浙江省2020年高考数学第二轮复习 专题升级训练11 空间几何体的三视图、表面积及体积 文

合集下载

(浙江专用)2020版高考数学大二轮复习专题二小题考法课一空间几何体的三视图、表面积与体积课时跟踪检测

(浙江专用)2020版高考数学大二轮复习专题二小题考法课一空间几何体的三视图、表面积与体积课时跟踪检测

空间几何体的三视图、表面积与体积[课时跟踪检测] [A 级——基础小题提速练]一、选择题1.(2019·嘉兴高三期末) 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .36 3B .54C .72 3D .108解析:选A 由三视图得该几何体是以边长为6的正方形为底面,高为33的四棱锥体,则该几何体的体积V =13×6×6×33=363,故选A.2.某几何体的三视图如图所示,则该几何体的体积是( )A.82π3 B .82πC.42π3D .42π解析:选C 由三视图得该几何体为底面半径为2,高为22的圆锥体的一半,则其体积为12×13×22×π×22=42π3,故选C. 3.(2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3C.3π2+1 D.3π2+3 解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =13×12π×12×3+13×12×2×2×3=π2+1.4.某几何体的三视图如图所示,其侧视图是一个边长为2的正三角形,则该几何体的体积是( )A.833B.233C.163D.43解析:选A 由三视图可得该几何体为一个底面为边长为2的等边三角形,高为3的三棱柱截去两个以三棱柱的底面为底,高为12的三棱锥后剩余的部分,则其体积为34×22×3-2×13×34×22×12=833,故选A. 5.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为( )A .72B .64C .48D .32解析:选B 由三视图可知,此几何体为正四棱柱中挖去一个与其共上底且高为3的四棱锥,则体积V =42×5-13×42×3=64,故选B.6.一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A .72+6πB .72+4πC .48+6πD .48+4π解析:选A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×2×2+14×2π×2×4=72+6π,故选A.7.(2019·浙江新高考仿真卷(一))已知某几何体的三视图如图所示,则该几何体的体积为( )A .2 B.83 C.103D .3解析:选C 由三视图可知,该几何体是底面直角边长为2的等腰直角三角形、高为2的直棱柱截去一个有相同底面且高为1的三棱锥后的几何体,所以该几何体的体积为V =121 3×12×2×2×1=103,故选C.×2×2×2-8.某空间几何体的三视图如图所示,则该几何体的体积为( )A.73B.8-π3C.83D.7-π3解析:选B 由三视图得,该几何体是从四棱锥P ­ABCD 中挖去半个圆锥后剩余的部分,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,则所求的体积V =13×2×2×2-12×13π×12×2=8-π3.9.已知一个几何体的三视图如图所示,则该几何体的表面积为( )A .3π B.15π4C.33π4D .6π解析:选B 由三视图还原直观图知,该几何体为底面半径为1,高为3的圆锥挖去一个球心为圆锥底面圆的圆心且与圆锥相切的半球,易知圆锥的母线长为2,则圆锥的轴截面为边长为2的等边三角形,球的半径为32,故该几何体的表面积为π×1×2+12×4π×⎝ ⎛⎭⎪⎫322+π×12-π×⎝⎛⎭⎪⎫322=15π4,故选B. 10.某几何体的三视图如图所示(单位:cm),则该几何体的表面积(单位:cm 2)是( )A .36+24 2B .36+12 5C .40+24 2D .40+12 5解析:选B 由三视图可知该几何体为一正方体和一正四棱台的简单组合体.正方体的棱长为2 cm ,正四棱台上底面的边长为2 cm ,下底面的边长为4 cm ,棱台的高为2 cm ,可求得正四棱台的斜高为22+12=5(cm),故该几何体的表面积S =22×5+12×(2+4)×5×4+42=36+125(cm 2).故选B.二、填空题11.(2019·金华十校调研)一个棱柱的底面是边长为6的正三角形,侧棱与底面垂直.其三视图如图所示,则这个棱柱的体积为________,此棱柱的外接球的表面积为________.解析:由题意可知该三棱柱是一个直三棱柱,且底面是边长为6的正三角形,底面积为S =12×62×sin 60°=93,又因为该三棱柱的高h =4,所以该三棱柱的体积为V =Sh =93×4=36 3.由正弦定理可知该正三棱柱底面的外接圆直径为2r =6sin 60°=43,则其外接球的直径为2R =(2r )2+h 2=8,则R =4,因此,此棱柱的外接球的表面积为4πR 2=4π×42=64π.答案:36 3 64π12.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是________,该几何体的表面积是________.解析:由三视图可知,该几何体为四棱锥,由3=13×12×3×(1+2)x ,解得x =2.作出该几何体的直观图并标注相应棱的长度如图所示,则S表=12×3×(1+2)+12×2×3+12×22+12×2×7+12×1×7=53+37+42.答案:253+37+4213.(2019·温州高三适应性考试)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)等于________,表面积(单位:cm 2)等于________.解析:由三视图得该几何体的底面是上底为2、下底为4、高为1的等腰梯形,高是1的直四棱柱,则其体积为1×2+42×1=3,表面积为2×2+42×1+1×2+1×4+2×1×2=12+2 2.答案:3 12+2 214.某几何体的三视图如图所示,则该几何体的体积等于________,表面积等于________.解析:如图,由三视图可知该几何体是底面半径为2,高为3的圆柱的一半,故该几何体的体积为12×π×22×3=6π,表面积为2×12×π×22+4×3+π×2×3=10π+12.答案:6π 12+10π15.已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,球O 与正方体的各条棱都相切,M 为球O 上的一点,点N 是△ACB 1外接圆上的一点,则线段MN 长度的取值范围是________.解析:易求得棱切球的半径为2,易知△ACB 1为正三角形,则球心O 到△ACB 1的外接圆上任意一点的距离均为12+(2)2=3,于是OM =2,ON = 3.因为|OM -ON |≤|MN |≤|OM +ON |,所以线段MN 长度的取值范围是[3-2,3+2].答案:[3-2,3+2]16.如图是某几何体的三视图,则该几何体的体积为________.解析:此几何体为一侧棱垂直于底面的三棱台ABC ­A 1B 1C 1,如图.由上底的面积S 1=12,下底的面积S 2=2,高h =AA 1=1,得体积V =13(S 1+ S 1S 2+S 2)h =76.答案:7617.某几何体的三视图如图所示,俯视图由一个直径为2的半圆和一个正三角形组成,则此几何体的体积是________,表面积是________.解析:由题意可知,该几何体是由一个正三棱柱和半个圆柱组合而成的,正三棱柱的底面边长为2,高为4,半圆柱的底面半径为1,高为4,所以V =12×2×3×4+12π×12×4=43+2π,表面积S =2×4×2+12×3×2×2+π×12+π×1×4=16+23+5π.答案:43+2π 16+23+5π[B 级——能力小题保分练]1.某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V =12×3×4×6-2×13×2×4×3=20,故选B.2.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥外接球的表面积为( )A .136πB .34πC .25πD .18π解析:选B 由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R 即为该四棱锥外接球的半径,所以2R =32+32+42,解得R =342,所以该四棱锥外接球的表面积为4πR 2=34π,故选B.3.如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则该几何体的表面积为( )A .45π+96B .(25+6)π+96C .(45+4)π+64D .(45+4)π+96解析:选D 由三视图可知,该几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,所以该几何体的表面积为S =6×42+π×22+π×2×42+22=(45+4)π+96.4.(2019·台州高三期末)已知某多面体的三视图如图所示,则该几何体的所有棱长和为__________,其体积为________.解析:由三视图画出几何体的直观图如图所示,其是正方体的一部分,其中E ,F 是所在棱的中点,正方体的棱长为2,所以该几何体的所有棱长的和2×7+1+1+2+2×22+12+22=16+32+2 5.该几何体的体积为2×2×2-13×2×12×1×1+12×2×2+12×1×1×12×2×2=173. 答案:16+32+2 5 173 5.已知某锥体的三视图如图所示(各正方形的边长为2),则该锥体的体积是________;该锥体的内切球的表面积是________.解析:由几何体的三视图可知该几何体是一个棱长为22的正四面体,其可以为边长为2的正方体截去四个角而得,所以其体积为V =23-4×13×12×23=83.因为正四面体的棱长为22,所以其底面的三角形的高为6,该正四面体的高为433,设内切球的半径为r ,则有⎝ ⎛⎭⎪⎫433-r 2=r 2+⎝ ⎛⎭⎪⎫2632,解得r =33,所以该内切球的表面积为S =4πr 2=4π3. 答案:83 4π36.如图所示,等腰△ABC 的底边AB =66,高CD =3,点E 是线段BD 上异于点B ,D 的动点,点F 在BC 边上,且EF ⊥AB ,现沿EF 将△BEF折起到△PEF 的位置,使PE ⊥AE ,记BE =x ,V (x )表示四棱锥P ­ACFE的体积,则V (x )的最大值为________.解析:因为PE ⊥EF ,PE ⊥AE ,EF ∩AE =E , 所以PE ⊥平面ABC .因为CD ⊥AB ,FE ⊥AB ,所以EF ∥CD ,所以EF CD =BE BD ,即EF 3=x36,所以EF =x 6,所以S △ABC =12×66×3=96, S △BEF =12×x ×x 6=612x 2, 所以V (x )=13×⎝ ⎛⎭⎪⎫96-612x 2x =63x ⎝ ⎛⎭⎪⎫9-112x 2(0<x <36). 因为V ′(x )=63⎝ ⎛⎭⎪⎫9-14x 2, 所以当x ∈(0,6)时,V ′(x )>0,V (x )单调递增; 当6<x <36时,V ′(x )<0,V (x )单调递减, 因此当x =6时,V (x )取得最大值12 6. 答案:12 6。

2020年高考数学专题提升: 空间几何体(含答案)

2020年高考数学专题提升: 空间几何体(含答案)

空间几何体一、单项选择题(每题5分;共55分)1.某几何体的三视图如图所示,则该几何体的体积为()A. π+412B. π+13C. π+1D. π+142.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为()A. 16+12πB. 32+12πC. 24+12πD. 32+20π3.直三棱柱ABC−A1B1C1的底面是边长为2的正三角形,侧棱长为√3,D为BC中点,则三棱锥A−B1DC1的体积为()A. 3B. 32C. 1D. 24.如图所示的三视图表示的几何体的体积为323,则该几何体的外接球的表面积为( )A. 12πB. 24πC. 36πD. 48π5.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为r1,大圆柱底面半径为r2,如图1放置容器时,液面以上空余部分的高为ℎ1,如图2放置容器时,液面以上空余部分的高为ℎ2,则ℎ1ℎ2=()A. r2r1 B. (r2r1)2 C. (r2r1)3 D. √r2r16.如图,长方体ABCD−A1B1C1D1的体积是36,点E在棱CC1上,且CE=2EC1,则三棱锥E-BCD的体积是()A. 3B. 4C. 6D. 127.某几何体的正视图和侧视图如图1所示,它的俯视图的直观图是平行四边形A′B′C′D′,如图2所示.其中A′B′=2A′D′=4,则该几何体的表面积为( )A. 16+12πB. 16+8πC. 16+10πD. 8π8.某几何体的三视图如图所示,若该几何体的体积为10,则棱长为a的正方体的外接球的表面积为()3A. 12πB. 14πC. 4√3πD. 16π9.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体.本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400cm2,900cm2,高为9cm,长方体形凹橹的体积为4300cm3,那么这个斗的体积是()注:台体体积公式是V=1(S' +√S′S+S)h.3A. 5700cm3B. 8100cm3C. 10000cm3D. 9000cm310.在四棱锥P−ABCD中,PB=PD=2,AB=AD=1,PC=√3PA=3,∠BAD= 120°,AC平分∠BAD,则四棱锥P−ABCD的体积为()A. √62B. √6 C. √63D. √311.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈=10尺=100寸,π≈3.14,sin22.5∘≈513)A. 600立方寸B. 610立方寸C. 620立方寸D. 633立方寸二、填空题(每空4分;共44分)12.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,正视图中的曲线为四分之一圆弧,则该几何体的表面积是________.13.已知某正四棱锥的底面边长和侧棱长均为2cm,则该棱锥的体积为________ cm3.14.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为________.15.祖暅是我国南北朝时代的伟大科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”,称为祖暅原理.意思是底面处于同一平面上的两个同高的几何体,若在等高处的截面面积始终相等,则它们的体积相等.利用这个原理求半球O的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为________,表面积为________.16.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.17.学生到工厂劳动实践,利用3D打印技术制作模型,如图,该模型为长方体ABCD-A1B1C1D1,挖去四棱推O一EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm2,不考虑打印损耗,制作该模型所需原料的质量为________g.18.某三棱锥的三视图如图所示,则该三棱锥体积是________,四个面的面积中最大的是________.19.在《九章算术》中有称为“羡除”的五面体体积的求法.现有一个类似于“羡除”的有三条棱互相平行的五面体,其三视图如图所示,则该五面体的体积为________.20.如图,在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别为棱A1D1、C1D1的中点,NBC1,若P、M分别为线段D1B、EF上的动点,则|PM|+是线段BC1上的点,且BN=14|PN|的最小值为________.参考答案一、单项选择题1.【答案】A2.【答案】A3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】A9.【答案】C10.【答案】A11.【答案】D二、填空题12.【答案】24√213.【答案】4314.【答案】1315.【答案】2π;(3 +√2)π316.【答案】1017.【答案】118.818.【答案】1;3√5219.【答案】2420.【答案】√6。

2020届高考数学大二轮复习 第1部分 专题第1讲 空间几何体的三视图、表面积及体积练习

2020届高考数学大二轮复习 第1部分 专题第1讲 空间几何体的三视图、表面积及体积练习

第一部分 专题五 第一讲 空间几何体的三视图、表面积及体积A 组1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD 1=1,AB =BC =AA 1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( C )[解析] 由直观图和俯视图知,正视图中点D 1的射影是B 1,所以正视图是选项C 中的图形,A 中少了虚线,故不正确.2.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( C )A .20πB .24πC .28πD .32π[解析] 该几何体是圆锥与圆柱的组合体,由三视图可知圆柱底面圆的半径r =2,底面圆的周长c =2πr =4π,圆锥的母线长l =22+32=4,圆柱的高h =4,所以该几何体的表面积S 表=πr 2+ch +12cl =4π+16π+8π=28π,故选C .3.(文)一个几何体的三视图如图所示,则该几何体的体积为( A )A .12-πB .12-2πC .6-πD .4-π[解析] 由三视图知,该几何体是一个组合体,由一个长方体挖去一个圆柱构成,长方体的长、宽高为4,3,1,圆柱底半径1,高为1,∴体积V =4×3×1-π×12×1=12-π.(理)若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于( B )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3[解析] 由三视图知该几何体是四棱锥,可视作直三棱柱ABC -A 1B 1C 1沿平面AB 1C 1截去一个三棱锥A -A 1B 1C 1余下的部分.∴VA -BCC 1B 1=VABC -A 1B 1C 1-VA -A 1B 1C 1=12×4×3×5-13×(12×4×3)×5=20cm 3.4.某几何体的三视图如图所示,则该几何体的表面积为( B )A .18+2πB .20+πC .20+π2D .16+π[解析] 由三视图可知,这个几何体是一个边长为2的正方体割去了相对边对应的两个半径为1、高为1的14圆柱体,其表面积相当于正方体五个面的面积与两个14圆柱的侧面积的和,即该几何体的表面积S =4×5+2×2π×1×1×14=20+π.故选B .5.(2018·双鸭山一模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( A )A .16π3B .8π3C .4 3D .23π[解析] 由已知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体有一个侧面PAC 垂直于底面,高为3,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O 在高线PD 上,且是等边三角形PAC 的中心, 这个几何体的外接球的半径R =23PD =233.则这个几何体的外接球的表面积为S =4πR 2=4π×(233)2=16π3.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为16.[解析] 利用三棱锥的体积公式直接求解.VD 1-EDF =VF -DD 1E =13SD 1DE ·AB =13×12×1×1×1=16.7.已知E ,F 分别是矩形ABCD 的边BC 与AD 的中点,且BC =2AB =2,现沿EF 将平面ABEF 折起,使平面ABEF ⊥平面EFDC ,则三棱锥A -FEC 2π. [解析] 如图,平面ABEF ⊥平面EFDC ,AF ⊥EF ,所以AF ⊥平面ECDF ,将三棱锥A -FEC 补成正方体ABC ′D ′-FECD . 依题意,其棱长为1,外接球的半径R =32, 所以外接球的体积V =43πR 3=43π·(32)3=32π.8.(文)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积. [解析] (1)取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1= 3. 又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABC = 3.故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3.(理)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P -ABCD 的体积...[解析] (1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面PAD ,AD ⊂平面PAD , 故BC ∥平面PAD .(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD , 平面PAD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD . 因为CM ⊂底面ABCD , 所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 如图,取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2. 于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P -ABCD 的体积V =13×+2×23=4 3.B 组1.(文)某三棱锥的三视图如图所示,则该三棱锥的体积为( D )A .60B .30C .20D .10[解析]由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,所以V三棱锥P -ACD=13×12BD ,BC ,根据三视图可知底面ABCD 是矩形,AD =5,CD =3,PB =4,×3×5×4=10.故选D .(理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( B )A .3 2B .2 3C .2 2D .2[解析] 在正方体中还原该四棱锥,如图所示,可知SD 为该四棱锥的最长棱. 由三视图可知正方体的棱长为2, 故SD =22+22+22=2 3. 故选B .2.(2018·宜宾一模)三棱锥A -BCD 内接于半径为2的球O ,BC 过球心O ,当三棱锥A -BCD 体积取得最大值时,三棱锥A -BCD 的表面积为( D )A .6+4 3B .8+2 3C .4+6 3D .8+4 3[解析] 由题意,BC 为直径,△BCD 的最大面积为12×4×2=4,三棱锥A -BCD 体积最大时,AO ⊥平面BCD ,三棱锥的高为2, 所以三棱锥A -BCD 的表面积为4×2+2×12×22×6=8+4 3.3.三棱锥P -ABC 中,PA ⊥平面ABC 且PA =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( C )A .4π3B .4πC .8πD .20π[解析] 由题意得,此三棱锥外接球即为以△ABC 为底面、以PA 为高的正三棱柱的外接球,因为△ABC 的外2,所以三棱锥外接球的表面积S =4πR 2=8π, 故选C .4.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( B )A .2 2B .2 3C .4D .2 6[解析] 如图,四面体的直观图是棱长为2的正方体ABCD -MNPQ 中的三棱锥Q -BCN ,且QB =22+22=23,NC =QN =QC =22,四面体Q -BCN 各面的面积分别为S △QBN =S △QBC =12×2×22=22,S △BCN =12×2×2=2,S △QCN =34×(22)2=23,面积最大为2 3.5.三棱锥S -ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为( B )A .211B .4 2C .38D .16 3[解析] 由已知中的三视图可得SC ⊥平面ABC ,且底面△ABC 为等腰三角形, 在△ABC 中AC =4,AC 边上的高为23, 故BC =4,在Rt △SBC 中,由SC =4, 可得SB =4 2.6.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等且V 1V 2=32,则S 1S 2的值是94.[解析] 设甲、乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,又V 1V 2=πr 21h 1πr 22h 2,∴V 1V 2=r 1r 2,∴r 1r 2=32,则S 1S 2=(r 1r 2)2=94. 7.已知在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,AB =2AD =2CD =2,将直角梯形ABCD 沿AC 折叠成三棱锥D -ABC ,当三棱锥D -ABC 的体积取最大值时,其外接球的体积为43π.[解析] 当平面DAC ⊥平面ABC 时,三棱锥D -ABC 的体积取最大值.此时易知BC ⊥平面DAC ,∴BC ⊥AD ,又AD ⊥DC ,∴AD ⊥平面BCD ,∴AD ⊥BD ,取AB 的中点O ,易得OA =OB =OC =OD =1,故O 为所求外接球的球心,故半径r =1,体积V =43πr 3=43π.8.(文)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ____ACD 的体积为63,求该三棱锥的侧面积.[解析] (1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE . 故AC ⊥平面BED .又AC ⊂平面AEC , 所以平面AEC ⊥平面BED . (2)设AB =x ,在菱形ABCD 中, 由∠ABC =120°,可得AG =GC =32x , GB =GD =x2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E ­ACD 的体积故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E ­ACD 的侧面积为3+2 5.(理)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.(1)求证:AC ⊥平面BDEF ; (2)求证:平面BDGH //平面AEF ; (3)求多面体ABCDEF 的体积.[解析] (1)证明:因为四边形ABCD 是正方形, 所以AC ⊥BD .又因为平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD , 且AC ⊂平面ABCD , 所以AC ⊥平面BDEF .(2)证明:在△CEF 中,因为G 、H 分别是CE 、CF 的中点, 所以GH ∥EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF , 所以GH ∥平面AEF . 设AC ∩BD =O ,连接OH ,在△ACF 中,因为OA =OC ,CH =HF ,所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF , 所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF . (3)解:由(1),得AC ⊥平面BDEF ,又因为AO =2,四边形BDEF 的面积S BDEF =3×22=62, 所以四棱锥A -BDEF 的体积V 1=13×AO ×S BDEF =4.同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.。

2020版高考数学 立体几何第1讲空间几何体的三视图、表面积及体积练习(文)(含解析)

2020版高考数学 立体几何第1讲空间几何体的三视图、表面积及体积练习(文)(含解析)

第1讲 空间几何体的三视图、表面积及体积A 级 基础通关一、选择题1.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A.525πR 3B.324πR 3C.58πR 3D.38πR 3 解析:设圆锥的底面圆的半径为r ,高为h , 由2πr =πR ,得r =R2,因此h =R 2-r 2=32R . 所以V 圆锥=13πr 2·h =13π·⎝ ⎛⎭⎪⎫R 22·32R =324πR 3.答案:B2.(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:由三视图得到空间几何体,如图所示,则PA ⊥平面ABCD ,平面ABCD 为直角梯形,PA =AB =AD =2,BC =1,所以PA ⊥AD ,PA ⊥AB ,PA ⊥BC .又BC ⊥AB ,AB ∩PA =A ,所以BC ⊥平面PAB ,所以BC ⊥PB .在△PCD 中,PD =22,PC =3,CD =5,所以△PCD 为锐角三角形.所以侧面中的直角三角形为△PAB ,△PAD ,△PBC ,共3个.答案:C3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .8+3πB .8+4πC .8+5πD .8+6π解析:由题图可知,几何体为半圆柱挖去半球体,几何体的表面积为2×π2×4+π+2×4-π+4π2=8+6π.答案:D4.中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知“堑堵”的正视图和俯视图如图所示,则该“堑堵”的侧视图的面积为( )A .18 6B .18 3C .18 2D.2722解析:在俯视图Rt △ABC 中,作AH ⊥BC 交于点H .由三视图的意义,则BH =6,HC =3,根据射影定理,AH 2=BH ·HC ,所以AH =3 2.易知该“堑堵”的侧视图是矩形,长为6,宽为AH =32,故侧视图的面积S =6×32=18 2.答案:C5.(2019·青岛二中检测)某几何体的三视图如图所示,则该几何体的体积为( )A .6B .4C.223D.203解析:由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是等腰直角三角形,等腰直角三角形的直角边长为2,故几何体体积V =23-12×2×2×1=6.答案:A6.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4解析:设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.所以r =12-⎝ ⎛⎭⎪⎫122=32.所以圆柱的体积为V =πr 2h =34π×1=3π4.故选B.答案:B 二、填空题7.(2019·江苏卷)如图,长方体ABCD-A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E-BCD 的体积是________.解析:设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120,所以V EBCD =13×12ab ×12c =112abc =10.答案:108.(2018·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)为________.解析:由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6.答案:69.(2017·北京卷改编)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为________.解析:根据三视图可得该四棱锥的直观图(四棱锥P-ABCD)如图所示,将该四棱锥放入棱长为2的正方体中.由图可知该四棱锥的最长棱为PD,PD=22+22+22=2 3.答案:2 310.(2019·惠州调研)已知一张矩形白纸ABCD,AB=10,AD=102,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,使A,C重合于点P,则三棱锥PDEF的外接球的表面积为________.解析:三棱锥P-DEF中,PD2+PF2=CD2+CF2=DF2,所以∠DPF=90°,且DF2=102+(52)2=150.又∠DEF=90°,所以DF的中点为三棱锥PDEF的外接球的球心,则2R=DF,故球的表面积S=4πR2=150π.答案:150πB级能力提升11.(2019·雅礼中学质检)一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3B .5C.2π3D .π解析:由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,其中圆锥的底面半径为1,高为2,体积为12×13×π×12×2=π3;球的半径为1,体积为14×43π×13=π3.所以该几何体的体积V =π3+π3=2π3.答案:C12.我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.解析:因为S 圆=S 环总成立,则半椭球体的体积为πb 2a -13πb 2a =23πb 2a .所以椭球体的体积V =43πb 2a .因为椭球体半短轴长为1,半长轴长为3即b =1,a =3. 故椭球体的体积V =43πb 2a =4π.答案:4π13.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P-ABCD 为阳马,侧棱PA ⊥底面ABCD ,且PA =3,BC =AB =4,设该阳马的外接球半径为R ,内切球半径为r ,则R =________,内切球的体积V =________.解析:在四棱锥P-ABCD 中,侧棱PA ⊥底面ABCD ,且底面为矩形,将该“阳马”补成长方体,则(2R )2=AB 2+AD 2+AP 2=16+16+9=41. 因此R =412. 依题意Rt △PAB ≌Rt △PAD ,则内切球O 在侧面PAD 内的正视图是△PAD 的内切圆,且该内切圆与△PAB 的内切圆全等.故内切球的半径r =12(3+4-5)=1,则V =43πr 3=43π.答案:412 43π 14.(2017·全国卷Ⅰ)已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ­ABC 的体积为9,则球O 的表面积为________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC . 由平面SCA ⊥平面SCB , 平面SCA ∩平面SCB =SC , 所以OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ­ABC 的体积V =13×⎝ ⎛⎭⎪⎫12SC ·OB ·OA =r 33, 即r 33=9,所以r =3,所以S 球表=4πr 2=36π. 答案:36π。

高考数学二轮复习 第二部分专项二 专题四 1 第1讲 空间几何体的三视图、表面积与体积

高考数学二轮复习 第二部分专项二 专题四 1 第1讲 空间几何体的三视图、表面积与体积

专题四立体几何与空间向量第1讲空间几何体的三视图、表面积与体积年份卷别考查内容及考题位置命题分析2018卷Ⅰ空间几何体的三视图及侧面展开问题·T71.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面的位置关系(特别是平行与垂直).2.考查一个小题时,此小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一个小题难度稍高,一般会出现在第10~16题的位置上,此小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的截面问题·T12卷Ⅱ圆锥的侧面积·T16卷Ⅲ三视图的识别·T3三棱锥的体积及外接球问题·T102017卷Ⅰ空间几何体的三视图与直观图、面积的计算·T7卷Ⅱ空间几何体的三视图及组合体体积的计算·T4卷Ⅲ球的内接圆柱、圆柱的体积的计算·T82016卷Ⅰ有关球的三视图及表面积的计算·T6卷Ⅱ空间几何体的三视图及组合体表面积的计算·T6卷Ⅲ空间几何体的三视图及组合体表面积的计算·T9直三棱柱的体积最值问题·T10空间几何体的三视图(基础型) 一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[注意]在读图或者画空间几何体的三视图时,应注意三视图中的实线和虚线.[考法全练]1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12B.22C.24D.14解析:选D.由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C -ABD 的侧视图的面积为14,故选D.4.(2018·长春质量监测(二))如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为( )A .2 B. 5 C .2 2D .3解析:选D.如图,三棱锥A -BCD 即为所求几何体,根据题设条件,知辅助的正方体棱长为2,CD =1,BD =22,BC =5,AC =2,AB =3,AD =5,则最长棱为AB ,长度为3.5.(2018·石家庄质量检测(一))如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是( )A .2 3B .2 2C .2D. 3解析:选C.在正方体中还原该几何体,如图中三棱锥D -ABC 所示,其中正方体的棱长为2,则S △ABC =2,S △DBC =22,S △ADB =22,S △ADC =23,故该三棱锥的四个面中,最小面的面积是2,选C.空间几何体的表面积和体积(综合型)柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高). (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高). (2)V 锥体=13Sh (S 为底面面积,h 为高).(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上下底面面积,h 为高)(不要求记忆).[典型例题]命题角度一 空间几何体的表面积(1)(2018·潍坊模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A .4+23B .4+4 2C .6+2 3D .6+4 2(2)(2018·合肥第一次质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6【解析】 (1)由三视图还原几何体的直观图如图所示,易知BC ⊥平面P AC ,又PC ⊂平面P AC ,所以BC ⊥PC ,又AP =AC =BC =2,所以PC =22+22=22,又AB =22,所以S △PBC =S △P AB =12×2×22=22,S △ABC =S △P AC =12×2×2=2,所以该几何体的表面积为4+4 2.(2)由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6. 【答案】 (1)B (2)C求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积.命题角度二 空间几何体的体积(1)(2018·武汉调研)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.22C.33D.23(2)(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.【解析】 (1)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1­BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,四棱锥D -ABC 1D 1的底面积为S 四边形ABC 1D 1=2×2=22,高h =22,其体积V =13S 四边形ABC 1D 1h =13×22×22=23.故选D.(2)由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.【答案】 (1)D (2)8π求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.[对点训练]1.(2018·洛阳第一次统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3解析:选A.由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.2.(2018·唐山模拟)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为( )A .3 B.113 C .7D.233解析:选B.由题中的三视图可得,该几何体是由一个长方体切去一个三棱锥所得的几何体,长方体的长,宽,高分别为2,1,2,体积为4,切去的三棱锥的体积为13,故该几何体的体积V =4-13=113.故选B.多面体与球(综合型)[典型例题]命题角度一 外接球(2018·南宁模拟)三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A⊥PB ,三棱锥P -ABC 的外接球的体积为( )A.272π B.2732πC .273πD .27π【解析】 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B.【答案】 B解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.命题角度二 内切球已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B.4π3C.2π3D.π2【解析】 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C.【答案】 C求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.命题角度三 与球有关的最值问题(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3【解析】 如图,E 是AC 中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE =23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D -ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B.【答案】 B多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[对点训练]1.(2018·福州模拟)已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83π B.323π C .16πD .32π解析:选B.设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R =2,所以所求球的体积V =43πR 3=43π×23=323π,故选B.2.(2018·洛阳第一次联考)已知球O 与棱长为4的正四面体的各棱均相切,则球O 的体积为( )A.823πB.833πC.863π D.1623π解析:选A.将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.3.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于( )A.42π3B.162π3C.322π3D.642π3解析:选D.由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D.一、选择题1.(2018·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )解析:选A.正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A.2.(2018·高考北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =P A =2,AB ⊥AD ,P A ⊥平面ABCD ,故△P AD ,△P AB 为直角三角形, 因为P A ⊥平面ABCD ,BC ⊂平面ABCD , 所以P A ⊥BC ,又BC ⊥AB ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又PB ⊂平面P AB ,所以BC ⊥PB ,所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22, 故△PCD 不是直角三角形,故选C.3.(2018·沈阳教学质量监测(一))如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3解析:选A.由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.4.(2018·西安八校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.4π3B.5π3 C .2+2π3D .4+2π3解析:选B.由三视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V =23π×13+12π×12×2=5π3,故选B.5.(2018·长春质量检测(一))已知矩形ABCD 的顶点都在球心为O ,半径为R 的球面上,AB =6,BC =23,且四棱锥O -ABCD 的体积为83,则R 等于( )A .4B .2 3 C.479D.13解析:选A.如图,设矩形ABCD 的中心为E ,连接OE ,EC ,由球的性质可得OE ⊥平面ABCD ,所以V O ­ABCD =13·OE ·S 矩形ABCD =13×OE×6×23=83,所以OE =2,在矩形ABCD 中可得EC =23,则R =OE 2+EC 2=4+12=4,故选A.6.(2018·南昌调研)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.23 B.43 C .2D.83解析:选A.由三视图可知,该几何体为三棱锥,将其放在棱长为2的正方体中,如图中三棱锥A -BCD 所示,故该几何体的体积V =13×12×1×2×2=23.7.(2018·辽宁五校协作体联考)如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是三棱锥的三视图,则此三棱锥的体积是( )A .8B .16C .24D .48解析:选A.由三视图还原三棱锥的直观图,如图中三棱锥P ­ABC 所示,且长方体的长、宽、高分别为6,2,4,△ABC 是直角三角形,AB ⊥BC ,AB =2,BC =6,三棱锥P -ABC 的高为4,故其体积为13×12×6×2×4=8,故选A.8.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27B.8π27C.π3D.2π9解析:选B.如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r 2-r 3)(0<r <1),设V (r )=2π(r 2-r 3)(0<r <1),则V ′(r )=2π(2r -3r 2),由2π(2r -3r 2)=0得r =23,所以圆柱的最大体积V max =2π⎣⎡⎦⎤⎝⎛⎭⎫232-⎝⎛⎭⎫233=8π27. 9.(2018·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为 ( )A .14B .10+4 2 C.212+4 2 D.21+32+4 2解析:选D.由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S =2×⎝⎛⎭⎫22-12×1×1+12×(22-12)+12×22+2×22+12×32×(2)2=21+32+42,故选D. 10.(2018·太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为( )A .3 3B .2 6 C.21D .2 5解析:选B.由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面P AD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.11.(2018·南昌调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( )A. 2 B .2 2 C. 3D .2 3解析:选B.取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径P A =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为2OO 1=2 2.12.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32解析:选A.记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′­AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝⎛⎭⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A. 二、填空题13.(2018·洛阳第一次联考)一个几何体的三视图如图所示,则该几何体的体积为________.解析:由题图可知该几何体是一个四棱锥,如图所示,其中PD ⊥平面ABCD ,底面ABCD 是一个对角线长为2的正方形,底面积S =12×2×2=2,高h =1,则该几何体的体积V =13Sh =23.答案:2314.(2018·福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为________.解析:在长、宽、高分别为3,33,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C -BAP ,其中底面BAP 是∠BAP =90°的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=27 3. 答案:27 315.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π16.(2018·潍坊模拟)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为________.解析:设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h =⎝⎛⎭⎫6-h 22h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.答案:2。

(浙江专用)2020版高考数学 空间几何体的结构特征及三视图与直观图(含解析)

(浙江专用)2020版高考数学 空间几何体的结构特征及三视图与直观图(含解析)

课时跟踪检测(三十六)空间几何体的结构特征及三视图与直观图一抓基础,多练小题做到眼疾手快1.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是( )解析:选D 几何体的正视图和侧视图完全一样,则几何体从正面看和侧面看的长度相等,只有等边三角形不可能.2.下列说法正确的是( )A.棱柱的两个底面是全等的正多边形B.平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}解析:选D 因为选项A中两个底面全等,但不一定是正多边形;选项B中一般的棱柱不能保证侧棱与底面垂直,即截面是平行四边形,但不一定是矩形;选项C中{正棱柱}⊆{直棱柱},故A、B、C都错;选项D中,正四面体是各条棱均相等的正三棱锥,故正确.3.(2019·杭州四校联考)如图所示的为一个几何体的三视图,则该几何体的直观图是( )解析:选A 对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图中,对角线是虚线,故B不符合题意;对于C,该几何体的正视图中,对角线是从左上到右下的,故C不符合题意;对于D,该几何体的侧视图中,对角线是虚线,故D不符合题意.故选A.4.(2019·台州质检)如图,网络纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体中最长棱的长度为( )A.6 2 B.6 3C.8 D.9解析:选 D 由三视图还原几何体如图,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC为等腰三角形,且PB=62+322=36,PC=62+352=9,则该几何体中最长棱的长度为9.故选D.5.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在直角坐标系xOy中,四边形ABCO的形状为________,面积为________cm2.解析:由斜二测画法的特点知该平面图形是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8二保高考,全练题型做到高考达标1.(2018·台州模拟)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为( )A.正方形B.圆C.等腰三角形D.直角梯形解析:选D 该几何体是一个长方体时,其中一个侧面为正方形,A可能;该几何体是一个横放的圆柱时,B可能;该几何体是横放的三棱柱时,C可能,只有D不可能.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B 由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.(2018·沈阳教学质量监测)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A.三棱台B.三棱柱C.四棱柱D.四棱锥解析:选B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示,这是一个三棱柱.4.(2018·温州第八高中质检)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,该三棱柱的侧视图面积为( )A.4 B.2 3C.2 2 D. 3解析:选B 由题可得,该几何体的侧视图是一个长方形,其底边长是底面正三角形的高3,高为2,所以侧视图的面积为S=2 3.5.已知四棱锥P­ABCD的三视图如图所示,则四棱锥P­ABCD的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PM =3,PN =5,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6.所以四个侧面中面积最大的是6.6.(2018·台州模拟)如图所示,在正方体ABCD ­A 1B 1C 1D 1中,点E 为棱BB 1的中点,若用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )解析:选C 取DD 1的中点F ,连接AF ,FC 1,则过点A ,E ,C 1的平面即为面AEC 1F ,所以剩余几何体的侧视图为选项C.7.(2019·义乌六校联考)图①是棱长为1的正方体ABCD ­A 1B 1C 1D 1截去三棱锥A 1­AB 1D 1后得到的几何体,将其绕着棱DD 1所在的直线逆时针旋转45°,得到如图②所示的几何体,该几何体的正视图为( )解析:选B 由题意可知,该几何体的正视图是长方形,底面对角线DB 在正视图中的长为2,棱CC 1在正视图中为虚线,D 1A ,B 1A 在正视图中为实线,故该几何体的正视图为B.8.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④9.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1310.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64三上台阶,自主选做志在冲刺名校1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图,共六块.2.(2018·湖南东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8解析:选C 设该三棱锥为P ­ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =12×4×4=8,S △PBC =12×4×422-22=47,故四个面中面积最大的为S △PBC =47,选C.3.如图,在四棱锥P­ABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA=PD2+AD2=622+62=6 3 cm.。

(浙江专用)2020版高考数学 空间几何体的结构、三视图和直观图讲义(含解析)

(浙江专用)2020版高考数学 空间几何体的结构、三视图和直观图讲义(含解析)

§8.1空间几何体的结构、三视图和直观图最新考纲考情考向分析1.了解多面体和旋转体的概念,理解柱、锥、台、球的结构特征.2.了解简单组合体,了解中心投影、平行投影的含义.3.了解三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测画法画出它们的直观图.空间几何体的结构特征、三视图、直观图在高考中几乎年年考查.主要考查根据几何体的三视图求其体积与表面积.对空间几何体的结构特征、三视图、直观图的考查,以选择题和填空题为主.1.多面体的结构特征名称棱柱棱锥棱台图形结构特征有两个面互相平行且全等,其余各面都是平行四边形.每相邻两个四边形的公共边都互相平行有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分侧棱平行且相等相交于一点但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环3.三视图与直观图三视图画法规则:长对正、高平齐、宽相等直观图斜二测画法:(1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段在直观图中仍平行于坐标轴,平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段在直观图中长度为原来的一半.概念方法微思考1.底面是正多边形的棱柱是正棱柱吗,为什么?提示不一定.因为底面是正多边形的直棱柱才是正棱柱.2.什么是三视图?怎样画三视图?提示光线自物体的正前方投射所得的正投影称为正视图,自左向右的正投影称为侧视图,自上向下的正投影称为俯视图,几何体的正视图、侧视图和俯视图统称为三视图.画几何体的三视图的要求是正视图与俯视图长对正;正视图与侧视图高平齐;侧视图与俯视图宽相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( ×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ×)(3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.( √)(4)正方体、球、圆锥各自的三视图中,三视图均相同.( ×)(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( ×)(6)菱形的直观图仍是菱形.( ×)题组二教材改编2.[P19T2]下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行答案 D解析由直观图的画法规则知,角度、长度都有可能改变,而线段的平行关系不变.3.[P8T1]在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三易错自纠4.某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱答案 A解析由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.5.如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是( )答案 C解析此几何体侧视图是从左边向右边看.故选C.6.(2018·浙江诸暨中学期中)边长为22的正方形,其水平放置的直观图的面积为( )A.24B.1C.22D.8答案 C解析 正方形的边长为22,故面积为8,而原图和直观图面积之间的关系为S 直观图S 原图=24,故直观图的面积为8×24=2 2. 7.(2018·全国Ⅰ)某圆柱的高为2,底面周长为16,其三视图如下图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在侧视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .2 答案 B解析 先画出圆柱的直观图,根据题中的三视图可知,点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.|ON |=14×16=4,|OM |=2,∴|MN |=|OM |2+|ON |2=22+42=2 5.故选B.题型一 空间几何体的结构特征1.以下命题:①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥; ②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆面; ④一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数为( ) A .0B .1C .2D .3 答案 B解析 由圆锥、圆台、圆柱的定义可知①②错误,③正确.对于命题④,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,④不正确.2.给出下列四个命题:①有两个侧面是矩形的立体图形是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为________.(填序号)答案①②③解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④由线面垂直的判定,可知侧棱垂直于底面,故④正确.综上,命题①②③不正确.思维升华空间几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析.题型二简单几何体的三视图命题点1 已知几何体识别三视图例1(2018·全国Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )答案 A解析由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.命题点2 已知三视图,判断简单几何体的形状例2如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案 B解析由题意知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.命题点3 已知三视图中的两个视图,判断第三个视图例3一个锥体的正视图和侧视图如图所示,下列选项中,不可能是该锥体的俯视图的是( )答案 C解析A,B,D选项满足三视图作法规则,C不满足三视图作法规则中的宽相等,故C不可能是该锥体的俯视图.思维升华三视图问题的常见类型及解题策略(1)注意观察方向,看到的部分用实线表示,不能看到的部分用虚线.(2)还原几何体.要熟悉柱、锥、台、球的三视图,结合空间想象还原.(3)由部分视图画出剩余的部分视图.先猜测,还原,再判断.当然作为选择题,也可将选项逐项代入.跟踪训练1(1)(2018·杭州模拟)如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC 在该正方体各个面上的正投影可能是( )A .①②B .①④C .②③D .②④答案 B解析 P 点在上下底面投影落在AC 或A 1C 1上,所以△PAC 在上底面或下底面的投影为①,在前、后面以及左、右面的投影为④.(2)(2018·宁波模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )答案 C解析 该几何体为正方体截去一部分后的四棱锥P —ABCD ,如图所示,该几何体的俯视图为C.题型三 空间几何体的直观图例4已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.思维升华用斜二测画法画直观图的技巧在原图形中与轴平行的线段在直观图中与轴平行,不平行的线段先画线段的端点再连线. 跟踪训练2如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是( )A .2+ 2B .1+ 2C .4+2 2D .8+4 2答案 D解析 由已知直观图根据斜二测画法规则画出原平面图形,如图所示,所以这个平面图形的面积为4×(2+2+22)2=8+42,故选D.1.在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是( )A.圆面B.矩形面C.梯形面D.椭圆面或部分椭圆面答案 C解析将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面,故选C.2.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.3.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体答案 C解析截面是任意的且都是圆面,则该几何体为球体.4.某几何体的正视图与侧视图如图所示,则它的俯视图不可能是( )答案 C解析若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C. 5.(2018·丽水、衢州、湖州三地市质检)若将正方体(如图1)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图是( )答案 B解析从左向右看,该几何体的侧视图的外轮廓是一个正方形,且AD1对应的是实线,B1C对应的是虚线.故选B.6.(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )答案 D解析A,B的正视图不符合要求,C的俯视图显然不符合要求,故选D.7.(2019·台州模拟)已知底面是直角三角形的直棱柱的正视图、俯视图如下图所示,则该棱柱的侧视图的面积为( )A.18 6 B.18 3C.18 2 D.2722答案 C解析设侧视图的长为x,则x2=6×3=18,∴x=3 2.所以侧视图的面积为S=32×6=18 2.故选C.8.用一个平面去截正方体,则截面不可能是( )A.直角三角形B.等边三角形C.正方形D.正六边形答案 A解析用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形、正方形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.9.(2018·湖州模拟)某三棱锥的三视图如图所示,则该三棱锥最长棱的长为( )A.5B.22C.3D.2 3答案 C解析在棱长为2的正方体ABCD—A1B1C1D1中,M,N分别为AD,BC的中点,该几何体的直观图如图中三棱锥D1—MNB1,故通过计算可得D1B1=22,D1M=B1N=5,MN=2,MB1=ND1=3,故该三棱锥中最长棱的长为3.10.一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O′A′B′C′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC的面积为________.答案2 2解析因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.11.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.答案 1解析 如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的正视图与侧视图都是三角形,且面积都是12a 2,故面积的比值为1.12.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形; ②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ④存在每个面都是直角三角形的四面体. 其中正确命题的序号是________. 答案 ②③④解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面所在的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD -A 1B 1C 1D 1中的三棱锥C 1-ABC ,四个面都是直角三角形.13.如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )答案 B解析 由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB 1与面ACC 1A 1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.14.我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的正视图和侧视图都是圆,则其俯视图的形状为( )答案 B解析由题意得在正方体内做两次内切圆柱切割,得到的几何体的直观图如图所示,由图易得其俯视图为B,故选B.15.(2018·嘉兴模拟)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是( )A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分答案 D解析根据几何体的三视图,可得侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.16.(2018·台州模拟)如图是一个几何体的三视图,则该几何体中最长棱的长是________.答案733解析 由三视图可知,该几何体是棱长为2的正方体ABCD —A 1B 1C 1D 1中三棱锥M —A 1B 1N ,如图所示,M 是棱AB 上靠近点A 的一个三等分点,N 是棱C 1D 1的中点,所以A 1B 1=2,A 1N =B 1N =22+12=5, A 1M =22+⎝ ⎛⎭⎪⎫232=2103, B 1M =22+⎝ ⎛⎭⎪⎫432=2133, MN =22+22+⎝ ⎛⎭⎪⎫132=733,所以该几何体中最长棱的长是733.。

新浙江高三理科数学二轮复习限时集训--空间几何体的三视图、表面积及体积B(含答案解析)

新浙江高三理科数学二轮复习限时集训--空间几何体的三视图、表面积及体积B(含答案解析)

专题限时集训(十)B[第10讲 空间几何体的三视图、表面积及体积](时间:5分钟+30分钟)基础演练1.某空间几何体的三视图如图10-12所示,则该几何体的体积为( )图10-12A .83B .8C .323D .162.一个几何体的三视图如图10-13所示,则该几何体的体积为( )图10-13A .13B .23C .2D .13.图10-14为一个几何体的三视图,则该几何体的体积为 ( )图10-14A .3+π6B .3+43πC .33+43πD .33+π64.某几何体的三视图如图10-15所示,则其体积为________.图10-15提升训练5.一个几何体的三视图如图10-16所示,其中正视图是边长为2的正三角形,俯视图为正六边形,则该几何体的侧视图的面积为( )图10-16A .32B .1C .52D .126.一个几何体的三视图如图10-17所示,则它的体积为( )图10-17A .203B .403C .20D .407.已知某几何体的三视图如图10-18所示,其中俯视图是圆,则该几何体的体积为( )图10-18A .π3B .2π3C .23D .138.图10-19是一个几何体的三视图,则该几何体的体积是( )图10-19A .54B .27C .18D .99.用一个边长为4的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为1的鸡蛋(视为球体)放在其上(如图10-20所示),则鸡蛋中心(球心)与蛋托底面的距离为___________.图10-2010.直三棱柱ABC-A 1B 1C 1的各顶点都在同一个球面上.若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积为________.11.如图10-21所示,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为________.专题限时集训(十)B 【基础演练】1.B [解析] 由三视图可知,该几何体的体积为12×2×2×4=8.2.B [解析] 由三视图知该几何体是一个四棱锥,四棱锥的底面是一个边长为2的正方形,四棱锥的高为1,所以该几何体的体积V =13×2×2×1=23.3.D [解析] 由三视图知,原几何体是三棱柱和球的组合体.其中三棱柱的侧棱长为3,底面为边长为2的正三角形.球的直径为1,则该几何体的体积为34×22×3+43π×⎝⎛⎭⎫123=33+π6.4.π3[解析] 根据三视图可知该几何体是一个底面圆的半径为1,高为2的圆锥的一半,所以其体积V =12×13·π·12×2=π3.【提升训练】5.A [解析] 该几何体为正六棱锥,其侧视图是底边长为3,高为3的等腰三角形,其面积为12×3×3=32.6.B [解析] 此几何体的直观图如图所示,易知其体积V =13×12()1+4×4×4=403.7.B [解析] 由三视图知,该几何体为一个圆柱内挖去一个圆锥后剩下的部分,其体积V =π×12×1-13π×12×1=2π3.8.C [解析] 由题可知,该几何体是一个四棱锥,其直观图如图所示,该四棱锥的高为3,底面是边长分别为3,6的矩形,故其体积为13×3×6×3=18.9.3+63[解析] 由题意可知,蛋托的高为3,且折起的三个小三角形的顶点构成边长为1的等边三角形,记为A′B′C′,球心到平面A′B′C′的距离d =1-⎝⎛⎭⎫332=63,所以鸡蛋中心与蛋托底面的距离为3+63. 10.20π [解析] 设半径为R 的球的内接直三棱柱ABC-A 1B 1C 1的上、下底面外接圆的圆心分别为O 1,O 2,则球心O 在线段O 1O 2的中点处.连接OO 1,OA ,O 1A ,则R 2=OA 2=OO 21+O 1A 2=1+O 1A 2.在△ABC 中,AB =AC =2,∠BAC =120°,∴ BC =2 3.又BC sin ∠BAC =2O 1A ,∴ O 1A =232sin ∠BAC=2,∴ R =5,∴此球的表面积为4πR 2=20π.11.π6 [解析] 根据题意知,平面ACD 1是边长为2的正三角形,球O 与以点D 为公共点的三个面的切点恰为三角形ACD 1三边的中点,故所求截面的面积是该正三角形的内切圆的面积.易知△ACD 1内切圆的半径是2×32×13=66,则所求的截面圆的面积是π× ⎝⎛⎭⎫662=π6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题升级训练11 空间几何体的三视图、表面积及体积(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是( ).A.①② B.①③ C.③④ D.②④2.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( ).3.在一个几何体的三视图中,正(主)视图和俯视图如图所示,则相应的侧(左)视图可以为( ).4.(2020·北京丰台区三月模拟,5)若正四棱锥的正(主)视图和俯视图如图所示,则该几何体的表面积是( ).A.4 B.4+410C.8 D.4+4115.(2020·浙江宁波十校联考,12)已知某几何体的三视图如图所示,其中侧(左)视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD是直角梯形,则此几何体的体积为( ).A .1B .2C .3D .46.(2020·山东济南三月模拟,8)若一个螺栓的底面是正六边形,它的正(主)视图和俯视图如图所示,则它的体积是( ).A .273+12πB .93+12πC .273+3πD .543+3π7.(2020·浙江宁波模拟,13)已知一个正三棱锥的正(主)视图为等腰直角三角形,其尺寸如图所示,则其侧(左)视图的周长为( ).A .53+21B .53+6C .63+6D .33+12 8.长方体的三条棱长分别为1,2,6,则此长方体外接球的体积与面积之比为( ). A .43 B .1 C .2 D .12二、填空题(本大题共4小题,每小题4分,共16分)9.(2020·浙江宁波十校联考,15)已知两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在半径为3的同一个球面上.若两圆锥的高的比为1∶2,则两圆锥的体积之和为__________.10.(2020·江苏南京二模,11)一块边长为10 cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥容器,当x =6 cm 时,该容器的容积为__________cm 3.11.如图,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段BB1上的一动点,则当AM+MC1最小时,△AMC1的面积为__________.12.(2020·浙江湖州中学模拟,16)底面边长为1,侧棱长为2的正四棱柱ABCD-A1B1C1D1的8个顶点都在球O的表面上,E是侧棱AA1的中点,F是正方形ABCD的中心,则直线EF被球O所截得的线段长为__________.三、解答题(本大题共4小题,共44分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分10分)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.14.(本小题满分10分)斜三棱柱ABC-A1B1C1的底面是边长为a的正三角形,侧棱长等于b,一条侧棱AA1与底面相邻两边AB,AC都成45°角.(1)求这个三棱柱的侧面积;(2)求这个三棱柱的体积.15.(本小题满分12分)(2020·安徽安庆二模,18)如图,几何体ABC-EFD是由直三棱柱截得的,EF∥AB,∠ABC=90°,AC=2AB=2,CD=2AE= 6.(1)求三棱锥D-BCE的体积;(2)求证:CE⊥DB.16.(本小题满分12分)(2020·河北邯郸一模,19)已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=2,O为AB的中点.(1)求证:EO⊥平面ABCD;(2)求点D到平面AEC的距离.参考答案一、选择题1.D 解析:图①的三种视图均相同;图②的正(主)视图与侧(左)视图相同;图③的三种视图均不相同;图④的正(主)视图与侧(左)视图相同.2.A 解析:由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为22,故选A.3.D 解析:由题目所给的几何体的正(主)视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示:可知侧(左)视图为等腰三角形,且轮廓线为实线,故选D. 4.B5.D 解析:由三视图可得该几何体是四棱锥,记为棱锥P -ABCD ,且PD ⊥底面ABCD .从而此几何体的体积为13×2+42×2×2=4.6.C 解析:该螺栓是由一个正六棱柱和一个圆柱组合而成的,V 总=V 正六棱柱+V 圆柱=34×32×6×2+π×12×3=273+3π.7.A 解析:由正(主)视图可知正三棱锥的底边长为6,高为3,从而可得侧棱长为21.而侧(左)视图是一个三角形,三条边分别是底面正三角形的高、侧棱和侧面等腰三角形底边上的高,其长度依次为33,21和23,故侧(左)视图的周长为53+21.8.D二、填空题9.16π 解析:设两圆锥的高分别为h,2h ,圆锥的底面圆半径为r ,则r 2=2h 2.又球的半径R =3h2=3,则h =2.故两圆锥的体积之和为V =13πr 2(2h +h )=πr 2h =2πh 3=16π.10.4811. 3 解析:将直三棱柱沿侧棱A 1A 剪开,得平面图形如图所示,A ′C 1为定长,当A ,M ,C 1共线时AM +MC 1最短,此时AM =2,MC 1=2 2.又在原图形中AC 1=14,易知∠AMC 1=120°,∴1AMC S =12×2×22×sin 120°= 3.12.423解析:O ,E ,F 三点在平面ACC 1A 1内,且矩形ACC 1A 1的外接圆是球的一个大圆. 又EF ∥A 1C ,设A 到直线A 1C 的距离为d ,则d 2=26,得d =23,故圆心O 到直线EF 的距离为13.又球的半径为62,故直线EF 被球O 所截得的线段长为2⎝ ⎛⎭⎪⎫622-⎝⎛⎭⎪⎫132=423. 三、解答题13.解:(1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2).所求几何体的体积V =23+12×(2)2×2=10(cm 3).14.解:(1)由题可知AA 1⊥BC ,S 侧=SBCC 1B 1+2SABB 1A 1=(1+2)ab . (2)设O 为A 1在平面ABC 内的射影,则由题可知O 在∠BAC 的平分线上,可得AO =(b ·cos45°)÷cos 30°=63b ,则斜三棱柱的高A 1O =33b ,所以三棱柱的体积V =3a 24·3b 3=a 2b4.15.(1)解:BC 2=AC 2-AB 2=3⇒BC = 3.几何体ABC -EFD 是由直三棱柱截得,由图可知DC ⊥平面ABC , ∴DC ⊥AB .又∵∠ABC =90°,∴AB ⊥BC .∴AB ⊥平面BDC . 又EF ∥AB ,∴EF ⊥平面BCD .故V D -BCE =V E -BCD =13S △BCD ·EF =13×12×3×6×1=22.(2)证明:连接CF .依题意⎭⎪⎬⎪⎫AB ⊥BFAB ⊥BC BF ∩BC =B ⇒⎭⎪⎬⎪⎫AB ⊥平面BFD BD ⊂平面BFD ⇒⎭⎪⎬⎪⎫AB ⊥BD EF ∥AB ⇒EF ⊥BD .①又在Rt△BCF 和Rt△CDB 中,BF BC =623=22,BC CD =36=22⇒BF BC =BC CD⇒Rt△BCF ∽Rt△CDB ⇒∠BDC =∠BCF ⇒∠BDC +∠DCF =∠BCF +∠DCF =90°⇒CF ⊥BD .②由①②⇒BD ⊥平面CEF .又CE ⊂平面CEF ,∴BD ⊥CE . 16.(1)证明:连接CO .∵AE =EB =2,AB =2,∴△AEB 为等腰直角三角形. ∵O 为AB 的中点,∴EO ⊥AB ,EO =1. 又∵四边形ABCD 是菱形,∠ABC =60°, ∴△ACB 是等边三角形,∴CO = 3.又EC =2,∴EC 2=EO 2+CO 2,∴EO ⊥CO .又CO ⊂平面ABCD ,EO 平面ABCD ,∴EO ⊥平面ABCD . (2)解:设点D 到平面AEC 的距离为h .∵AE =2,AC =EC =2,∴S △AEC =72.∵S △ADC =3,E 到平面ACB 的距离EO =1,V D -AEC =V E -ADC ,∴S △AEC ·h =S △ADC ·EO ,∴h =2217,∴点D 到平面AEC 的距离为2217.。

相关文档
最新文档