发射功率的测量方法
光功率计操作规程

光功率计操作规程1. 引言本文档旨在指导用户正确使用光功率计,并确保在测量光功率时取得准确的结果。
光功率计是一种用于测量光源输出光功率的仪器,常用于光通信、光网络和光纤传感等领域。
正确操作光功率计对于保证测量结果的准确性至关重要。
2. 光功率计的准备工作在使用光功率计之前,需要进行以下准备工作:•确保光功率计处于正常工作状态,检查仪器的外观,确认没有明显的损坏。
•检查电池电量或电源供电的情况,确保光功率计有足够的电力供应。
•清洁光功率计的探头,确保没有灰尘或污垢,以确保测量的准确性。
•准备好所需的连接线或适配器,以便将光功率计与待测光源连接起来。
3. 光功率计的操作步骤按照以下步骤正确操作光功率计:3.1 连接光源使用合适的连接线或适配器将待测光源与光功率计连接起来。
确保连接的稳固可靠,避免松动或接触不良。
3.2 打开光功率计按下光功率计的电源开关,使其启动。
在启动过程中,注意观察屏幕上的指示,确保光功率计正常启动。
3.3 设置测量参数根据需要,设置光功率计的测量参数,包括波长范围、单位等。
确保设置的参数与待测光源的参数一致。
3.4 进行测量将光功率计的探头对准待测光源,确保光线垂直入射。
按下测量按钮,开始进行测量。
在测量过程中,保持测量环境的稳定,避免外界干扰。
3.5 记录测量结果在测量完成后,记录测量结果。
将测量结果保存到光功率计的内部存储器中,或通过接口将数据传输到计算机等外部设备。
3.6 关闭光功率计测量完成后,按下光功率计的电源开关,关闭光功率计。
在关闭前,检查测量环境,确保没有留下任何外部干扰物。
4. 光功率计的维护与保养为了保证光功率计的长期稳定使用,进行定期的维护与保养是必要的。
以下是光功率计的维护注意事项:•定期清洁光功率计的探头,可以使用干净的软布或棉签轻轻擦拭,避免使用有机溶剂或尖锐物品来清洁。
•注意光功率计的保护,避免碰撞、摔落和水激光入侵等情况发生。
•避免将光功率计暴露在过高或过低的温度环境中,保持正常的工作温度范围。
发射组件TOSA常用全参数及测试方法

发射组件TOSA常用全参数及测试方法TOSA的常用全参数包括功率、中心波长、光谱宽度、调制带宽等。
1.功率参数:TOSA的输出功率是衡量其性能的重要指标之一、常用于描述输出功率的参数有平均功率和峰值功率。
平均功率是指在所测试的时间段内,TOSA输出功率的平均值。
峰值功率是指TOSA输出功率的最大值。
2.中心波长:TOSA的中心波长是指光信号的主导波长。
中心波长的选择与光纤的传输特性以及光接收器的工作波长相关。
3.光谱宽度:TOSA的光谱宽度是指光信号所占据的频带宽度。
通常使用3dB带宽来表示光谱宽度,即当光信号的功率降低到峰值功率的一半时对应的频率范围。
4.调制带宽:TOSA的调制带宽是指其能够支持的最高调制速率。
调制带宽决定了TOSA的响应速度和传输容量。
测试方法方面,对TOSA的全参数进行测试主要有以下几种方法:1.功率测试:使用光功率计来测量TOSA的输出功率。
测试时需要将光功率计的接收头与TOSA的输出端相连,并记录输出功率的数值。
2.中心波长测试:使用光谱仪来测量TOSA的发射波长。
将TOSA的输出光信号输入到光谱仪中,光谱仪会将光信号的频谱分解,并可以得到发射波长的准确数值。
3.光谱宽度测试:同样使用光谱仪来测量TOSA的光谱宽度。
通过光谱仪的分析,可以得到信号的频带宽度。
4.调制带宽测试:调制带宽的测试需要配备高速采样仪或者示波器。
将TOSA的输出信号输入到高速采样仪或示波器中,然后通过对输出信号进行人工或软件分析,就可以获得调制带宽的数值。
在测试TOSA全参数时,需要注意测试仪器的精度和灵敏度,以确保测试结果的准确性。
同时,测试过程中需要注意避免光纤连接的影响,保证光信号传输的稳定性。
以上是对发射组件TOSA常用全参数及测试方法的介绍。
通过对TOSA 进行全参数测试,可以评估其性能是否符合要求,并为光通信系统的设计和优化提供有价值的参考。
eirp测试方法

eirp测试方法
eirp测试方法通常分为两种:分段测试+理论计算和远场测试法。
1.分段测试+理论计算方法是在分系统阶段,通过分别测量天线发射功率和发射机功率,再考虑连接电缆或波导的损耗,公式如下:eirp=pt+gt-l。
其中pt为发射机输出功率(单位:dbm),gt为天线增益(单位:dbi),l为连接电缆或波导损耗(单位:db)。
2.远场测试法首先要求测试距离r应满足远场测试距离条件,即r≥2d2/λ(d为待测天线最大尺寸,λ为工作波长)。
远场直接法测量原理方法是:利用频谱分析仪测量出待测相控阵天线发射eirp,经自由空间衰减,由标准天线接收的功率大小,利用自由空间传播方程确定eirp的大小。
公式如下:eirp=p-gt+l+lp。
式中:p为频谱分析仪测量的信号功率电平(单位:dbm);eirp为有源相控阵天线的发射eirp(单位:dbm);gt为标准天线增益(单位:dbi);l为标准天线和频谱分析仪之间射频电缆损耗(单位:db);lp为自由空间传播损耗(单位:db)。
发射功率和增益详解

发射功率与增益详解2011-09-28 15:31:48|分类:TEC-Hardware|举报|字号订阅本文转载自jason《发射功率与增益详解》无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。
Tx是发射(Transmits)的简称。
无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准:功率(W)-相对1瓦(Watts)的线性水准。
增益(dBm)-相对1毫瓦(Milliwatt)的比例水准。
两种表达方式可以互相转换:dBm = 10 x log[ 功率mW]mW = 10 [ 增益dBm / 10 dBm]在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。
天线增益的度量单位为“dBi”。
由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益(dB),例如,发射设备的功率为100mW ,或20dBm;天线的增益为10dBi,则:发射总能量=发射功率(dBm)+天线增益(dBi)=20dBm +10dBi=30dBm或者:=1000mW=1W在“小功率”系统中每个dB都非常重要,特别要记住“3dB法则”。
每增加或降低3dB,意味着增加一倍或降低一半的功率:-3 dB = 1/2 功率-6 dB = 1/4 功率+3 dB = 2x 功率+6 dB = 4x 功率例如,100mW的无线发射功率为20dBm,而50mW的无线发射功率为17dBm,而200mW的发射功率为23dBm。
0dbm=0.001w 左边加10=右边乘10所以0+10DBM=0.001*10W 即10DBM=0.01W故得20DBM=0.1W 30DBM=1W 40DBM=10W还有左边加3=右边乘2,如40+3DBM=10*2W,即43DBM=20W例如机器20W 在400MHZ频率上使用30米50-7(物理发泡低损耗电缆)到天线上还剩下多少增益20W=43DB30米50-7损耗一米小于0.09 按照最大值0.09*30=2.7DB43DB-2.7DB=40.3DB天线增益16DBi+40.3DB=56.3DB就上面的例子我们可以看出增益和功率并非线性变化,所以不能光从功率上来看发射状态。
WIFI-OTA测试规范简介

WIFI-OTA测试规范简介WLAN是Wireless Local Area Network的缩写,指应用无线通信技术将计算机设备互联起来,构成可以互相通信和实现资源共享的网络体系。
无线局域网本质的特点是不再使用通信电缆将计算机与网络连接起来,而是通过无线的方式连接,从而使网络的构建和终端的移动更加灵活。
最新的关于WLAN-OTA测试参考标准是由CTIA和Wi-Fi Alliance共同颁布的“Test Plan for RF Performance Evaluation of Wi-Fi Mo bile Converged Devices_Version 1.1”。
下面我们会对WLAN-OTA测试规范内容进行详细的介绍。
WLAN-OTA测试系统搭建:下图为测试系统的搭建所要求的设备:AP和WLAN Station测试仪:当进行测试时,测试仪连接电脑并且能够通过电脑对测试仪进行控制。
测试基本要求如下:规格IEEE 802.11a, 802.11b, 802.11g信号速率IEEE 802.11a/g:• 54, 48, 36, 24, 18, 12, 9, 6MbpsIEEE 802.11b:• 11, 5.5, 2, 1Mb ps频率范围 2.412 to 2.484GHz4.915 to5.32 GHz and 5.5 to 5.805GHz射频调制类型IEEE 802.11b and 802.11g:WLAN接收机:当进行测试时,接收机用于报告所接收RSSI并且记录ACK的数量。
测试基本要求如下:测试环境如下图所示:1. 发射功率测试:测试步骤:推荐步骤:1) 设置AP衰减器,满足在被测物天线连接端的接收信号高于初始接收灵敏度10dB。
2) 设置RX衰减器,满足在WLAN接收机输出端的被测物的接收信号等级高于初始接收灵敏度10 dB,但是不能超过50 dB。
3) 设置AP测试仪在指定的信道、调制方式及数据速率下发射所要求的信号。
射频指标的测试方法

射频指标的测试方法射频(Radio Frequency,RF)指标的测试方法是评估无线通信设备性能的重要手段之一,包括信号强度、信噪比、频谱带宽、频率误差、相位噪声等指标。
下面将详细介绍射频指标的测试方法。
1.信号强度测试:信号强度是衡量射频通信质量的重要指标之一、测试方法包括测量信号接收功率和发射功率。
接收功率测试可以使用光谱分析仪或功率计等仪器,将设备的天线连接到测试设备,并测量接收到的射频信号的功率。
发射功率测试可以使用功率计、天线分析仪或频谱分析仪等仪器,通过测量设备发射的射频信号功率来评估发射功率。
2.信噪比测试:信噪比是衡量射频通信系统性能的指标之一、测试方法包括测量信号功率和背景噪声功率。
信号功率可以通过功率计或频谱分析仪来测量,背景噪声功率可以通过无信号输入时的频谱或功率测量获得。
然后,计算信噪比等于信号功率减去背景噪声功率。
3.频谱带宽测试:频谱带宽是指射频信号频谱的宽度,用于评估通信信道的有效传输能力。
测试方法包括使用频谱分析仪测量射频信号的频谱,然后通过分析频谱曲线的宽度来确定频谱带宽。
4.频率误差测试:频率误差是指设备实际输出频率与理论频率之间的差值。
测试方法包括使用频谱分析仪或频率计等仪器,将设备的输出信号连接到测试设备,并测量输出信号的频率。
然后,与设备的理论频率进行比较,计算频率误差。
5.相位噪声测试:相位噪声是指射频信号相位的随机变化。
测试方法包括使用相位噪声测试仪或频谱分析仪等仪器,将设备的输出信号连接到测试设备,并测量输出信号的相位噪声。
常用的相位噪声度量单位为分贝/赫兹(dBc/Hz)。
除了上述常见的射频指标测试方法外,还有其他射频指标的测试方法,例如功率谱密度测试、穿透损耗测试、带内波动测试等。
测试方法的选择取决于需要评估的具体指标和设备特性。
在进行射频指标测试时,需要使用适当的测试设备和测试仪器,如频谱分析仪、功率计、天线分析仪等。
同时,测试环境的选择也很重要,应尽量减少外部干扰和背景噪声,以确保测试结果的准确性和可靠性。
无线电发射设备参数通用要求和测量方法

(实用版4篇)编制人:_______________审核人:_______________审批人:_______________编制单位:_______________编制时间:____年___月___日序言本店铺为大家精心编写了4篇《无线电发射设备参数通用要求和测量方法》,供大家借鉴与参考。
下载后,可根据实际需要进行调整和使用,希望能够帮助到大家,谢射!(4篇)《无线电发射设备参数通用要求和测量方法》篇1无线电发射设备参数通用要求和测量方法是指对无线电发射设备的技术要求和测量方法进行规范的标准。
这些标准对于无线电发射设备的设计、生产和使用都具有重要的指导意义。
根据不同的应用场景和设备类型,无线电发射设备参数通用要求和测量方法可以分为不同的类别和频段。
例如,移动通信调频无线电话发射机测量方法适用于移动通信领域的无线电发射设备,而无线电发射机相关则包括了各种不同类型和用途的无线电发射设备。
通常,无线电发射设备参数通用要求和测量方法包括以下几个方面:1. 发射设备的频率容限参数项,即设备能够正常工作的频率范围。
2. 发射设备的上限工作频段,即设备能够正常工作的最高频率。
3. 发射设备的功率和调制方式,即设备输出的功率和信号的调制方式。
4. 发射设备的稳定性和可靠性,即设备在各种工作环境下的稳定性和可靠性。
5. 发射设备的电磁兼容性,即设备与其他电子设备相互干扰的程度。
针对不同的无线电发射设备类型和应用场景,还有相应的测量方法和技术要求。
例如,对于广播发射机,需要测量其输出功率、载波抑制比、调制深度等参数;对于移动通信调频无线电话发射机,需要测量其频率容限、调制方式、发射功率等参数。
《无线电发射设备参数通用要求和测量方法》篇2无线电发射设备参数通用要求和测量方法是指对无线电发射设备的技术要求和测量方法进行规范的标准。
这些标准对于无线电发射设备的设计、生产和使用都具有重要的指导意义。
无线电发射设备参数通用要求和测量方法包括了一系列的技术指标,如频率容限、调制方式、输出功率、频率稳定性、谐波分量等。
Wi-Fi功率测量方法对比及分析

DCWTechnology Analysis技术分析61数字通信世界2023.070 引言Wi-Fi 信号(IEEE 802.11a/b/g/n/ac/ax 等)的功率测量是非常重要的一项测试,功率测试的手段和测试方法也非常之多。
但每种方法都有它的适用性和局限性,所以我们在进行功率测量时,需要根据测试的目的,来选择相应的测试方法。
本文将从非信令和信令模式两个方面,以及多种测试目的出发,探讨Wi-Fi 功率测量的方法及其适用性和优缺点比较。
1 非信令模式测试对W i -Fi 设备进行测试时,通常会需要与被测设备对应的调试软件及其定频发射方法,用以控制被测设备发射出不同制式、频点、速率、功率等级的信号,以直连的方式使用频谱仪进行测试。
如果软件能够控制被测设备发射连续信号,那么就可以直接使用频谱仪的信道功率测试功能,在对应的信号带宽设置下进行功率测试[1]。
某些被测设备的软件设置中没有发射连续信号的功能,只能发时间上不连续的Burst 信号,那么测试时就需要先使用频谱仪的Gate Trigger 功能。
如图1所示,使用该功能时应先开启Gate View 模式并针对Burst 信号进行设置,图1中显示的为时域波形,两条绿色线之间为设置的时间门。
图中时间门恰好是整个Burst-on 部分。
时间门的起止点设置决定了功率测试的正确与否。
如果不设置时间门,那么对于占空比很小的信号,测得的结果与真实的结果就会有较大差别。
设置好时间门后,开启Gate 功能,即可继续使用信道功率测试功能进行功率测试[2],测得的功率即为Burst 开启时间内的发射功率,如图2所示。
Wi-Fi功率测量方法对比及分析柴泽林,郑岳明(国家无线电监测中心检测中心,北京 100041)摘要:文章介绍了多种测量Wi-Fi设备功率的方法并对各种方法的适用性进行总结和对比分析。
关键词:Wi-Fi;信令模式;空口辐射;总辐射功率doi:10.3969/J.ISSN.1672-7274.2023.07.018中图分类号:TN 915.65,TN 04 文献标志码:A 文章编码:1672-7274(2023)07-0061-03Comparison and Analysis of Wi-Fi Transmit Power Measurement MethodsCHAI Zelin, ZHENG Yueming(The State Radio_monitoring_center Testing Center, Beijing 100041, China )Abstract: This paper introduces a variety of methods for measuring the power of Wi-Fi devices and summarizesand compares the applicalibity of each method.Key words: Wi-Fi; signaling mode; OTA; TRP作者简介:柴泽林(1988-),男,汉族,北京人,工程师,学士,研究方向为无线电设备测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
发射功率是无线电发射设备的主要技术指标,也是无线电管理部门需要检测的技术指标之一。
本文主要介绍几种发射功率的测量方法。
功率测量的基本知识1.1 功率测量的理论分析
在直流和低频时,电压的测量是简单和直接的。
功率可以直接通过计算获得,P=V*I,由欧姆定律可知V=I*R,通过代换V或I,可得P=V*I =I2R= V2/R,只要知道V、I、R中任两个变量的值就可计算出功率值。
但在高频时,根据传输线原理可知,电压和电流可能随传输线的位置改变,如图1所示。
但功率是不变的,因此在射频和微波频率,大多数应用都采用直接功率测量,因为电压和电流测量已变得不现实。
1.2 功率单位
功率的国际标准单位是瓦特(W),但在无线电通信领域,我图
1 高频电压随传输线位置改变
52
中国无线电2005/9
2
们常用的单位是分贝毫瓦dBm 。
定义如下: PdBm=10Lg(P/P0)
式中,P是以毫瓦为单位的功率值;P0为1 mW的参考功率。
由上式可知:0 dBm是1 mW。
根据对数基本性质,可得到一个简单导则是每3 dBm功率加倍,每-3 dBm功率减半。
每10 dBm为10倍,每-10 dBm为1/10。
例如+29 dBm是多少?29 dBm=(10+10+3+3+3)dBm=(10*10*2*2*2)mW=800mW,因此结果是800 mW。
1.3 功率的几种常用基本形式
平均功率是指在正常工作情况下,发信机在调制中以与所遇到的最低频率周期相比的足够长的时间间隔内,供给天线馈线的平均功率。
对于脉冲调制信号,则要在若干脉动重复上平均信号。
在所有功率测量中,平均功率是最常进行的测量。
峰功率是指最大瞬时功率。
平均功率和峰功率的关系,如图2所示。
对于射频脉冲信号,如果知道信号的占空比,就可从测量得到的平均功率按下列公式确定峰功率。
Ppeak = Pavg/占空比
发射功率的测量方法 目前我站配备的测量功率的仪器有德国R&S公司的CMS54综测仪、FSP30频谱分析仪、NRT功率计。
下面分别介绍用这三种仪器测量功率的方法。
2.1 CMS54综合测试仪测量发射功率
无线电综合测试仪CMS54含射频信号源、调制信号源、频率计、功率计、电压表、信纳比表、邻频功率测量等,其测量的功率范围为5 mW到50 W,频率范围为400 kHz到1
MHz。
使用CMS54综合测试仪测量发射设备输出功率方法步骤如下:
(1)测试线路连接如图3所示。
(2)打开CMS电源,待CMS进入稳定的测试界面,按TX-TEST软键,进入发射测试界面。
(3)开启被测发射设备(已知发射功率小于50W),这时即可读出其发射功率。
如果知道被测发射设备的发射频率,可以按SET RF软键,通过键盘设置响应频率,然后再开启被测发射设备,读出发射功率。
2.2 FSP30频谱分析仪测量发射功率
FSP30频谱分析仪射频输入最大的功率是1W,当发射设备
输出功率大于1W时,在FSP30频谱分析仪前加一衰减器,以免烧毁频谱仪。
测试方法步骤如下: (1)测试线路连接如图4所示。
(2)将FSP30频谱分析仪的输入衰减器(ATT)设置为最大,然后开启被测发射设备。
(3)将被测信号中心频率置于频谱分析仪显示的中心,恰当设置SPAN、RBW和VBW值,这几个值设置的一般建议是:SPAN必须至少覆盖被测量信号的带宽;RBW设置信道带宽的1%和4%之间;VBW至少是RBW的三倍。
(4)调整频谱分析仪输入衰减器(ATT)和参考电平(REFLEVEL),使信号接近显示的顶部。
(5)设置检波器工作方式为均方根检波器。
步骤如下:按TRACE键,使用上下键选择DETECTOR项,按相应软键确定,
图2 平均功率和峰功率的关系
峰功率
平均功率
图
3 测试线路连接
被测发射设备
CM
S54综测仪
图4 测试线路连接
被测发射设备衰减器FSP30频谱分析仪
中国无线电2005/9
53
3
再用上下键选择DETECTOR RMS项。
(6)测量信号的占用带宽。
步骤如下:按MEAS键,用上下方向键选择OCCUPIED BANDWIDTH,按相应软键确定;设置99%的POWER BANDWIDTH;打开OCCUP BW功能;屏幕就会显示信号的占用带宽。
(7)测量信号的功率值。
步骤如下:按MEAS键,用上下方向键选择CHAN PWR ACP项,按相应软键确定;用上下键选择CP/ACP CONFIG,设置信号的占用带宽(CHANNELBANDWIDTH);开启CP/ACP 功能,此时屏幕就显示在该占用带宽下的信号功率。
2.3 使用NRT功率计测量发射设备输出功率
NRT功率计支持测量平均功率、峰值功率(PEP)、峰值/平均值之比、互补累积分布函数(CCDF)、驻波比、反射系数、反射功率等参数。
支持GSM/EDGE、CDMA(IS-95)、WCDMA等各种数字通信系统的功率测量。
用NRT功率计测量功率时,要与功率传感器配合使用,不同的传感器测试范围不同。
NRT-Z44功率传感器的测量范围是0.003W到120W(平均功率)或300W(峰值功率),频率范围为200 MHz到4 GHz。
NAP-Z5功率传感器的测量范围是0.1W到350W,频率范围为25 MHz到1 GHz。
现介绍用NRT功率计和NRT-Z44传感器测量发射功率,方法步骤如下:
(1)测试线路连接如图5所示。
(2)根据被测发射设备的发射频率设置NRT功率计的响应频率,步骤如下:按 CORR键,显示FREQ*,按左右键选择USER ,按SET键确定,使用四个方向键设置所需的频率,按SET键确定。
(3)为NRT功率计校零,步骤如下:关闭发射设备输入信号,按CORR键,按上下键显示ZERO*,按SET键确定执行校零程序。
图5 测试线路连接
被测发射设备
N
RT-Z44传感器NRT功率计
发射天线
(4)为NRT功率计选择适当的调制方式,步骤如下:按CORR键,用上下键显示MODULATION*,用左右键选择所需的调制方式或是无调制,按SET键确定。
(5)开启被测发射设备,NRT功率计显示测得的功率值和反射参数。
三种发射功率测量的特点和选择 无线电综合测试仪CMS54和FSP30频谱分析仪用于测量功率时属于终端式功率计,其输入阻抗是标准的50欧姆。
在功率测量中,终端式功率计替代了发射设备的负载,即终端式功率计将发射设备的负载理想化了。
所以说,终端式功率计所测得的结果是发射设备在理想负载时的输出功率;如果发射天馈系统的匹配情况良好,则这个结果可以较真实地反映发射系统的输出情况;如果发射天馈系统的匹配不好(如VSWR>1.5),则终端式功率计不能真实反映发射系统的情况。
NRT功率计属于通过式功率计,功率传感器吸收高频RF信号功率转换为NRT功率计能够测量的直流或低频信号。
所以只要将通过式功率计置于发射设备与天馈系统之间,就可以得到发射系统的正向和反射功率。
因此,如果要测量发射设备的理想发射功率,可以选用终端式功率式;如果要测量发射设备的实际发射功率以及判断发射设备与天馈系统是否匹配,则选用通过式功率计。
54
中国无线电2005/9。