数学·必修5(苏教版)练习:第1章1.1正弦定理含解析
苏教版高中数学必修五第1章1.1正弦定理同步练测.docx

高中数学学习材料马鸣风萧萧*整理制作1.1 正弦定理(必修5苏教版)建议用时实际用时满分实际得分45分钟100分一、填空题(每小题4分,共40分)1.在△ABC中,a=15,b=10,A=60°,则cos B= .2.已知锐角 A 是△ABC的一个内角,a,b,c是三角形中各内角的对应边,若sin2A-cos2A=12,则下列各式正确的是 .(1)b+c=2a;(2)b+c 2a;(3)b+c ≤2a;(4)b+c≥2a.3.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=2,b=2,sin B+cos B=2,则角A的大小为________.4.在△ABC中,D为边BC上一点,BD=12 DC,∠ADB=120°,AD=2.若△ADC的面积为3-3,则∠BAC=________.5.在△ABC中,B=45°,C=60°,c=1,则最短边的边长是 .6.在△ABC中,asinB=bsinC=csinA,则△ABC 是三角形.(填等边三角形、等腰三角形、直角三角形)7.一只船自西向东航行,上午10时到达灯塔P的南偏西75°、距灯塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船航行的速度为 .8.如图,AA1与BB1相交于点O,AB∥A1B1且AB=12A1B1.若△AOB的外接圆的直径为1,则△A1OB1的外接圆的直径为________.9.一只船以每小时15 km的速度向东航行,船在A处看到一灯塔M在北偏东60°方向,行驶4 h后,船到达B处,看到这座灯塔在北偏东15°方向,这时船与灯塔的距离为________km.10.在△ABC中,已知sin :sin :sin 2:2:3A B C =, 则::a b c = .二、解答题(共60分)11.(15分)已知在△ABC 中,10c =,45A =,30C =,解三角形.12.(15分)在△ABC 中,6c =,2a =,45A =,求b 和,B C .13.(15分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a 1tanA +b 1tanB,求内角C.14. (15分)在△ABC 中,s i n c o s A A +=22,AC =2,AB =3,求A tan 的值和△ABC 的面积.1.1 正弦定理答题纸得分:一、填空题1. 2. 3. 4. 5. 6.7. 8. 9. 10.二、解答题11.12.13.14.1.1 正弦定理参考答案1.63 解析:依题意得0° B 60°,由正弦定理得sin sin a b A B =得sin B =sin b A a=33,cos B =1-sin 2B =63,故填63. 2.(3) 解析:由sin 2A -cos 2A =12,得cos 2A =-12,又A 是锐角,所以A =60°,于是B +C =120°.所以b +c 2a =sin sin 2sin B CA+=2sinB +C 2cos B -C23=cosB -C2≤1,即b +c ≤2a. 3.π6 解析:由sin B +cos B =2sin ⎝ ⎛⎭⎪⎫B +π4=2,得sin ⎝⎛⎭⎪⎫B +π4=1,所以B =π4.由正弦定理sin sin a b A B =,得sin A =sin a Bb=2·sin π42=12,所以A =π6或5π6(舍去). 4. 60° 解析:由∠ADB =120°知∠ADC =60°,又因为AD =2,所以S △ADC =12AD ·DC ∙sin 60°=3-3,所以DC =2(3-1).又因为BD =12DC ,所以BD =3-1.过A 点作AE ⊥BC于E 点,则S △ADC =12DC ·AE =3-3,所以AE = 3.又在直角三角形AED 中,DE =1,所以BE= 3.在直角三角形ABE 中,BE =AE ,所以△ABE 是等腰直角三角形,所以∠ABC =45°.在直角三角形AEC 中,EC =23-3,所以tan ∠ACE =AE EC =323-3= 2+3,所以∠ACE =75°,所以∠BAC =180°-75°-45°=60°.5.63 解析:由sin sin c b C B =,得b =sin sin c B C =sin 45sin 60︒︒=63, ∵ 角B 最小,∴ 最短边是b.6. 等边 解析:因为a sinB =b sinC =c sinA .由正弦定理a sinA =b sinB =csinC,得sin A =sin B =sin C ,∴ A =B =C ,∴ a =b =c.故填等边三角形. 7.1726 海里/时 解析:如图,由题意知∠MPN =75°+45°=120°,∠PNM =45°.在△PMN 中,由正弦定理,得MN sin120°=PMsin45°,∴ MN =68×3222=346(海里).又由M 到N 所用的时间为 14-10=4(小时),∴ 船的航行速度v =3464=1726(海里/时).8.2 解析:在△AOB 中,由正弦定理得ABsin∠AOB=1,∴ sin ∠AOB =AB.在△A 1OB 1中,由正弦定理得2R =A 1B 1sin∠A 1OB 1=A 1B 1AB =2.9.30 2 解析:如图,依题意有 AB =15×4=60(km ),∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得60sin45°=BMsin30°,解得BM =302(km).10. 2:2:3 解析:根据正弦定理sin sin sin a b cA B C==,得::s i n :s i n :s i n2a b c A B C == 11.分析:先将已知条件表示在示意图上(如图所示),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b .解:sin sin a cA C =, ∴ sin 10sin 45102sin sin 30c A a C ⨯===, ∴ 180()105B A C =-+=. 又sin sin b cB C=, ∴ sin 10sin1056220sin 75205652sin sin 304c B b C ⨯+====⨯=+. 12.解:∵sin sin a cA C=,∴ sin 6sin 453sin 22c A C a ⨯===. ∵ 0180C ︒<<,∴ 60C =或120C =, 当60C =时,75B =,sin 6sin 7531sin sin 60c B b C ===+; 当120C =时,15B =,sin 6sin1531sin sin 60c B b C ===-. ∴ 31,75,60b B C =+==或31,15,120b B C =-==.13.解:由a +b =a1tanA +b 1tanB及正弦定理得 sin A +sin B =cos A +cos B ,即sin A -cos A =cos B -sin B , 从而sin Acosπ4-cos Asin π4=cos B sin π4-sin Bcos π4, 即sin ⎝ ⎛⎭⎪⎫A -π4=sin ⎝ ⎛⎭⎪⎫π4-B .又0 A +B π,故A -π4=π4-B ,即A +B =π2,所以C =π2. 14.解法一:先解三角函数方程,求出角A 的值..21)45cos(,22)45cos(2cos sin =-∴=-=+ A A A A又0180 <<A , 4560,105.A A ∴-==13tan tan(4560)2313A +∴=+==---, .46260sin 45cos 60cos 45sin )6045sin(105sin sin +=+=+== A S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin (). 解法二:由sin cos A A +计算它的对偶关系式sin A-cos A 的值. sin cos A A +=22, ① .0cos ,0sin ,1800.21cos sin 2.21)cos (sin 2<>∴<<-=∴=+∴A A A A A A A 又23cos sin 21)cos (sin 2=-=-A A A A , ∴-=sin cos A A 62. ②①+ ②,得sin A=+264.①-②,得cos A=-264.从而sin264tan23 cos426AAA+==⨯=---.以下解法同解法一.。
高中数学苏教版必修5 1.1第一课时 正弦定理 作业 Word版含解析

[学业水平训练]一、填空题1.在△ABC 中,a =7,c =5,则sin A ∶sin C 的值是________.解析:由正弦定理得sin A =a 2R ,sin C =c 2R, ∴sin A ∶sin C =a 2R ∶c 2R=a ∶c =7∶5. 答案:7∶52.在△ABC 中,已知a =2,b =22,A =30°,则B =________.解析:由正弦定理,可得sin B =22. ∵b >a ,∴B >A =30°,∴B =45°或135°.答案:45°或135°3.在△ABC 中,sin A ∶sin B ∶sin C =5∶6∶7,且三角形的周长为36,则其三边长分别为________.解析:由正弦定理,可得a ∶b ∶c =5∶6∶7.从而a =10,b =12,c =14.答案:10,12,144.在△ABC 中,已知A =135°,B =15°,c =2,则△ABC 中最长边的长为________.解析:设最长边为a ,利用正弦定理及三角形内角和定理,可得a =c sin C ·sin A =2sin30°×sin135°=2 2.即△ABC 中最长边的长为2 2.答案:2 25.(2014·南京调研)△ABC 中,A 、B 、C 所对的边分别为a 、b 、c ,且满足c sin A =a cos C ,则角C =________.解析:由c sin A =a cos C 结合正弦定理可得sin C sin A =sin A cos C ,且sin A ≠0,所以tan C =1,C ∈(0,π),故C =π4. 答案:π46.在△ABC 中,如果A ∶B ∶C =2∶3∶7,那么a ∶b =________.解析:由已知A =30°,B =45°,则a ∶b =sin30°∶sin45°=1∶ 2.答案:1∶ 27.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________. 解析:∵sin B +cos B =2sin ⎝ ⎛⎭⎪⎫π4+B =2, ∴sin ⎝ ⎛⎭⎪⎫π4+B =1. 又0<B <π,∴B =π4. 由正弦定理,得sin A =a sin B b =2×222=12.又a <b ,∴A <B ,∴A =π6. 答案:π6二、解答题8.在△ABC 中,求证a -c cos B b -c cos A =sin B sin A. 证明:由正弦定理a sin A =b sin B =c sin C=2R , 得a =2R sin A ,b =2R sin B ,c =2R sin C .左边=2R sin A -2R sin C ·cos B 2R sin B -2R sin C ·cos A=sin A -sin C ·cos B sin B -sin C ·cos A=sin (B +C )-sin C ·cos B sin (A +C )-sin C ·cos A=sin B ·cos C +cos B ·sin C -sin C ·cos B sin A ·cos C +cos A ·sin C -sin C ·cos A=sin B ·cos C sin A ·cos C=sin B sin A =右边, 所以a -c cos B b -c cos A=sin B sin A . 9.在△ABC 中,已知c =10,A =45°,C =30°,求a ,b 和B .解:由正弦定理知,a =c sin C ·sin A =10sin30°×sin45°=102,B =180°-A -C =105°, ∴b =a sin A ·sin B =102sin45°×sin105° =56+5 2.[高考水平训练]一、填空题1.下列判断三角形解的情况,正确的是________.①a =8,b =16,A =30°,有两解;②b =18,c =20,B =60°,有一解;③a =15,b =2,A =90°,无解;④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°有一解.综上,④正确.答案:④2.在锐角三角形ABC 中,A =2B ,边a ,b ,c 所对的角分别为A ,B ,C ,则a b的取值范围为________.解析:在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知,a b =sin A sin B =sin2B sin B =2cos B ∈(2,3),故a b的取值范围是(2,3). 答案:(2,3)二、解答题3.在△ABC 中,设cos B 3b =cos C 2c =cos A a,求cos A 的值. 解:由正弦定理,得cos B 3sin B =cos C 2sin C =cos A sin A⇒ ⎩⎨⎧tan B =13tan A ,tan C =12tan A . 又tan A =-tan(B +C )=-tan B +tan C1-tan B tan C =-5tan A 6-tan 2A⇒tan 2A =11⇒cos A =±36. 由题设,负值应舍去,故cos A =36. 4.设函数f (x )=cos(2x +π3)+sin 2x . (1)求函数f (x )的最小正周期;(2)设△ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,若c =6,cos B =13,f (C 2)=-14,求b . 解:(1)f (x )=cos(2x +π3)+sin 2x =cos2x cos π3-sin2x sin π3+1-cos2x 2=12cos2x -32sin2x +12-12cos2x =-32sin2x +12. ∵ω=2,∴T =2πω=π. ∴函数f (x )的最小正周期为π. (2)由(1)得,f (x )=-32sin2x +12, ∴f (C 2)=-32sin(2×C 2)+12=-32sin C +12. 又f (C 2)=-14, ∴-32sin C +12=-14,∴sin C =32.∵在△ABC 中,cos B =13, ∴sin B =1-(13)2=223, ∴由正弦定理b sin B =c sin C, 得b =c ·sin B sin C =6·22332=83. ∴b =83.。
高中数学 第一章 解三角形课时训练 苏教版必修5

第一章 解三角形§1.1 正弦定理和余弦定理1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C 解析 由a sin A =bsin B得sin B =b sin Aa=2sin 60°3=22. ∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C , ∴AB =BC sin C sin A =1³sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22³2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb=2³222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题:1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4kc +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12³63³12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin B +C -sin C cos B sin A +C -sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12³2³107³45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+432-1322³7³43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ²a 2+b 2-c 22ab +c ²c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ²2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2³2³4³cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22²AB ²AC =92+82-722³9³8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2²AC 2²AB cos A =42+92-2³4³9³23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010²潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22³BC ³AC =22,∴sin C =22. ∴AD =AC ²sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab,代入已知条件得 a ²b 2+c 2-a 22bc +b ²a 2+c 2-b 22ac +c ²c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722³3³5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3³2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ²AC ²sin A=12AB ²AC ²sin 60°=23, ∴AB ²AC =8,BC 2=AB 2+AC 2-2AB ²AC ²cos A=AB 2+AC 2-AB ²AC =(AB +AC )2-3AB ²AC ,∴(AB +AC )2=BC 2+3AB ²AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin A -B sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ²cos B -sin Bsin C²cos A=a c ²a 2+c 2-b 22ac -b c ²b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin A -B sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且²=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵ ²=-21,∴ ²=21. ∴² = ||²||²cosB = accosB = 21.∴ac=35,∵cosB =53,∴ sinB = 54. ∴S △ABC = 21acsinB = 21³35³54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542³45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设² =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin A +C sin 2B =sin B sin 2B =1sin B =477. (2)由BA ² =23得ca ²cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ²cos B ,得a 2+c 2=b 2+2ac ²cos B =5,∴(a +c )2=a 2+c 2+2ac=5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°. 由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ²sin∠ACBsin ∠ABC =50³2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )²6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BCsin ∠CAB=ABsin ∠ACB∴BC =1sin 60°²sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ²sin 75°=6-223²6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126³2232=24(n mile). (2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ²AC ²cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ²BC ²cos 45°=34+616-2³32³64³22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km. 能力提升 13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2³20t ³40²cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1²t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302³2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1²A 1B 2²cos 45°=202+(102)2-2³20³102³22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220³60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解. 2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60sin 45°-30°=PBsin 30°,PB =60³12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600²sin 2θ=2003²sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003²sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ²BC cos 120°=a 2+a 2-2a 2²⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ²AC ²sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ²AC ²cos A=82+52-2³8³5³12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622³12³12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )²r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2³10³9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin 90°-α=BCsin α-β,∴AC =BC cos αsin α-β=h cos αsin α-β. 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin α-β. 即山高CD 为h cos αsin βsin α-β.12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ²AD ²sin A +12BC ²CD ²sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ²AD +BC ²CD )²sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2³2³4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2³4³6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =BE -FC 2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ²EF=1302+1502-102³2982³130³150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30, ∴BC =30,BD =30tan 30°=30 3. 在△BCD 中,CD 2=BC 2+BD 2-2BC ²BD ²cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ²sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0), ∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m 2k +1>2mk 3mk >m k +1,∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin α-β B.a sin αsin βcos α-β C.a sin αcos βsin α-β D.a cos αcos βcos α-β 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin α-β=ADsin β.∴a sin α-β=h sin αsin β,∴h =a sin αsin βsin α-β. 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ²AB ²sin 60°=12³16³AB ³32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ²AC cos 60°=552+162-2³16³55³12=2 401.∴BC =49.6.(2010²天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b =6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ²23b=6b243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12³3³5³45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A =____________.答案2393 解析 由S =12bc sin A =12³1³c ³32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2。
必修5_第一章_正弦定理和余弦定理_知识点及典型例题全新

正弦定理和余弦定理要点梳理1.正弦定理其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2Rsin A ,b =2Rsin B ,c =2Rsin C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题. 2.三角形面积公式S △ABC =12absin C =12bcsin A =12acsin B =abc 4R =12(a +b +c)·r(r 是三角形内切圆的半径),并可由此计算R 、r.3.余弦定理:222222222a b c 2bccos A b a c 2accos B c a b 2abcos C =+-,=+-,=+-.余弦定理可以变形为:cos A =222b c a2bc+-,cos B =222a c b 2ac +-,cos C =222a b c 2ab+-.4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角. 情况(2)中结果可能有一解、二解、无解,应注意区分. 余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.基础自测1.在△ABC 中,若b =1,c =3,C =2π3,则a = 1 .2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =________.3.在△AB =5,AC =5,且cos C =910,则BC = 4或5 . 4.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( C )A .2 2B .8 2 C. 2 D.222sin sin sin a b cR A B C===题型分类 深度剖析题型一 利用正弦定理求解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断. 解: 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32.∵a >b ,∴A =60°或A =120°. 当A =60°时,C =180°-45°-60°=75°,c =bsin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =bsin Csin B =6-22.探究提高 (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.变式训练1 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则A =6π解析 ∵A +C =2B ,∴B =π3. 由正弦定理知sin A =a sin B b =12.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =b2a c-+.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.变式训练2已知A 、B 、C 为△ABC 的三个内角,其所对的边分别为a 、b 、c ,且2A2cos+cos A=02. (1)求角A 的值; (2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2A 2cos+cos A=02,得1+cos A +cos A =0,即cos A =-12. ∵0<A <π,∴A =2π3.(2)由余弦定理得, a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4,故S △ABC =12bcsin A = 3.题型三 正、余弦定理的综合应用例3. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边22sin )()sin ,A C a b B -=-已知△ABC 外接圆半径为(1)求角C 的大小; (2)求△ABC 面积的最大值.解: (1)∵△ABC 22sin )()sin ,A C a b B -=-且22))(,A C a b B -=-即∴由正弦定理得:22(),a c a b b -=-即222,a b c ab +-=由余弦定理得:222cos 2a b c C ab +-=2ab ab =12=,(0,)C π∈Q ,.3C π∴=(2)max 2S =+探究提高 在已知关系式中,若既含有边又含有角.通常的思路是:将角都化成边或将边都化成角,再结合正、余弦定理即可求角.变式训练3在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4.又∵△ABC 的面积为3,∴12ab sin C =3,ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2. (2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A , 即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A <π,∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b ,即△ABC 为等腰三角形. ∴△ABC 为等腰三角形或直角三角形.思想方法 感悟提高方法与技巧1.正、余弦定理和三角形面积公式是本节课的重点,利用三角形内角和、边、角之间的关系,三角函数的变形公式去判断三角形的形状,求解三角形,以及利用它们解决一些实际问题.2.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.3.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明.4.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 失误与防范在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.过关精练一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( )A .45°或135°B .135°C .45°D .以上答案都不对 2.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( )A .60°B .45°或135°C .120°D .30°3.在ABC ∆中,ABC S bc ABC ∆∆,35,20==的外接圆半径为3,则=a ( )A .1B .2C .3D .234.在ABC ∆中,已知,45,1,2ο===B c b 则a 等于( )A .226- B .226+ C1 D .23-5.在ABC ∆中2,3,3,AB AC BA AC ==⋅=u u u r u u u r u u u r u u u r则A ∠等于( )A .120°B .60°C .30°D .150° 6.在ABC ∆中,7:5:3::=c b a , 则这个三角形的最大角为( )A .ο30 B .ο90 C .ο120 D .ο60 7.在△ABC 中,已知三边之比4:3:2::=cb a ,则=-CB A 2sin sin 2sin ( )A .1B .2C .2-D .21 8.ABC ∆中,边c b a ,,的对角分别为A 、B 、C ,且A=2B ,32a b =,cos B =( )A .21B .31C .32D .43二、填空题9.在△ABC 中,已知2sinAcosB=sinC,那么△ABC 的形状是 三角形10.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,则角C =________. 11.在△ABC 中,边a ,b ,c 的对角分别为A 、B 、C ,且B C A C A 222sin sin sin sin sin =⋅-+。
2012年苏教数学必修5:第1章1.1.1知能优化训练

1.有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边和它所对角的正弦的比是一定值;④在△ABC 中,sin A ∶sin B ∶sin C =a ∶b ∶c .其中正确的序号是________.解析:正弦定理适用于任何三角形,故①②均不正确;由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比就确定了,故③正确;由比例性质和正弦定理可知④正确. 答案:③④2.(2011年常州质检)在△ABC 中,AB =3,A =45°,C =75°,则BC =________.解析:在△ABC 中,由正弦定理:AB sin C BC sin A, 得BC =AB sin A sin C =3×226+24=3- 3.答案:3- 33.在△ABC 中,若b =2,B =30°,C =135°,则a =________.解析:A =180°-B -C =15°,∵a sin A =b sin B ,∴a =b sin A sin B=4sin A =4sin15°=6- 2. 答案:6- 24.在△ABC 中,sin A ∶sin B ∶sin C =1∶3∶2,则a ∶b ∶c =________.解析:把a =2R sin A ,b =2R sin B ,c =2R sin C 代入sin A ∶sin B ∶sin C =1∶3∶2,得a∶b ∶c =1∶3∶2.答案:1∶3∶2一、填空题 1.已知△ABC 中,A ∶B ∶C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 解析:∵A ∶B ∶C =1∶2∶3,又A +B +C =180°,∴A =30°,B =60°,C =90°.∴a sin A=2. ∴a sin A =2b 2sin B =c sin C =a -2b +c sin A -2sin B +sin C=2. 答案:22.在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,若a 、b 、c 成等比数列,A =60°,则b sin Bc解析:a,b,c成等比数列,则b2=ac,b2ac=b sin Bc sin A=1,又A=60°,则b sin Bc=32.答案:3 23.(2010年高考北京卷)在△ABC中,若b=1,c=3,∠C=2π3a=________.解析:如图,由正弦定理,有3sin2π3=1sin B,∴sin B=12.∵∠C为钝角,∴∠B必为锐角,∴∠B=π6,∴∠A=π6.∴a=b=1.答案:14.在△ABC中,a∶b∶c=1∶3∶5,2sin A-sin Bsin C的值为________.答案:-155.在△ABC中,a、b分别是角A和角B所对的边,a=3,b=1,B=30°,则角A的值为________.解析:由正弦定理asin A=bsin B,得sin A=a sin Bb=3×121=32,∵a>b,∴A>B.∴A=60°或120°.答案:60°或120°6.若三角形三个内角的比是1∶2∶3,最大的边是20,则最小的边是________.解析:∵三个内角和为180°,∴三个内角分别为30°、60°、90°.设最小的边为x,∵最大的边为20,∴20sin90°=xsin30°,∴x=10,∴最小的边为10.答案:107.在△ABC中,(b+c)∶(a+c)∶(a+b)=4∶5∶6,则sin A∶sin B∶sin C=________.解析:设b+c=4k,a+c=5k,a+b=6k(k>0).三式联立可求得a=72k,b=52k,c=32k,∴a∶b∶c=7∶5∶3,即sin A∶sin B∶sin C=7∶5∶3.8.(2010年高考山东卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析:∵sin B +cos B =2sin ⎝⎛⎭⎫π4+B =2, ∴sin ⎝⎛⎭⎫π4+B =1. 又0<B <π,∴B =π4. 由正弦定理,得sin A =a sin B b =2×222=12. 又a <b ,∴A <B ,∴A =π6. 答案:π69.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若c ·cos B =b ·cos C ,且cos A =23,则sin B 等于________.解析:c ·cos B =b ·cos C ,根据正弦定理得sin C ·cos B=sin B ·cos C ,即sin(B -C )=0,所以B =C ,2B +A =π,cos2B =-cos A =-23,1-2sin 2B =-23,则sin B =306. 答案:306二、解答题10.已知在△ABC 中,a =3,b =2,B =45°,求A 、C 和c .解:由正弦定理得a sin A =b sin B, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22. ∴A =60°,C =75°,c =6+22或A =120°,C =15°, c =6-22. 11.已知在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,且cos B cos C =-b 2a +c,求角B 的大小.解:由a sin A =b sin B =c sin C=2R 得, a =2R sin A ,b =2R sin B ,c =2R sin C ,代入cos B cos C =-b 2a +c 中,得cos B cos C =-sin B 2sin A +sin C , 即2sin A cos B +sin C cos B +cos C sin B =0, ∴2sin A cos B +sin(B +C )=0.又∵A +B +C =π,∴sin(B +C )=sin A ,∴2sin A cos B +sin A =0.∵sin A ≠0,∴2cos B +1=0,即cos B =-12. 又0<B <π,故B =23π. 12.在△ABC 中,求证:cos2A a 2-cos2B b 2=1a 2-1b 2. 证明:由正弦定理,得a sin A =b sin B =c sin C=2R , ∴cos2A a 2-cos2B b 2=1-2sin 2A 4R 2sin 2A -1-2sin 2B 4R 2sin 2B=14R 2sin 2A -14R 2sin 2B=1a 2-1b 2. 即等式成立.。
高中数学苏教版必修5学案:1.1.1 正弦定理(1) Word版含解析

1.1正弦定理第1课时正弦定理(1)1.通过对任意三角形边长和角度关系的探索,了解正弦定理的推导过程.(重点)2.掌握正弦定理,并能解决一些简单的三角形的度量问题.(难点)3.解三角形时增解或漏解.(易错点)[基础·初探]教材整理1正弦定理阅读教材P5~P7“思考”以上部分,完成下列问题.三角形的各边和它所对角的正弦之比相等.即asin A=bsin B=csin C.判断(正确的打“√”,错误的打“×”)(1)正弦定理适用于所有三角形.()(2)在△ABC中,a∶b∶c=sin A∶sin B∶sin C.()(3)asin A=bsin B=csin C=2R,其中R为△ABC的外接圆的半径.()【答案】(1)√(2)√(3)√教材整理2解斜三角形阅读教材P 7例1~P 8,完成下列问题.1.解斜三角形是指由六个元素(三条边和三个角)中的________个元素(至少有一个是________),求其余未知元素的过程.【答案】 三 边2.利用正弦定理可以解决的两类解斜三角形的问题 (1)已知________,求其他两边和一角;(2)已知________与其中一边的________,求另一边的对角(从而进一步求出其他的边和角).【答案】 两角与任一边 两边 对角1.在△ABC 中,a =3,b =5,sin A =13,则sin B =________. 【解析】 根据a sin A =b sin B ,有313=5sin B ,得sin B =59.【答案】 592.在△ABC 中,若A =60°,B =45°,BC =32,则AC =________.【导学号:91730000】【解析】 由正弦定理可知,AC sin B =BC sin A ,所以AC =BC sin Bsin A =32×2232=2 3.【答案】 2 3[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________解惑:_________________________________________________[小组合作型]在△ABC 中,已知A =45°,B =30°,c =10,求a ,b ,C .【精彩点拨】 利用正弦定理求解.【自主解答】 由正弦定理得,a sin A =csin C , 即a =c sin A sin C =10×sin 45°sin 105°=10×226+24=10(3-1).由b sin B =asin A 得,b =a sin B sin A =10(3-1)·sin 30°sin 45°=5(6-2).已知两角与一边求解三角形问题的基本解法1.若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,最后由正弦定理求第三边.2.若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边.[再练一题]1.在△ABC 中,若tan A =13,C =150°,BC =1,求AB ,AC 的值. 【解】 ∵tan A =13,∴sin A =1010,cos A =31010.由正弦定理得AB=BC sin Csin A=1×sin 150°1010=102.又A+B+C=180°,∴B=180°-A-C=30°-A. ∴sin B=sin(30°-A)=sin 30°cos A-cos 30°sin A=12×31010-32×1010=310-3020.∴AC=BC sin Bsin A=1×310-30201010=3-32.(1)a=1,b=3,A=30°;(2)a=3,b=1,B=120°.【精彩点拨】(1)先求sin B=b sin Aa,再利用大边对大角求B,进而求C及c.(2)先求sin A=a sin Bb的值再进行判断.【自主解答】(1)根据正弦定理,sin B=b sin Aa=3sin 30°1=32.∵b>a,∴B>A=30°,∴B=60°或120°.当B=60°时,C=180°-(A+B)=180°-(30°+60°)=90°,∴c=bsin B=3sin 60°=2;当B=120°时,C=180°-(A+B)=180°-(30°+120°)=30°,c =b sin C sin B =3sin 30°sin 120°=1. (2)根据正弦定理,sin A =a sin Bb =3sin 120°1=32>1. 因为sin A ≤1.所以A不存在,即无解.利用正弦定理解三角形,若已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.[再练一题]2.在△ABC 中,c =6,C =π3,a =2,求A ,B ,b .【解】 ∵a sin A =csin C , ∴sin A =a sin C c =2×326=22.∵c >a ,∴C >A ,∴A =π4, ∴B =π-π3-π4=5π12. ∵c sin C =bsin B , ∴b =c sin B sin C =6·sin 5π12sin π3=6×6+2432=3+1. [探究共研型]探究1 【提示】 由A >B ,得a >b ,∴sin A >sin B ,反之,亦然.探究2 在△ABC 中,若A <90°,则a ,b 满足什么条件时,此△ABC 有且只有一解?【提示】 当a =b sin A 或a >b 时,△ABC 的解是唯一的. 探究3探究2中的△ABC 会有两解吗? 【提示】 当b sin A <a <b 时,△ABC 有两解.不解三角形,判断下列三角形解的个数.(1)a =5,b =4,A =120°; (2)a =7,b =14,A =150°; (3)a =9,b =10,A =60°; (4)a =1,b =2,A =30°.【精彩点拨】根据已知条件画图,依据高和图形判断解的个数. 【自主解答】 (1)如图(1),∵A 为钝角,且a >b , ∴三角形有一解.(1) (2)(2)如图(2),∵A 为钝角,且a <b ,∴无解. (3)如图(3),∵h =b sin A =53,而53<9<10, ∴三角形有两解.(3) (4)(4)如图(4),∵h =b sin A =1,∴a =h ,∴三角形有一解.三角形解的各种情况汇总已知a ,b 和A ,用正弦定理求B 时的各种情况如下:[再练一题]3.根据下列条件判断△ABC 解的情况. (1)已知b =4,c =8,B =30°; (2)已知b =6,c =9,B =45°; (3)已知B =30°,b =2,c =2.【解】 (1)由正弦定理,得sin C =c sin B b =8sin 30°4=1, 又由c >b 知C >B ,∴30°<C <180°, ∴C =90°,故有一解.(2)∵sin C=c sin Bb=9sin 45°6=324>1,故无解.(3)由正弦定理,得sin C=c sin Bb=2sin 30°2=22,又c>b,∴30°<C<180°,∴C=45°或C=135°,故有两解.[构建·体系]1.在△ABC中,下列等式中总能成立的是________(填序号).①a sin A=b sin B;②b sin C=c sin A;③ab sin C=bc sin B;④a sin C=c sin A.【解析】由正弦定理asin A=csin C,得a sin C=c sin A,故④正确.【答案】④2.在△ABC中,A=30°,a=3,则△ABC外接圆的半径是________.【导学号:91730001】【解析】由asin A=2R,可知R=32sin 30°=3.【答案】 33.在△ABC中,A=30°,B=120°,b=12,则a+c=________. 【解析】C=180°-(A+B)=180°-(120°+30°)=30°.由正弦定理asin A=bsin B,得a=b sin Asin B=12×sin 30°sin 120°=12×1232=4 3.由csin C=bsin B,得c=b sin Csin B=12×sin 30°sin 120°=12×1232=4 3.∴a+c=8 3. 【答案】8 34.在△ABC中,已知a∶b∶c=4∶3∶5,则2sin A-sin Bsin C=________.【解析】设a=4k,b=3k,c=5k,则由正弦定理得2sin A-sin Bsin C=2×4k-3k5k=1.【答案】 15.在△ABC中,(1)已知c=10,A=45°,C=30°,求a,b和B;(2)已知a=3,b=2,B=45°,求A,C和c.【解】(1)由内角和定理得B=180°-(A+C)=180°-(45°+30°)=105°,由正弦定理asin A=csin C=bsin B,得a=c sin Asin C=10×sin 45°sin 30°=102,b=c sin Bsin C=10×sin 105°sin 30°=20sin 75°=20×6+24=52(3+1).(2)由正弦定理asin A=bsin B,得sin A=a sin Bb=3sin 45°2=32,又a>b,∴A=60°或120°,①当A=60°时,C=180°-(A+B)=75°,c=b sin Csin B=2sin 75°sin 45°=6+22.②当A=120°时,C=180°-(A+B)=15°,c=b sin Csin B=2sin 15°sin 45°=6-22.故A=60°,C=75°,c=6+22或A=120°,C=15°,c=6-22.我还有这些不足:(1)_________________________________________________(2)_________________________________________________我的课下提升方案:(1)_________________________________________________(2)_________________________________________________学业分层测评(一)(建议用时:45分钟)[学业达标]一、填空题1.在△ABC中,a=5,b=3,C=120°,则sin A∶sin B的值是________.【解析】由正弦定理可知,sin A∶sin B=a∶b=5∶3.【答案】5∶32.在△ABC中,若A=75°,B=60°,c=2,则b=________.【解析】在△ABC中,C=180°-A-B=45°,∴b=c sin Bsin C=2sin 60°sin 45°= 6.【答案】 63.在△ABC 中,若sin A a =cos C c ,则C 的值为________.【解析】 由正弦定理可知,sin A a =sin C c ,又sin A a =cos C c ,∴sin C c =cos C c ,即tan C =1,0°<C <180°,∴C =45°.【答案】 45°⎝ ⎛⎭⎪⎫或π4 4.(2015·北京高考)在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.【解析】 在△ABC 中,根据正弦定理a sin A =b sin B ,有3sin 2π3=6sin B ,可得sin B =22.因为∠A 为钝角,所以∠B =π4. 【答案】 π45.在△ABC 中,已知a =43,b =42,A =60°,则c =________.【导学号:91730002】【解析】 由a sin A =b sin B ,得sin B =b a sin A =4243×32=22. ∵b <a ,∴B =45°,C =180°-A -B =75°,∴c =a sin C sin A =43×sin 75°sin 60° =2(2+6).【答案】 2(2+6)6.在△ABC 中,已知a =18,b =16,A =150°,则满足条件的三角形有________个.【解析】 A =150°>90°,∵a >b ,∴满足条件的三角形有1个.【答案】 17.在△ABC中,B=45°,C=60°,c=1,则最短边的长为________.【解析】易得A=75°,∴B为最小角,即b为最短边,∴由csin C=bsin B,得b=63.【答案】6 38.(2016·苏州高二检测)在△ABC中,若A∶B∶C=1∶2∶3,则a∶b∶c =________.【解析】由A∶B∶C=1∶2∶3,可知A=π6,B=π3,C=π2.∴a∶b∶c=sin A∶sin B∶sin C=12∶32∶1=1∶3∶2.【答案】1∶3∶2二、解答题9.在△ABC中,若a=23,A=30°,讨论当b为何值时(或在什么范围内),三角形有一解,有两解或无解?【解】当a<b sin 30°,即b>43时,无解;当a≥b或a=b sin A,即b≤23或b=43时,有一解;当b sin A<a<b,即23<b<43时,有两解.10.在△ABC中,b=2a,B=A+60°,求角A.【解】根据正弦定理asin A=bsin B,把b=2a代入得asin A=2asin B,∴sin B=2sin A.又∵B=A+60°,∴sin(A+60°)=2sin A,展开得-32sin A+32cos A=0,∴sin(A-30°)=0,解得A=30°.[能力提升]1.(2016·南通高二检测)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于________.【解析】 由正弦定理可得,2a sin B =3b 可化为2sin A sin B =3sin B ,又sin B ≠0,即sin A =32,又△ABC 为锐角三角形,得A =π3.【答案】 π32.(2014·广东高考)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +c cos B =2b ,则a b=________. 【解析】 因为b cos C +c cos B =2b ,所以sin B cos C +sin C cos B =2sin B ,故sin(B +C )=2sin B .故sin A =2sin B ,则a =2b ,即a b =2.【答案】 23.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是____________.【导学号:91730003】【解析】 因为三角形有两解,所以a sin B <b <a , 即22x <2<x ,∴2<x <2 2.【答案】 (2,22)4.在△ABC 中,a cos ⎝ ⎛⎭⎪⎫π2-A =b cos ⎝ ⎛⎭⎪⎫π2-B ,判断△ABC 的形状. 【解】 法一 ∵a cos ⎝ ⎛⎭⎪⎫π2-A =b cos ⎝ ⎛⎭⎪⎫π2-B , ∴a sin A =b sin B .由正弦定理可得a ·a 2R =b ·b 2R ,∴a 2=b 2,即a =b ,∴△ABC 为等腰三角形.法二 ∵a cos ⎝ ⎛⎭⎪⎫π2-A =b cos ⎝ ⎛⎭⎪⎫π2-B , ∴a sin A =b sin B .由正弦定理可得2R sin 2A =2R sin 2B , 即sin A =sin B .∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.。
高中数学必修五第一章《正弦定理和余弦定理》1.1.1正弦定理

§1.1 正弦定理和余弦定理1.1.1 正弦定理学习目标 1.掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.知识点一 正弦定理思考1 如图,在Rt △ABC 中,a sin A ,b sin B ,csin C分别等于什么?答案a sin A =b sin B =c sin C=c . 思考2 在一般的△ABC 中,a sin A =b sin B =csin C 还成立吗?答案 在一般的△ABC 中,a sin A =b sin B =csin C 仍然成立.梳理 在任意△ABC 中,都有a sin A =b sin B =c sin C,这就是正弦定理. 特别提醒:正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.知识点二 解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.1.对任意△ABC ,都有a sin A =b sin B =csin C.(√)2.任意给出三角形的三个元素,都能求出其余元素.(×) 3.在△ABC 中,已知a ,b ,A ,则三角形有唯一解.(×)类型一 正弦定理的证明例1 在钝角△ABC 中,证明正弦定理. 考点 正弦定理及其变形应用 题点 正弦定理的理解证明 如图,过C 作CD ⊥AB ,垂足为D ,D 是BA 延长线上一点,根据正弦函数的定义知,CD b =sin ∠CAD =sin(180°-A )=sin A ,CD a =sin B . ∴CD =b sin A =a sin B . ∴a sin A =bsin B. 同理,b sin B =csin C .故a sin A =b sin B =c sin C. 反思与感悟 (1)用正弦函数定义沟通边与角内在联系,充分挖掘这些联系可以使你理解更深刻,记忆更牢固.(2)要证a sin A =bsin B ,只需证a sin B =b sin A ,而a sin B ,b sin A 都对应CD .初看是神来之笔,仔细体会还是有迹可循的,通过体会思维的轨迹,可以提高我们的分析解题能力.跟踪训练1 如图,锐角△ABC 的外接圆O 半径为R ,角A ,B ,C 对应的边分别为a ,b ,c ,证明:asin A=2R .考点 正弦定理及其变形应用 题点 正弦定理的理解证明 连接BO 并延长,交外接圆于点A ′,连接A ′C , 则圆周角A ′=A .∵A ′B 为直径,长度为2R , ∴∠A ′CB =90°, ∴sin A ′=BC A ′B =a 2R ,∴sin A =a 2R ,即asin A =2R .类型二 已知两角及一边解三角形例2 在△ABC 中,已知A =30°,B =60°,a =10,解三角形. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据正弦定理,得b =a sin B sin A =10sin 60°sin 30°=10 3. 又C =180°-(30°+60°)=90°. ∴c =a sin C sin A =10sin 90°sin 30°=20.反思与感悟 (1)正弦定理实际上是三个等式:a sin A =b sin B ,b sin B =c sin C ,a sin A =csin C ,每个等式涉及四个元素,所以只要知道其中的三个就可以求另外一个.(2)因为三角形内角和为180°,所以已知两角一定可以求出第三个角. 跟踪训练2 在△ABC 中,已知a =18,B =60°,C =75°,求b 的值. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据三角形内角和定理,得A =180°-(B +C )=180°-(60°+75°)=45°. 根据正弦定理,得b =a sin B sin A =18sin 60°sin 45°=9 6.类型三 已知两边及其中一边的对角解三角形例3 在△ABC 中,已知c =6,A =45°,a =2,解三角形. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 ∵a sin A =c sin C ,∴sin C =c sin A a =6sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. 引申探究若把本例中的条件“A =45°”改为“C =45°”,则角A 有几个值? 解 ∵a sin A =c sin C ,∴sin A =a sin C c =2·226=33.∵c =6>2=a ,∴C >A .∴A 为小于45°的锐角,且正弦值为33,这样的角A 只有一个. 反思与感悟 已知三角形两边和其中一边的对角解三角形的方法:首先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角,当已知的角为小边所对的角时,则不能判断,此时就有两组解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边. 跟踪训练3 在△ABC 中,若a =2,b =2,A =30°,则C =________. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 105°或15°解析 由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°.1. 在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin AD .a cos B =b cos A考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 C解析 由正弦定理a sin A =bsin B ,得a sin B =b sin A ,故选C.2.在△ABC 中,sin A =sin C ,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 B解析 由sin A =sin C 及正弦定理,知a =c , ∴△ABC 为等腰三角形.3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6D .4考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 C解析 易知A =45°,由a sin A =b sin B 得b =a sin B sin A=8×3222=4 6. 4.在△ABC 中,a =3,b =2,B =π4,则A =________.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 π3或2π3解析 由正弦定理,得sin A =a sin Bb=3×222=32, 又A ∈(0,π),a >b ,∴A >B ,∴A =π3或2π3.5.在△ABC 中,已知a =5,sin C =2sin A ,则c =________. 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 2 5解析 由正弦定理,得c =a sin Csin A=2a =2 5.1. 正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0). 2. 正弦定理的应用范围(1)已知两角和任一边,求其他两边和其余一角. (2)已知两边和其中一边的对角,求另一边和其余两角.3. 已知三角形两边和其中一边的对角解三角形的方法 (1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求唯一锐角.(3)如果已知的角为小边所对的角,则不能判断另一边所对的角为锐角,这时由正弦值可求得两个角,要分类讨论.一、选择题1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 A解析 根据正弦定理,得sin A sin B =a b =53.2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由题意有a sin A =b =bsin B,则sin B =1,又B ∈(0,π),故角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( )A .30°B .45°C .60°D .90° 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由正弦定理知sin A a =sin Cc ,∴sin C c =cos Cc,∴cos C =sin C ,∴tan C =1, 又∵C ∈(0°,180°),∴C =45°,故选B.4.在△ABC 中,若A =105°,B =45°,b =22,则c 等于( ) A .1 B .2 C. 2 D. 3 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 ∵A =105°,B =45°,∴C =30°. 由正弦定理,得c =b sin C sin B =22sin 30°sin 45°=2.5.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( ) A .-223 B.223 C .-63 D.63考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 D解析 由正弦定理,得15sin 60°=10sin B ,∴sin B =10sin 60°15=10×3215=33. ∵a >b ,∴A >B ,又∵A =60°,∴B 为锐角. ∴cos B =1-sin 2B =1-⎝⎛⎭⎫332=63. 6.在△ABC 中,已知A =π3,a =3,b =1,则c 的值为( )A .1B .2 C.3-1 D. 3 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 B解析 由正弦定理a sin A =bsin B,可得3sinπ3=1sin B ,∴sin B =12,由a >b ,得A >B ,∴B ∈⎝⎛⎭⎫0,π3,∴B =π6. 故C =π2,由勾股定理得c =2.7.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A 等于( )A.310B.1010C.55D.31010 考点 用正弦定理解三角形 题点 正弦定理解三角形综合 答案 D解析 如图,设BC 边上的高为AD ,不妨令AD =1.由B =π4,知BD =1.又AD =13BC =BD ,∴DC =2,AC =12+22= 5.由正弦定理知,sin ∠BAC =sin B ·BC AC =225·3=31010.8.在△ABC 中,若A =60°,B =45°,BC =32,则AC 等于( ) A .4 3 B .2 3 C. 3 D.32考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.二、填空题9.在△ABC 中,若C =2B ,则cb的取值范围为________.考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 (1,2)解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2Bsin B =2cos B ,所以1<2cos B <2,故1<cb<2.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =_____.考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,又a =1,由正弦定理得b =a sin B sin A =2113.11.锐角三角形的内角分别是A ,B ,C ,并且A >B .则下列三个不等式中成立的是______. ①sin A >sin B ; ②cos A <cos B ;③sin A +sin B >cos A +cos B . 考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 ①②③解析 A >B ⇔a >b ⇔sin A >sin B ,故①成立. 函数y =cos x 在区间[0,π]上是减函数, ∵A >B ,∴cos A <cos B ,故②成立. 在锐角三角形中,∵A +B >π2,∴0<π2-B <A <π2,函数y =sin x 在区间⎣⎡⎦⎤0,π2上是增函数, 则有sin A >sin ⎝⎛⎭⎫π2-B ,即sin A >cos B , 同理sin B >cos A ,故③成立.三、解答题12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,c =10,A =45°,C =30°,求a ,b 和B .考点 用正弦定理解三角形题点 已知两角及一边解三角形解 ∵a sin A =c sin C, ∴a =c sin A sin C =10sin 45°sin 30°=10 2. B =180°-(A +C )=180°-(45°+30°)=105°.又∵b sin B =c sin C, ∴b =c sin B sin C =10sin 105°sin 30°=20sin 75° =20×6+24=5(6+2). 13.在△ABC 中,A =60°,a =43,b =42,求B .考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 由正弦定理a sin A =b sin B ,得sin B =22, ∵a >b ,∴A >B .∴B 只有一解,∴B =45°.四、探究与拓展14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =x ,b =2,B =45°.若△ABC 有两解,则x 的取值范围是( )A .(2,+∞)B .(0,2)C .(2,22)D .(2,2)考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形答案 C解析 因为△ABC 有两解,所以a sin B <b <a ,即x sin 45°<2<x ,所以2<x <22,故选C.15.已知下列各三角形中的两边及其中一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°;(2)a =23,b =6,A =30°.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 (1)a =10,b =20,a <b ,A =80°<90°,讨论如下:∵b sin A =20sin 80°>20sin 60°=103,∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°,∵b sin A =6sin 30°=3,a >b sin A ,∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32, 又∵B ∈(0°,180°),∴B =60°或B =120°.当B =60°时,C =90°,c =a sin C sin A =23sin 90°sin 30°=43; 当B =120°时,C =30°,c =a sin C sin A =23sin 30°sin 30°=2 3. ∴当B =60°时,C =90°,c =43;当B =120°时,C =30°,c =2 3.。
高中数学苏教版必修5 1.1第1课时 正弦定理 作业 Word版含解析

[学业水平训练]一、填空题1.在△ABC 中 ,a =7 ,c =5 ,那么sin A ∶sin C 的值是________.解析:由正弦定理得sin A =a 2R ,sin C =c 2R, ∴sin A ∶sin C =a 2R ∶c 2R=a ∶c =7∶5. 答案:7∶52.在△ABC 中 ,a =2 ,b =2 2 ,A =30° ,那么B =________.解析:由正弦定理 ,可得sin B =22. ∵b >a ,∴B >A =30° ,∴B =45°或135°.答案:45°或135°3.在△ABC 中 ,sin A ∶sin B ∶sin C =5∶6∶7 ,且三角形的周长为36 ,那么其三边长分别为________. 解析:由正弦定理 ,可得a ∶b ∶c =5∶6∶a =10 ,b =12 ,c =14.答案:10 ,12 ,144.在△ABC 中 ,A =135° ,B =15° ,c =2 ,那么△ABC 中最|长边的长为________.解析:设最|长边为a ,利用正弦定理及三角形内角和定理 ,可得a =c sin C ·sin A =2sin 30°×sin 135°=2 2.即△ABC 中最|长边的长为2 2.答案:2 25.(2021·南京调研)△ABC 中 ,A 、B 、C 所对的边分别为a 、b 、c ,且满足c sin A =a cos C ,那么角C =________.解析:由c sin A =a cos C 结合正弦定理可得sin C sin A =sin A cos C ,且sin A ≠0 ,所以tan C =1 ,C ∈(0 ,π) ,故C =π4. 答案:π46.在△ABC 中 ,如果A ∶B ∶C =2∶3∶7 ,那么a ∶b =________.解析:由A =30° ,B =45° ,那么a ∶b =sin 30°∶sin 45°=1∶ 2.答案:1∶ 27.在△ABC 中 ,角A ,B ,C 所对的边分别为a ,b ,c .假设a = 2 ,b =2 ,sin B +cos B = 2 ,那么角A 的大小为________.解析:∵sin B +cos B =2sin ⎝ ⎛⎭⎪⎫π4+B =2 , ∴sin ⎝ ⎛⎭⎪⎫π4+B =1. 又0<B <π ,∴B =π4. 由正弦定理 ,得sin A =a sin B b =2×222=12.又a <b ,∴A <B ,∴A =π6. 答案:π6二、解答题8.在△ABC 中 ,求证a -c cos B b -c cos A =sin B sin A. 证明:由正弦定理a sin A =b sin B =c sin C=2R , 得a =2R sin A ,b =2R sin B ,c =2R sin C .左边=2R sin A -2R sin C ·cos B 2R sin B -2R sin C ·cos A=sin A -sin C ·cos B sin B -sin C ·cos A =sin (B +C )-sin C ·cos B sin (A +C )-sin C ·cos A =sin B ·cos C +cos B ·sin C -sin C ·cos B sin A ·cos C +cos A ·sin C -sin C ·cos A =sin B ·cos C sin A ·cos C =sin B sin A=右边 , 所以a -c cos B b -c cos A =sin B sin A. 9.在△ABC 中 ,c =10 ,A =45° ,C =30° ,求a ,b 和B .解:由正弦定理知 ,a =c sin C ·sin A =10sin 30°×sin 45°=102 ,B =180°-A -C =105° , ∴b =a sin A ·sin B =102sin 45°×sin 105° =56+5 2.[(高|考)水平训练]一、填空题1.以下判断三角形解的情况 ,正确的选项是________.①a =8 ,b =16 ,A =30° ,有两解;②b =18 ,c =20 ,B =60° ,有一解;③a =15 ,b =2 ,A =90° ,无解;④a =40 ,b =30 ,A =120° ,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°有一解.综上 ,④正确.答案:④2.在锐角三角形ABC 中 ,A =2B ,边a ,b ,c 所对的角分别为A ,B ,C ,那么a b的取值范围为________.解析:在锐角三角形ABC 中 ,A ,B ,C <90° ,即⎩⎨⎧B <90° 2B <90° 180°-3B <90°∴30°<B <45°.由正弦定理知 ,a b =sin A sin B =sin 2B sin B =2cos B ∈(2 ,3) ,故a b的取值范围是(2 ,3). 答案:( 2 ,3)二、解答题3.在△ABC 中 ,设cos B 3b =cos C 2c =cos A a,求cos A 的值. 解:由正弦定理 ,得cos B 3sin B =cos C 2sin C =cos A sin A⇒ ⎩⎪⎨⎪⎧tan B =13tan A tan C =12tan A . 又tan A =-tan(B +C )=-tan B +tan C1-tan B tan C =-5tan A 6-tan 2A⇒tan 2A =11⇒cos A =±36. 由题设 ,负值应舍去 ,故cos A =36. 4.设函数f (x )=cos(2x +π3)+sin 2x . (1)求函数f (x )的最|小正周期;(2)设△ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,假设c = 6 ,cos B =13 ,f (C 2)=-14,求b . 解:(1)f (x )=cos(2x +π3)+sin 2x =cos 2x cos π3-sin 2x sin π3+1-cos 2x 2=12cos 2x -32sin 2x +12-12cos 2x =-32sin 2x +12. ∵ω=2 ,∴T =2πω=π. ∴函数f (x )的最|小正周期为π.(2)由(1)得 ,f (x )=-32sin 2x +12, ∴f (C 2)=-32sin(2×C 2)+12=-32sin C +12. 又f (C 2)=-14, ∴-32sin C +12=-14 ,∴sin C =32.∵在△ABC 中 ,cos B =13, ∴sin B = 1- (13 )2=223, ∴由正弦定理b sin B =c sin C, 得b =c ·sin B sin C =6·22332=83. ∴b =83.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 解三角形
1.1 正弦定理
A 级 基础巩固
一、选择题
1.在△ABC 中,已知边长BC =10,∠A =30°,∠B =45°,则边长AC 等于
( )
A .20 2 B.1063
C .10 2 D.5
63 解析:由正弦定理得
10sin 30°=AC sin 45°,解之得AC =10 2.
答案:C 2.在△ABC 中,∠A =60°,a =43,b =42,则∠B 等于( ) A .45°或135°
B .135°
C .45°
D .以上答案都不对
解析:因为sin B =bsin A a =42×3
2
43
=2
2, 所以∠B =45°或135°. 但当∠B =135°时,不符合题意,
所以∠B=45°. 答案:C
3.若
a
sin A
=
b
cos B
=
c
cos C
,则△ABC为( )
A.等边三角形
B.有一个内角为30°的直角三角形C.等腰直角三角形
D.有一个内角为30°的等腰三角形
解析:由
a
sin A
=
b
sin B
=
c
sin C
,故sin B=cos B,
sin C=cos C,
所以B=C=45°.
答案:C
4.在△ABC中,若∠A=30°,∠B=60°,则a∶b∶c=( ) A.1∶3∶2 B.1∶2∶4
C.2∶3∶4 D.1∶2∶2
解析:由正弦定理得a∶b∶c=sin A∶sin B∶sin C=1∶3∶2.
答案:A
5.在△ABC中,若sin A>sin B,则A与B的大小关系为( ) A.A>B B.A<B
C.A≥B D.A、B的大小关系不能确定
解析:sin A>sin B⇔2Rsin A>2Rsin B⇔a>b⇔A>B(大角对大边).。