华大2009概率论与数理统计 A卷及答案
2008-2009-1概率论与数理统计(A)卷答案

2008-2009-1概率论与数理统计(A )参考答案一.填空题(每空3分,共30分)1.0.58; 2.0.8; 3.310,12; 4.510.9-; 5.0.2; 6.201()0X x x f x <<⎧=⎨⎩其它; 7.2λ=; 8.13, 2二.(本题10分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求 (1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率。
解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+……………………………(2分) 0.90.950.10.020.857.=⨯+⨯= ………………… …………(3分)(2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯=== ……………………(5分) 三.(本题15分)已知连续型随机变量X 的概率密度 20()0xae x f x x -⎧⎪>=⎨⎪≤⎩,求:(1)常数a ;(2)X 的分布函数()F x ;(3){12}P X <≤;(4)2Y X =的概率密度。
解:(1)由2()1xf x dx ae dx +∞+∞--∞==⎰⎰,得12a =………… … …………(4分) (2)2201010()()20000x x x xe dx x e x F xf x dx x x ---∞⎧⎧≥⎪⎪-≥===⎨⎨⎪⎪<⎩<⎩⎰⎰…………(4分)(以上两步只写结论也给分)(3)111122{12}(2)(1)1(1)P X F F e e e e ----<≤=-=---=- …………(3分)(4)2(){}{}Y F y P Y y P X y =≤=≤ i 〉0y ≤时,()0Y F y =ii 〉0y >时,2(){12x Y F y P X e dx e e-=≤≤==-=-所以()()00Y Yyf y F yy⎧>'==≤⎩……………………(4分) 四.(本题15分)已知(,)X Y为二维离散型随机变量,分布律如下:(1)求常数C;(2)求{}P X Y=的值;(3)求()E X及()D X;(4)求()E XY及(,)Cov X Y。
经济类概率统计期末试卷精华卷

华侨大学概率论与数理统计(经济类)期末考试试卷【A 卷】考试日期:2009年6月29日学院_ 专业 ___ 学号 __ 姓名__题号 一 二总分 1 2 3 4 5 6 满分 30 12 12 12 12 10 12 100 得分一 、填空题(本大题共7小题,每空3分,共计30分.将正确答案填在题中横线上.)1. 已知随机变量2(1,2)X N ,且Y aX b =+(0)a >服从标准正态分布,则a =______,b =_______.2. 若二维随机变量(,)X Y 具有分布律:则(12)P X Y ===________.3. 随机变量(2),(1,5)X Y U π ,且,X Y 相互独立,则(2)D X Y -=________.4. 若在区间(0,2)内任取两个数,则事件{两数之和大于32}的概率为________. 5. 设2()X n χ,则()E X =_________,()D X =__________.6. 设随机变量X 的概率密度为102()0Ax x f x +≤≤⎧=⎨⎩其它,则A =_______,(11)P X -<<=__________.7. 设1225,,,X X X 是来自正态总体2(,5)N μ的样本,μ为未知参数,记11ni i X X n ==∑,又知(1.96)0.975Φ=,则μ的置信水平为0.95的置信区间是__________________________.二、计算题(本大题共6小题,总计70分.) 1.(本小题12分)用甲胎蛋白法普查肝癌.令C ={被检验者患肝癌},A ={甲胎蛋白检验结果为阳性},则C ={被检验者未患肝癌},A ={甲胎蛋白检验结果为阴性},由过去的资料已知:YX0 1 1 0.1 0.3 20.20.4()P A C =0.95,()P A C =0.90,又已知某地居民的肝癌发病率为0.004,在普查中查出一批甲胎蛋白检验结果为阳性的人,求这批人中真的患有肝癌的概率()P C A .2.(本小题12分)设二维随机变量(,)X Y 的概率密度为: 221(,)0cx y x y f x y ⎧≤≤=⎨⎩,,,其它.(1) 确定常数c ; (2) 求边缘概率密度()X f x .3.(本小题12分)一学校有5000名在校生,期末时每人以60%的概率去自习教室上自习,问自习教室至少设多少个座位,才能以97%的概率保证上自习的同学都有座位? ((1.88)0.97Φ=)4.(本小题12分)按季节出售的某种应时商品,每售出1千克获利润6元,如到季末尚有剩余商品,则每千克净亏2元,设某商店在季节内这种商品的销售量X (以千克计)是一随机变量,X 在区间(8,16)内服从均匀分布,为使商店所获得利润最大,问商店应进多少货?5.(本小题10分)设总体X 的概率密度为1(,)2xf x e σσσ-=(x -∞<<+∞),其中0σ>为未知参数,试根据来自总体X 的简单随机样本12,,,n X X X ,求参数σ的极大似然估计量ˆσ.6.(本小题12分)设一批灯泡的寿命2~(,)X N μσ,现从这批灯泡中抽取容量为40的随机样本,算得样本均值x =1900小时,样本标准差s =490小时,试在显著水平α=0.01之下,检验假设0:2000H μ=,1:2000H μ≠.(可能用到:0.005(40) 2.7045t =,0.005(39) 2.7079t =) 华侨大学概率论与数理统计(经济类)期末考试试卷【A 卷】标准答案与评分标准考试日期:2009年6月29日一 、填空题(本大题共7小题,每空3分,共计30分。
概率论与数理统计考查试卷(A卷)(建筑学院09专升本)

系别 专业 年级 姓名 学号┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈密┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈封┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈线┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈安阳师范学院 建工09专升本各 专 业 概率论与数理统计 课2009——2010学年度第一学期期末考查试卷(A 卷)一、单项选择题 (每小题3分, 共30分)1. 下列各项正确的是( )(A )()A B C A B C = (B )A B A AB -=- (C )()()A B B A B B -=- (D )()AB AB =Φ 2. 已知,()1()14AB P A P B =Φ==,则( )(A )()112P A B = (B )()712P A B = (C )()12P A B = (D )()34P = 3. 下列命题正确的是( )(A )如果事件A 发生,事件B 就一定发生,那么()()P A P B <。
(B )概率为0的事件为不可能事件。
(C )连续型随机变量的分布函数在整个实数域内都是左连续的。
(D )随机变量的数学期望反映了该变量取值的集中(或分散)程度。
4. 设随机变量X 的密度函数为,0;()0,x X e x f x λλ-⎧>=⎨⎩其它.其中,未知参数0λ>,则下述命题不正确的是( )(A )X 是连续型的随机变量。
(B )随机变量X 的分布函数在整个实数域内都连续。
(C )随机变量X 的方差不存在。
(D )随机变量X 的分布函数的定义域是(,)-∞+∞。
5. 已知2(0,1),X N Y X = ,则下列选项不正确的是( )(A )(0)12P Y ≥= (B )(0)1P Y ≥= (C )()1E Y = (D )()2D Y = 6. 已知二维随机变量(,)X Y 在区域{(,)|,}(0)D x y a x a a y a a =-≤≤-≤≤>上服从均匀分布,则概率222()P X Y a +≤( )(A )随a 的增大而增大 (B )随a 的增大而减小 (C )与a 无关的定值 (D )随a 的变化增减不定 7. 已知随机变量X Y 与的相关系数0ρ<,则( )(A )()())D X Y D X D Y +≥+( (B )()())D X Y D X D Y +<+( (C )()())D X Y D X D Y -≥+( (D )()())D X Y D X D Y -<+( 8. 设随机变量(,)(3,2,4,9,0.4)X Y N ,则( )(A )(,)0.4Cov X Y = (B )(,)4Cov X Y = (C )(,)9Cov X Y = (D )(,) 2.4Cov X Y = 9.估计量的评选标准不包括下述的哪个选项( )(A )无偏性 (B )收敛性 (C )相合性 (D )有效性 10.在假设检验中,下列说法正确的是(A )第一类错误又叫“受伪” 或“取伪” 的错误 (B )第二类错误又叫“拒真”或“弃真” 的错误 (C )第一类错误又叫“拒真”或“弃真” 的错误 (D )以上都不对二、填空题(每小题2分,共10分)1.在10个产品中有8个次品,2个正品。
概率论与数理统计历年真题-2009.10

全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A A C .21A AD .21A A2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 2 B .(1-p )2 C .1-2pD .p (1-p )3.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( ) A .0 B .0.4 C .0.8D .14.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .0.20B .0.30C .0.38D .0.57 5.设随机变量X 的分布律为 X0 1 2 ,则P {X <1}=( )P0.3 0.2 0.5A .0B .0.2C .0.3D .0.56.下列函数中可作为某随机变量的概率密度的是( ) A .⎪⎩⎪⎨⎧≤>100,0,100,1002x x xB .⎪⎩⎪⎨⎧≤>0,0,0,10x x xC .⎩⎨⎧≤≤-其他,0,20,1x D .⎪⎩⎪⎨⎧≤≤其他,0,232121x ,7.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( ) A .25- B .21 C .2D .58.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( ) A .2161 B .361 C .61 D .19.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( ) A .)10(2σμ,NB .)(2σμ,NC .)10(2σμ,ND .)10(2σμ,N10.设X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则样本方差S 2=( ) A .∑=-ni iX Xn12)(1B .∑=--ni iX Xn 12)(11C .∑=-ni iX Xn12)(1D .∑=--ni iX Xn 12)(11二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
立信_09级《概率论与数理统计》A卷及答案

上海立信会计学院2010 ~2011学年第2学期09级本科 《概率论与数理统计》期终考试(A 卷)(本场考试属闭卷考试,可使用计算器) 共 5 页说明:可能要用到的相关数据0.025(6) 2.4469t =,0.05(6) 1.9432t = ,0.025(7) 2.3469t =,0.05(7) 1.8946t =,(1.96)0.975Φ=,(1.65)0.95Φ=.一、选择题(本大题共10小题,每小题2分,共20分. 在每个小题给出的四个选项中,只有一项符合题目要求的,把所选项前的字母填写在括号内)1.已知事件A 、B 互不相容,()0P A >、()0P B >,则 ( ).A. ()1P A B =B. ()()()P A B P A P B =C. ()0P A B =D. ()0P A B >2.对任意事件A 、B ,下面结论正确的是( ).A. ()0P AB =,则AB =∅B. 若()1P A B = ,则A B =ΩC. ()()()P A B P A P B -=-D. ()()()P A B P A P AB =-3.则c =A.81 B. 41 C. 31 D. 21 4. 设随机变量X 的密度函数为4,01,()0,cx x f x ⎧<<=⎨⎩其它,则常数c =( ).A. 51B. 41 C. 4 D. 5 5. 设2~(1,)X N σ-且(31)0.4P X -<<-=,则(1)P X ≥= ( ). A. 0.1 B. 0.2 C. 0.3 D. 0.56. 设随机变量X 服从二项分布,即~(,)X B n p ,且()3E X =,17p =,则n =( ).A. 7B. 14C. 21D. 497.设1216,,,X X X 是来自正态总体2(2,)N σ的一个样本,161116i i X X ==∑,则48~X σ-( ).A. (15)tB. (16)tC. 2(15)χD. (0,1)N8.设12,,,n X X X 是取自正态总体2~(,)X N μσ的一个样本,11ni i X X n ==∑,2211()n ni i S X X n ==-∑,则n Y = ). A. (1)t n - B. ()t n C.2(1)n χ- D. (0,1)N 9.设ˆθ是未知参数θ的一个估计量,若ˆ()E θθ≠,则ˆθ是θ的( ). A. 极大似然估计 B. 矩估计C. 有效估计D. 有偏估计10.下列说法中正确的是( ).A. 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了弃真错误B. 如果备择假设是错误的,但作出的决策是接受备择假设,则犯了取伪错误C. 如果原假设是正确的,但作出的决策是接受备择假设,则犯了弃真错误D. 如果原假设是错误的,但作出的决策是接受备择假设,则犯了取伪错误二、解答题(本大题共6小题,每小题9分,共54分,解答应写出推1.某产品共30件,其中有三件是次品,现从中任取2件,求至少有一件是次品的概率.2. 对某一目标进行射击,直至击中为止. 如果每次射击命中的概率为p ,试求射击次数X 的分布律.设X 的概率密度函数为,0,()0,.x e x f x -⎧>=⎨⎩其他 试求2Y X =的4. 设X 的概率密度函数为2,01,()0,.x x f x ≤≤⎧=⎨⎩其他,试求(),()E X D X .5. 某车间生产滚珠,滚珠的直径),(~2σμN X ,其中μ未知,20.05σ=. 从某天的产品中随机抽取6件,侧得直径(mm )为: 15.1 14.6 14.8 14.9 15.1 15.2试求滚珠直径X 的均值μ的置信度为0.95的置信区间.6. 有一种新安眠剂,据说在一定剂量下能比某种旧安眠剂平均增加睡眠时间3小时,为了检验针对新安眠剂的这种说法是否正确,收集到一组使用新安眠剂的睡眠时间(单位:h ): 26.7, 22.0, 24.1, 21.0, 27.2, 25.0, 23.4.经计算此样本平均值为24.2,样本标准差为2.296. 根据资料用某种旧安眠剂时平均睡眠时间为23.8h ,假设用安眠剂后睡眠时间服从正态分布,试问这组数据能否说明新安眠剂的疗效?(0.05α=)得分三、综合题(本大题共2小题,每小题13分,共26分.解答应写出推理,演算步骤)1. 甲、乙、丙三个人独立地去破译一份密码,已知甲、乙、丙各人能译出此密码的概率分别为15,13,14,问三人中至少有一人能将此密码译出的概率?2.设随机变量(,)X Y 的联合分布律为 4,01,01,(,)0,.xy x y f x y ≤≤≤≤⎧=⎨⎩其他 ()X f x ,()Y f y ;(2)判断X 和Y 的独立性.得分《概率论与数理统计》期终考试(A 卷)参考解答一、选择题(本大题共10小题,每小题2分,共20分)1. C 2. D 3. B 4. D 5. A6. C7. D8. A9. D 10. C二、解答题(本大题共6小题,每小题9分,共54分)1.设A ={从30件产品中任取2件产品,至少有一件是次品},则样本空间所包含的基本事件总数为435230=C ,A 的对立事件所包含的基本事件总数为351227=C ,从而所求概率28()145P A =。
【清华】2009-2010秋季学期概率统计参考答案

0 μ1μ2 eμ2u dv −∞ μ1 + μ2
= μ1 μ1 + μ2
pW
,V
(w,
v)
=
μ μ e 1 −μ1wv−μ2v
12
w>0,v>0
pW
(w)
=
μ1μ2
( μ1w + μ2
)2
1w>0
∫ P ( X1 < X 2 ) = P(W < 1) =
1 μ1μ2
0 ( μ1w + μ2
)2
dw
X
≤
t)
=
P( X
≥
e−t )
=
⎧1 − e−t , ⎨ ⎩ 0,
t ≥ 0; t < 0.
故 Z ∼ Exp(1)
(2) 解法 1:卷积公式
+∞
∫ f X +Y (t) = −∞ f X (x) fY (t − x)dx
∫=
1 0
e−
(t
−
x
)1t
−
x
>0
dx
∫ = 1t>0 e−t
min(1,t ) ex dx
∫ ∫ ⎪ t t−x
=⎨ ⎪0 0
f X (x) fY ( y)dydx,
⎪
0
⎩
t ≥ 1; 0 ≤ t < 1;
t < 0.
∫⎧
⎪
1
1
−
e
x−t
dx
0
= 1 − e−t (e −1)
∫ ⎪
=⎨
t
1−
ex−t dx
=
t
+
e−t
2009概率统计试卷(A)----答案

二○○九~二○一○年度 第一学期 (A )卷课程名称 概率论与数理统计 参考答案一.填空题(每小题4分,共20分) 1.1112. 2. 62 。
3.)ˆ()ˆ(βθD D <。
4.)588.5,412.4(. 5. nS X /0μ- 二.选择题(每小题3分,共30分)C C B B B CD C D C三.计算(每小题8分,共40分)1.解 X 的所有可能取值为3,4,5.X 的分布律为…………………………………………4分 所以 ()5.4106510341013=⨯+⨯+⨯=x E ()7.201065103410132222=⨯+⨯+⨯=x E()()()[]()45.025.207.205.47.20222=-=-=-=x E x E x D …………………………8分2. 解:令 A={集成电路能正常工作到2000小时},B={集成电路能正常工作到3000小时} 已知::P(A)=0.94, P(B)=0.87 且 ,既有AB=B 于是P(AB)=P(B)=0.87 按题意所要求的概率为:………………………………8分3.解:令H ={原发信息是X},C ={收到的信息是X},则20.98()(|)1963(|)0.99521()(|)()(|)1970.980.0133P H P C H P H C P H P C H P H P C H ⨯====+⨯+⨯………8分4.解 (1)Y X ,的所有可能取值分别为0,1,2.(Y X ,)的联合分布律为…………………………………………4分(2)X3 4 5 k p 1/10 3/10 6/10Y X 0 1 2 0 1/9 2/9 1/9 1 2/9 2/9 0 21/99494}0{}0{91}0,0{⨯==⋅=≠===Y P X P Y X P , Y X ,∴不独立.……………………………………………………………………8分5.解:由题意得,),(~2σμN X , 2σ未知,假设 H 0:720==μμ H 1:720=≠μμ)1(~/0-μ-=n t nS X T ………………………………………………………4分其中 929.5,4.67,10===S X n 代入 2622.2)9(453.210/929.5724.67025.0=>=-=t t所以,拒绝H 0 ,认为有显著差异。
华农-2008-2009概率论与数理统计期末试卷解答

华南农业大学2008(1)概率论与数理统计A 试卷参考答案一、填空题('63⨯=18分)1. 0.9762. 0.3753. 21e --4. 175. 16. 8二.选择题('63⨯=18分)1. D2.B3.A4.D5.D6.A 三.(5分)解:X 的概率分布为3323()()()0,1,2,3.55k k kP X k C k -===即01232754368125125125125X P26355EX =⨯=……………1分 231835525DX =⨯⨯=四、(10分)解 设B ={此人出事故},A1,A2分别表示此人来自第一类人和第二类人 由已知,有1()0.3P A =,2()0.7P A =,1()0.05P B A =,2()0.01P B A =,(1)由全概率公式有1122()()()()()0.30.050.70.010.022P B P A P B A P A P B A =+=⨯+⨯=(2)由贝叶斯公式有111()()0.30.0515()0.682.()0.02222P A P B A P A B P B ⨯===≈答:从两类人中任意抽取一人,此人一年内出事故的概率为0.022; 若已知此人出事故,此人来自第一类人的概率约为0.682. 五、(10分) 解:(1)222001()(1)()222a f x dx ax dx x x a +∞-∞==+=+=+⎰⎰ 12a ∴=-(2)X 的分布函数为200,0,0,0,()()(1),02,,02,241,2.1, 2.x xx x x u F x f u du du x x x x x -∞≤⎧≤⎧⎪⎪⎪⎪==-<≤=-<≤⎨⎨⎪⎪>>⎪⎪⎩⎩⎰⎰(3)32111(13)()(1)24x P x f x dx dx <<==-=⎰⎰六、(14分)解:区域D 的面积2211ln 2e e D S dx x === 1,(,),(,)20,x y D f x y ⎧∈⎪=⎨⎪⎩其它.(1)122011,1,,1,()(,)220,.0,.x X x e dy x e f x f x y dy x +∞-∞⎧⎧≤≤≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其它其它22221122111(1),1,1,22111,1,1,()(,)2220,0,e y Y e y e dx y e e y dx e yf y f x y dx y --+∞---∞⎧⎧-≤≤≤≤⎪⎪⎪⎪⎪⎪-<≤<≤===⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎰⎰⎰其它其它(2)因(,)()()X Y f x y f x f y ≠⋅,所以,X Y 不独立. (3)2(2)1(2)1(,)x y P X Y P X Y f x y dxdy +<+≥=-+<=-⎰⎰22112xdx dy -=⎰⎰1113110.752244=-⨯=-==七、(10分)解: 矩估计:()11()E X xf x dx dx +∞-∞===⎰⎰由()X E X ==得,矩估计量为2X ()1Xθ=- 极大似然函数为 111211(,,,;)nnn i i L x x x xθ====∏两边同时取对数,得1ln 1)ln nii L n x ==∑令ln ln 02nix d L n d θθ==∑ 故极大似然估计量为21()ln nii nxθ=-=∑八、(10分)解:(1)μ的置信度为1α-下的置信区间为/2/2(((X t n X t n αα--+- 其中,X 表示样本均值,S 表示样本标准差,n 表示样本容量,又0.05125, 2.71,7,0.1,(6) 1.943X S n t α=====所以μ的置信度为90%的置信区间为(123,127) (2)本问题是在0.10α=下检验假设 01:124,:124,H H μμ=≠ 由于正态总体的方差2σ未知,所以选择统计量X T =,由题意知,在0H 成立的条件下,此问题的拒绝域为2||0.976(1)T t n α==>-这里显然0.050.976 1.943(71)t <=-,说明没有落在拒绝域中,从而接受零假设0H ,即在显著性水平0.10下,可认为这块土地的平均面积μ显著为124平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009概率论与数理统计试卷 (A)姓名: 班级: 学号: 得分:一.选择题(18分,每题3分)1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ))(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
现任选4人,则4人血型全不相同的概率为: ( ))(A 0.0024;)(B 40024.0; )(C 0. 24; )(D224.0.3.设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为 ( ))(A 独立同分布的随机变量; )(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量.4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为 ( ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与.5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ))(A 32112110351ˆX XX ++=μ; )(B 3212949231ˆX XX ++=μ;)(C 3213216131ˆXXX ++=μ; )(D 32141254131ˆX XX ++=μ.6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α) ( ))(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛-+c ba4.01.02.04321,则常数c b a ,,应满足的条件 为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P.4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D . 5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则 概率=≤-≤∑=)76.1)(37.0(222012012σσX XP ii.5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 . 三. 计算题 (54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。
为检查某一盒子内装有白球的数量,从盒中任取一球发现是白球,求此盒中装的全是白球的概率。
2.设二维随机变量(X,Y )的联合密度函数为1,02,m ax{0,1}m in{1,}(,)0,x x y x f x y otherw ise ≤≤-≤≤⎧=⎨⎩求:边缘密度函数(),()X Y f x f y .3. 已知随机变量X 与Z 相互独立,且)1,0(~U X ,)2.0,0(~U Z ,Z X Y +=, 试求:(),(),XY E Y D Y ρ.4. 学校食堂出售盒饭,共有三种价格4元,4.5元,5元。
出售哪一种盒饭是随机的,售出三种价格盒饭的概率分别为0.3,0.2,0.5。
已知某天共售出200盒,试用中心极限定理求这天收入在910元至930元之间的概率。
5. 设总体X 的概率密度为⎩⎨⎧∉∈+=)1,0(,0)1,0(,)1(),(x x x x f θθθ 1θ>-为未知参数.已知12,,,n X X X 是取自总体X 的一个样本。
求:(1) 未知参数θ的矩估计量; (2) 未知参数θ的极大似然估计量; (3) )(X E 的极大似然估计量.6. 为改建交大徐汇本部中央绿地,建工学院有5位学生彼此独立地测量了中央绿地的面积,得如下数据(单位:2km ) 1.23 1.22 1.20 1.26 1.23 设测量误差服从正态分布.试检验(0.05α=)(1) 以前认为这块绿地的面积是μ=1.232km ,是否有必要修改以前的结果? (2) 若要求这次测量的标准差不超过0.015σ=,能否认为这次测量的标准差显著偏大?四. 证明题 (6分) 设12,,,,n X X X 是相互独立且都服从区间],0[θ上的均匀分布的随机变量序列,令1m ax{}n i i nY X ≤≤=,证明 1)(lim =<-∞→εθn n Y P .五.是非题(7分,每题1分)1. 设样本空间{}4321,,,ωωωω=Ω,事件{}431,,ωωω=A ,则75.0)(=A P . ( )2. 设n 次独立重复试验中,事件A 出现的次数为X ,则 5n 次独立重复试验中,事件A 出现的次数未必为5X . ( ) 3.设a , b 为常数,F (x )是随机变量X 的分布函数. 若F (a ) < F (b ),则 a < b . ( ) 4. 若随机变量)5.0;1,0;1,0(~),(-N Y X ,则 )1,0(~N Y X + ( ) 5. )()()(Y E X E XY E =是X 与Y 相互独立的必要而非充分的条件. ( ) 6. 若随机变量),(~m m F X ,则概率)1(≤X P 的值与自然数m 无关. ( ) 7.置信度α-1确定以后,参数的置信区间是唯一的. ( )附 分布数值表99.0)33.2(,9032.0)30.1(,9474.0)62.1(,926.0)45.1(=Φ=Φ=Φ=Φ0150.2)5(,1318.2)4(,5706.2)5(,7764.2)4(05.005.0025.0025.0====t t t t711.0)4(,488.9)4(,484.0)4(,143.11)4(295.0205.02975.02025.0====χχχχ概率统计试卷A (评分标准)一. 选择题(15分,每题3分) [ 方括弧内为B 卷答案 ]C A C AD . . [ A D B C A ] 二. 填空题(18分,每题3分)1. 62.0 [84.0];2.. 0,4.0,1.0,3.0≥≤-≥=+-c b a c b a 且 [0,3.0,2.0,4.0≥-≥≤=+-c b a c a b 且]; 3. ),(),(),(1b F a F b a F +∞-∞+-+ [)22,(),6()22,6(1+∞-∞+-+F F F ]; 4. 4/,2/m m [ 4/,2/n n ] ;5. 985.0 [)1(-+m t mS X α]; 6. )1(--n t nS X α [98.0].五. 是非题(7分,每题1分)非 非 是 是 是 是 非. [ 是 非 是 非 非 非 是 ] 三.计算题(54分,每题9分)1. 解:令 A={抽出一球为白球}, t B ={盒子中有t 个白球},12,,2,1,0 =t . 由已知条件,131)(=t B P ,12)(t B A P t =,12,,2,1,0 =t ,[ 111)(=t B P ,10)(t B A P t =,10,,2,1,0 =t ] (3分)由全概率公式,∑∑====121212131)()()(t t t t tB A P B P A P , [∑==1010111)(t tA P ] (3分)由Bayes 公式,132)()()()(1212131131121212===∑=t t A P B A P B P A B P . [ 112)(10=A B P ] (3分)2. 解: ,01()2,120,X x x f x x x otherw ise ≤<⎧⎪=-≤≤⎨⎪⎩[1,[0,1]()0,[0,1]X x f x x ∈⎧=⎨∉⎩ (4分)] (5分)1,[0,1]()0,[0,1]Y y f y y ∈⎧=⎨∉⎩ [,01()2,120,Y y y f y y y otherw ise ≤<⎧⎪=-≤≤⎨⎪⎩(5分)] (4分)3.解: 11111(),()()()222020E X E Y E X E Z ==+=+= (3分)cov(,)(())()()1()12X Y E X X Z E X E X Z D X =+-+==11101()()()()1212001200D Y D X Z D X D Z =+=+=+= [15013] (3分)1XY ρ==[2625] (3分)4.解:设i X 为第i 盒的价格(1,2,,200.)i = ,则总价2001i i X X ==∑(1分)() 4.6,()0.19i i E X D X == (2分) 2001()()200 4.6920ii E X E X===⨯=∑.2001()()2000.1938ii D X D X===⨯=∑. (2分)910920()930920(910930)10212(1.622)120.947410.8948X E X P X P ---≤≤=≤≤≈Φ-=Φ-=⨯-=[ 8064.01)298.1(2)928912(=-Φ≈≤≤X P ] (4分)5.解:(1) 矩估计量 12ˆ1XX θ-=- [ ˆ1X Xθ=- ] (3分)(2) 极大似然估计量 11ˆ11ln nii X nθ==--∑ [11ˆ1ln nii X nθ==-∑] (3分)(3) )(X E 的极大似然估计量 ∑=-=++=ni inX X E 11ln112ˆ1ˆ)(ˆθθ [ 1ln11ˆˆ)(ˆ11-=+=∑=ni i nX X E θθ ] (3分)7. 解:(1)假设 01: 1.23;: 1.23H H μμ=≠. [ 01: 1.20;: 1.20H H μμ=≠ ] (1分) 当0H 为真,检验统计量 )1(~/0--=n t nS X T μ (3分)0.0252(1)(4) 2.7764t n t α-== , 拒绝域 (, 2.7764][2.7764,)W =-∞-⋃+∞ (3分)221.246,0.0288x s ==, [ 221.23,0.0224x s == ]0 1.242T W =∉,接受0H . [ W T ∈=571.30,拒绝0H ] (2分)(2)假设 222201:0.015;:0.015H H σσ=>. (1分)当0H 为真,检验统计量 )1(~)1(2222--=n Sn χσχ(3分)220.05(1)(4)9.488n αχχ-==, 拒绝域 [9.488,)W =+∞. (3分) 2014.86W χ=∈,拒绝0H . (2分)四.证明题证: ⎩⎨⎧∉∈=],0[,0],0[,/1)(~θθθx x x f X i 0,0(),01,1x xF x x x θθ<⎧⎪⎪=≤<⎨⎪≥⎪⎩1m ax{}n i i nY X ≤≤=的密度为 1,[0,]()0,[0,]n n nY ny y f x y θθθ-⎧∈⎪=⎨⎪∉⎩(3分)0ε∀>11||00(||)()(1)0,n n n nny nnnnynyP Y dy dyas n θεθεθεθθθεεθθ----≥<-≥==-==-→→∞⎰⎰即0)(lim =≥-∞→εθn n Y P , 所以 1)(lim =<-∞→εθn n Y P . (3分)。