2018年人教版高中数学必修四知识点归纳总结[精品]
高中数学必修四知识点

高中数学必修四知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中数学必修四知识点不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。
高中数学人教版必修4知识点总结

高中数学必修4知识点6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式: 口诀:奇变偶不变,符号看象限.14 sin y x =→向左(右)平移ϕ个单位长度→ ()sin y x ϕ=+的图象→横坐标伸长(缩短)到原来的1ω倍(纵坐标不变)→()sin y x ωϕ=+→纵坐标伸长(缩短)到原来的A 倍(横坐标不变)→()sin y x ωϕ=A +.sin y x =→横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),→sin y x ω=→向左(右)平移ϕω个单位长度→→纵坐标伸长(缩短)到原来的A 倍(横坐标不变)→()sin y x ωϕ=A +函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x = 图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数. 对称对称中心对称中心对称中心函数 性质性()(),0k k π∈Z对称轴()2x k k ππ=+∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ.①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()b b ≠baC BAa b C C -=A -AB =B共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=. 设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.24、两角和与差的正弦、余弦和正切公式: 25、二倍角的正弦、余弦和正切公式:26、()sin cos αααϕA +B =+,其中tan ϕB =A.。
高中数学人教版必修4知识点汇总

1”作巧
妙的变形,
1. 3 诱导公式
1、诱导公式(五)
sin(
ห้องสมุดไป่ตู้) cos
2
cos(
) sin
2
2、诱导公式(六)
sin(
) cos
2
总结为一句话:函数正变余,符号看象限
小结:
①三角函数的简化过程图:
cos(
) sin
2
任意负角的 三角函数
公式一或三 任意正角的 三角函数
公式一或二或四 00~3600 间角 的三角函数
..
..
1.1 . 1 任意角
1.角的有关概念: ①角的定义:
角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
始边 B
终边
③角的分类:
O
A
顶点
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0 °; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合, 角的始边与 x 轴的非负半轴重合, 那么角的终边 ( 端点除外 ) 在第几象限,我们就说这个角是第几象限角.
tan cot
1(
k ,k
Z) ;
2
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用) ,如:
cos
1 sin2
,
2
sin
2
1 cos
,
cos
sin 等。
人教版高三数学必修四关键知识点

人教版高三数学必修四关键知识点抓紧时间,夯实基础,加紧演练定有收获;建立自信,尽力拼搏,考取大学回报父母。
以下是作者整理的有关高考考生必看的人教版高三数学必修四知识点,期望对您有所帮助,望各位考生能够爱好。
人教版高三数学必修四知识点1a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。
成立。
假定n=k时,等差数列的通项公式成立。
a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2同样,可用归纳法证明求和公式。
a(1)=a,a(n)为公比为r(r不等于0)的等比数列通项公式:a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1). 可用归纳法证明等比数列的通项公式。
求和公式:S(n)=a(1)+a(2)+...+a(n)=a+ar+...+ar^(n-1)=a[1+r+...+r^(n-1)]r不等于1时,S(n)=a[1-r^n]/[1-r]r=1时,S(n)=na.同样,可用归纳法证明求和公式。
人教版高三数学必修四知识点2符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全部所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯洁性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描写。
人教高一必修四数学知识点

人教高一必修四数学知识点在高中数学必修四课程中,学生将接触到许多重要的数学知识点。
这些知识点包括代数、函数、几何和概率等方面。
下面将对其中一些关键的知识点进行简要介绍。
一、代数1. 等式与方程:学生需要掌握等式的性质和解一元一次方程的方法。
这包括使用加减消元法、乘除消元法和配方法等来解方程。
2. 二次函数与一元二次方程:学生将学习二次函数的图像、顶点、轴对称以及一元二次方程的解法和判别式。
3. 不等式与不等式组:学生需要理解和应用不等式的性质,掌握不等式组的解法和图像表示。
二、函数1. 函数概念与性质:学生需要了解函数的定义、自变量、因变量以及函数图像的性质。
同时还需要学会根据已知条件来确定函数的值域、定义域和解函数方程。
2. 一次函数与一次函数方程:学生将学习掌握一次函数的图像、截距、斜率和一次函数方程的解法。
3. 幂函数、指数函数和对数函数:学生需要了解这些函数的定义、性质和图像特点,并学会求解相关的方程和不等式。
4. 复合函数与反函数:学生将学习复合函数和反函数的概念,以及如何求解复合函数和反函数的问题。
三、几何1. 向量与平面向量:学生将学习向量的概念、运算和向量的线性运算法则。
此外,还需要了解平面向量的共线、共面和向量的数量积。
2. 三角函数与三角方程:学生需要了解正弦、余弦和正切函数的定义、性质和图像特点。
同时,还需要学会求解三角方程。
3. 三角恒等式与三角变换:学生将学习三角恒等式的证明和应用,以及三角函数的和差化积、倍角公式和半角公式等。
四、概率1. 随机事件与概率:学生将学习随机事件的概念和性质,掌握概率的计算方法,并运用概率解决实际问题。
2. 排列与组合:学生需要了解排列和组合的概念、计算方法和应用。
以上仅仅是高中数学必修四课程中部分重要的数学知识点。
通过对这些知识点的学习和掌握,学生将能够在应用数学的各个领域中灵活运用数学方法和工具,提高解决问题的能力和思维能力。
因此,对于每一个高中生来说,深入理解和掌握这些数学知识点是非常重要的。
高中数学必修4第一章知识点总结

高中数学必修4第一章知识点总结一、数列的定义与表示方法:1.数列的定义:由一列按照一定规律排列的有序数构成的集合称为数列。
2.数列的表示方法:可以通过用元素的代号表示每一项,如a₁,a₂,a₃,...,aₙ表示数列的前n项;或者使用通项公式表示数列的一般项。
二、数列的分类:1.根据数列的前后项之间的关系,可以将数列分为等差数列、等比数列和等差数列的和。
2.等差数列:若一个数列中任意两项之差都相等,则称该数列为等差数列。
等差数列的通项公式为aₙ=a₁+(n-1)d,其中a₁为首项,d为公差,n为项数。
3.等比数列:若一个数列中任意两项之比都相等,则称该数列为等比数列。
等比数列的通项公式为aₙ=a₁*q^(n-1),其中a₁为首项,q为公比,n为项数。
4.等差数列的和:等差数列的和是等差数列前n项和,记为Sₙ,可由通项公式推导出来。
三、常用的数列公式:1.前n项和公式:-等差数列的前n项和公式为Sₙ=(a₁+aₙ)*n/2-等比数列的前n项和公式为Sₙ=a₁*(1-q^n)/(1-q),其中q≠12.末项公式:-等差数列的末项公式为aₙ=a₁+(n-1)d。
-等比数列的末项公式为aₙ=a₁*q^(n-1)。
四、数列的性质:1.数列的递增和递减性:若数列的相邻两项之差为正数,称该数列为递增数列;若相邻两项之差为负数,称该数列为递减数列。
2.数列的有界性:若数列的所有项都不小于一个常数M,称该数列是下有界的;若数列的所有项都不大于一个常数N,称该数列是上有界的。
3.数列的单调性:若数列的前后项之间的关系始终保持一致,称该数列是单调数列。
4.数列的极限:如果数列中的项无限增大或无限逼近一些常数,那么这个常数称为该数列的极限。
五、常见的数列应用问题:1.求等差数列的前n项和、末项或项数的方法。
2.求等比数列的前n项和、末项或项数的方法。
3.判断数列的递增性、递减性、有界性或单调性。
4.使用数列的公式解决实际问题,如等差电费问题、等比人口增长问题等。
高中必修4数学知识点总结

高中必修4数学知识点总结一、不等式与不等式组1.不等式不等式是指两个数之间的大小关系,在学习数学理论时,经常会遇到不等式的计算和证明。
不等式的解:例如,对于不等式2x+5>7,我们可以通过移项,得到2x>2,再将x的表达式计算出来,得到x>1,所以该不等式的解集是大于1的实数集合。
2.不等式组不等式组是由多个不等式组成的一种数学结构,需要通过分析每个不等式的解集,并通过交集或并集的方式得到整个不等式组的解集。
例如,对于不等式组{x>0,y>0,(x-1)^2+(y-2)^2<=4}首先我们可以看出x和y分别大于0,再找到第三个不等式所表示的点在数轴上的位置,通过这些信息可以得到整个不等式组的解集。
不等式与不等式组在高中数学中占有重要的地位,不仅是理论研究的基础,也是解决实际问题的重要手段。
二、函数的概念1.函数的定义函数是一种映射关系,即对于一个自变量的取值,对应有唯一的因变量的取值。
数学上通常用f(x)或者y来表示函数,其中f表示函数名称,x表示自变量,y表示因变量,函数可以是线性函数、二次函数、三次函数等,还可以是三角函数、对数函数、指数函数等等。
函数在高中数学中是一个基础性的知识点,它涉及到数理逻辑和抽象推理方面的内容,在训练学生的数理思维和理解能力上具有重要意义。
2.函数的性质函数具有一些重要的性质,如奇函数和偶函数、增函数和减函数、周期函数的概念。
例如,奇函数的性质是:f(-x)=-f(x),即在对称轴上两侧的函数值相等但符号相反;偶函数的性质是:f(-x)=f(x),即在对称轴上两侧的函数值相等且符号相同。
增函数和减函数则是指函数的增减趋势,增函数的性质是:对于任意的x1、x2,若x1<x2,则f(x1)<f(x2);减函数则是:对于任意的x1、x2,若x1<x2,则f(x1)>f(x2)。
周期函数则是指函数在一定范围内有规律地重复出现相同的图形,这种性质在实际问题中有着广泛的应用。
人教版高中数学必修四常见公式及知识点总结(完整版)

必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修四知识点归纳总结1.1.1 任意角1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.1.1.2弧度制(一)1.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 弧度制的性质:①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr ③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:︒=3602π;︒=180π;815730.57)180(1'︒=︒≈︒=πrad ;︒=) 180 (πn n .5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AOαα⋅=⇒=r l rl弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.4-1.2.1任意角的三角函数(三)1. 三角函数的定义2. 诱导公式)Z (tan )2tan()Z (cos )2cos()Z (sin )2sin(∈=+∈=+∈=+k k kk k k ααπααπααπ 当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
1.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
有向线段:带有方向的线段。
2.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P(,)x y , 过P 作x A α的终边或其反向延长线交与点T由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP ATAT x OM OAα====我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
(Ⅳ)(Ⅲ)说明:(1)三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余弦线在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
(2)三条有向线段的方向:正弦线由垂足指向α的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与α的终边的交点。
(3)三条有向线段的正负:三条有向线段凡与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值。
(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
4-1.2.1任意角的三角函数(1)1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin yr α=;(2)比值x r 叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x 叫做α的正切,记作tan α,即tan yx α=;(4)比值x y叫做α的余切,记作cot α,即cot xy α=;说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小;③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan y x α=无意义;同理当()k k Z απ=∈时,yx=αcot 无意义;④除以上两种情况外,对于确定的值α,比值y r 、x r 、y x 、xy分别是一个确定的实数,正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
2.三角函数的定义域、值域注意:(1)在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合. (2) α是任意角,射线OP 是角α的终边,α的各三角函数值(或是否有意义)与ox 转了几圈,按什么方向旋转到OP 的位置无关.(3)sin α是个整体符号,不能认为是“sin ”与“α”的积.其余五个符号也是这样. (4)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r ”同为正值. 所不同的是,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x 轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆. 3.例题分析例1.求下列各角的四个三角函数值: (通过本例总结特殊角的三角函数值)(1)0; (2)π; (3)32π.解:(1)因为当0α=时,x r =,0y =,所以sin 00=, 01cos =, tan 00=, cot 0不存在。
(2)因为当απ=时,x r =-,0y =,所以sin 0π=, cos 1π=-, tan 0π=, cot π不存在,(3)因为当32πα=时,0x =,y r =-,所以3sin 12π=-, 3cos 02π=, 3tan 2π不存在, 3cot02π=, 例2.已知角α的终边经过点(2,3)P -,求α的四个函数值。
解:因为2,3x y ==-,所以r ==,于是sin13y r α===-; cos 13x r α===; 3tan 2y x α==-; 2cot 3x y α==- .例3.已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。
解:因为过点(,2)(0)a a a ≠,所以|r a =, ,2x a y a ==当0siny a r α>====时,cos x r α===;1tan 2;cot ;sec 5;csc 2αααα===;当0sin5y a r α<====-时,;cosx r α===; 15tan 2;cot ;sec 5;csc 22αααα===-=-. 4.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值yr 对于第一、二象限为正(0,0y r >>),对于第三、四象限为负(0,0y r <>);②余弦值xr对于第一、四象限为正(0,0x r >>),对于第二、三象限为负(0,0x r <>);③正切值yx对于第一、三象限为正(,x y 同号),对于第二、四象限为负(,x y 异号). 说明:若终边落在轴线上,则可用定义求出三角函数值。
5.诱导公式由三角函数的定义,就可知道:终边相同的角三角函数值相同。
即有:sin(2)sin k απα+=,cos(2)cos k απα+=,其中k Z ∈. tan(2)tan k απα+=,这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.4-1.2.2同角三角函数的基本关系(一)同角三角函数的基本关系式:1. 由三角函数的定义,我们可以得到以下关系:(1)商数关系:αααcon sin tan = (2)平方关系:1sin 22=+ααcon说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如tan cot 1(,)2k k Z πααα⋅=≠∈;③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α= 22sin 1cos αα=-, sin cos tan ααα=等。
总结:1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。
在求值中,确定角的终边位置是关键和必要的。
有时,由于角的终边位置的不确定,因此解的情况不止一种。
2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。
小结:化简三角函数式,化简的一般要求是:(1)尽量使函数种类最少,项数最少,次数最低; (2)尽量使分母不含三角函数式; (3)根式内的三角函数式尽量开出来;(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常将式子中的“1”作巧妙的变形,1.3诱导公式1、诱导公式(五) sin )2cos(cos )2sin(ααπααπ=-=-2、诱导公式(六) sin )2cos(cos )2sin(ααπααπ-=+=+总结为一句话:函数正变余,符号看象限 小结:①三角函数的简化过程图:②三角函数的简化过程口诀:负化正,正化小,化到锐角就行了.1.4.1正弦、余弦函数的图象1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数(1)函数y=sinx 的图象第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象根据诱导公式cos sin()2x x π=+,可以把正弦函数y=sinx 的图象向左平移2π单位即得余弦函数y=cosx 的图象.正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是哪几个?(0,1) (2π,0) (π,-1) (23π,0) (2π,1)1.4.2正弦、余弦函数的性质(一)1.周期函数定义:对于函数f (x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x+T)=f (x)那么函数f (x)就叫做周期函数,非零常数T 叫做这个函数的周期。