其运用仍面临挑战。
同时,荧光标记技术也需要克服标记剂的选择、标记过程的可靠性等问题。
对于这些挑战,科学家们正在不断探索和研究,以期开拓更广阔的研究领域并提出更有效的解决方案。
总结而言,光学超分辨突破光学衍射极限的挑战是一个具有挑战性和前瞻性的课题。
通过近场光学显微镜和荧光标记技术的应用,科学家们正在突破光学衍射极限,实现对微观领域的更细致观察和研究。
尽管还存在一些技术难题,但相信在不久的将来,光学超分辨技术将会得到更为广泛的应用,为科学研究和各个领域的发展带来新的突破。
有机光敏器件[发明专利]
![有机光敏器件[发明专利]](https://img.taocdn.com/s3/m/7c8049222cc58bd63086bdd4.png)
专利名称:有机光敏器件
专利类型:发明专利
发明人:巴里·P·兰德,斯蒂芬·福里斯特申请号:CN200910252647.2
申请日:20050804
公开号:CN101728486A
公开日:
20100609
专利内容由知识产权出版社提供
摘要:本发明涉及有机光敏器件,尤其是涉及具有包含表现出等离子体激元共振的密封纳米微粒的光激活有机区的有机光敏光电子器件。
入射光场的增强经由表面等离子体激元极化子共振实现。
该增强增加入射光的吸收,产生更有效的器件。
申请人:普林斯顿大学理事会
地址:美国新泽西
国籍:US
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:秦晨
更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ar Xiv:hep -th /702005v 2 6 M a r 2007pop header will be provided by the publisher∗Corresponding author E-mail:jedels-at-usc-dot-es ,Phone:+34981563100x.13980,Fax:+349815210911For the sake of reducing supersymmetry (while also giving up conformal invariance),another avenue involving higher dimen-sional D–branes wrapping supersymmetric cycles of Y 6has been explored [2](see [3]for a recent review with updated references).2It is convenient to clarify at this point that they are not independent:Y p,q happens to be a subfamily of L a,b,c (indeed,Y p,q =L p −q,p +q,p ),and –an orbifold of–T 1,1can be obtained as a singular limit of Y p,q (meaningly,Y p,0=T 1,1/Z p ).2Jos´e D.Edelstein:Probe D–branes in Superconformal Field TheoriesX 5Bifundamental Chiral Fields SU (2)× SU(2)×U (1)2Y p,q U α[−p ]p ,V α[q ]q ,Y [p −q ]p +q ,Z [p +q ]p −q U (1)×U (1)×U (1)a +bTable 1Data corresponding to the quiver N =1theories under discussion.In the third column,there is an upper index αused for doublet fields (with respect to the appropriate SU (2)factor),there is a subindex that indicates the degeneracy (i.e.,how many bifundamental chiral fields have the same quantum numbers),and there is an upper label in brackets that displays the U (1)B charge.The gauge group of each theory is SU (N c )×···×SU (N c ),N gg times.Extended objects in the gauge theory side also correspond to wrapped D–branes in the string theory side.String-like objects as confining or fat strings arise from D3–branes wrapping 2-cycles.Domain walls ,fractional branes and defect CFTs are given by D5–branes wrapping 2-cycles in X 5.The introduc-tion of matter hypermultiples –that is,quarks in the fundamental representation–,requires spacetime filling wrapped D7–branes [14].If the number of wrapped D–branes is much less than N c ,we can stick to the probe approximation.For instance,this is the case when matter is introduced in the quenched approxima-tion,N f ≪N c .This is the framework considered in the present talk.2Some geometrical factsLet us consider a solution of IIB supergravity whose metric is of the form ds 2=ds 2AdS 5+ds 2X 5(wechoose,for simplicity,a unit radius L =1for both spaces).The metrics ds 2X 5can be locally written asds 2X 5=ds 24+12dσ.It is natural to introduce the followingvielbein basis in Y 6,{dr,e a ,e 5},a =1...4,such that,for example,J 4=e 1∧e 2−e 3∧e 4,and the holomorphic 2-form reads Ω4=(e 1+ie 2)∧(e 3+ie 4).A set of local complex coordinates,{z 1,z 2,z 3},can be identified,such that the holomorphic 3-form reads Ω=e iψr 2Ω4∧ dr +i r e 5 =dz 1∧dz 2∧dz 32˜ψr −Γ∗2x αΓrx α(1+Γ∗) η,(3)where Γ12η=−iη,Γ34η=iη,and ˜ψis the angle conjugated to the U (1)R –symmetry.Consider a Dp–brane probe in AdS 5×X 5.The embedding can be characterized by the set of functions X M (ξµ),where ξµare the worldvolume coordinates.The supersymmetric embeddings are obtained by imposing the condition Γκǫ=ǫ,where ǫis a Killing spinor of the background [15],and Γκis a matrix that depends on the embedding [16].Thus,Γκǫ=ǫis a new projection giving rise to BPS equations that determine the supersymmetric embeddings of the brane probes.It is a local condition that must be satisfied at any point of the probe worldvolume.pop header will be provided by the publisher32N cVol(C3)3∆.Its baryonnumber(in units of N c)can be obtained as the integral of the pullback of a(2,1)-form[17], B(C3)=±i k X5 C3P dr2J∧J D4=Vol(D4),(6)where Vol(D4)=r3dr∧Vol(C3)is the volume form of the divisor.Some of these embeddings can be understood as excitations of the dibaryons in the case of T1,1[18].However,it is important to stress that this local condition does not always make sense globally.We have seen examples of this feature in Y p,q [19]and L a,b,c[20].3Excitations of a singlet dibaryon can be represented as gravitonfluctuations in the presence of the dibaryon.Instead,certain BPS excitations of the wrapped D3–branes corresponding to doublet dibaryons can be interpreted as a single particle state in AdS5[13].These excitations,roughly speaking,correspond to the insertion of a mesonic operator O.Thus,we have to count all possible inequivalent(in the chiral ring) mesonic operators.4They correspond to(short and long)loops in the quiver diagram[22].The simplest ones are operators with R-charge2,given by short loops in the quiver.These are the terms appearing in the tree level superpotential.They are all equivalent in the chiral ring.Let us call its representative O1.It is a spin1chiral operator with scaling dimension∆=3.Its U(1)F charge vanishes.As for the long loops in the quiver,let us focus in the only non-trivial case,X5=Y p,q.There aretwo operators O2and O3with spin,respectively,p+q2.They have a nonvanishing U(1)F charge.4Jos´e D.Edelstein:Probe D–branes in Superconformal Field Theories−det(g+F)+T5 d6ξA∧F(5).(7)We were unable tofind a supersymmetric configuration.From the point of view ofκ–symmetry,it turns out that the new projection,Γκǫ=Γx0rǫ∗=ǫ,which,as expected,corresponds to fundamental strings in the radial direction,cannot be imposed on the Killing spinors.Besides,it is also possible to show that,from the point of view of the worldvolume theory,there are no solitons saturating a Bogomol’nyi bound.Thus, we conclude from this incompatibility argument that the baryon vertex configuration breaks completely the supersymmetry of the AdS5×X5background.5Fractional braneConsider a D5–brane probe that wraps a two-dimensional submanifold L2of X5and is a codimension one object in AdS5.In thefield theory side,this is the kind of brane that represents a domain wall across which the rank of the gauge groups jumps.The upshot of the detailed analysis accomplished in[18,19,20]is as follows.We have shown that the cone L3=C(L2),is calibrated.Indeed,the holomorphic(3,0)formΩof C(X5)–see eq.(2)–,can be naturally used to calibrate such submanifolds:L3is called a special Lagrangian submanifold of C(X5)if the pullback ofΩto L3is,up to a constant phaseλ,equal to its volume, P Ω L3=e iλVol(L3).(8) The fractional brane can be also understood as a BPS worldvolume soliton.This arises from the Hamilto-nian density resulting from the DBI action,since it can be written as a sum of squares in such a way that it becomes minimum when a set of BPS differential equations are satisfied.Not surprisingly,they agree with those obtained from theκ–symmetry approach.6Flavor D7–branesThe D7-branes whichfill the four Minkowski spacetime dimensions and extend along some holographic non-compact direction can be potentially used asflavor branes,i.e.as branes whosefluctuations can be identified with the dynamical mesons of the gauge theory[14].The ansatz we adopt for the worldvolume coordinates isξµ=(xα,θβ),and we consider embeddings of the form r=r(θβ)andψ=ψ(θβ).In order to implementΓκǫ=ǫ,we shall require that the spinorǫis an eigenvector of the matrixΓ∗defined above.These configurations preserve the four ordinary supersymmetries of the background.By means of theκ–symmetry technique,it is possible to show that a generic configuration can be nicely written as a holomorphic embedding[18,19,20]z m11z m22z m33=constant,(9)pop header will be provided by the publisher5。