数学建模试卷及参考答案
《数学建模 建立函数模型解决实际问题》试卷及答案_高中数学必修第一册_人教A版

《数学建模建立函数模型解决实际问题》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、某公司每小时生产零件的数量与时间的关系可以用下面哪个函数模型来表示?每天工作8小时,且生产数量随着工龄增加而增加。
A、f(t) = 100 + 2tB、f(t) = 100 + 2t^2C、f(t) = 100 + 2t^3D、f(t) = 100 + 2e^t2、一个城市为了改善交通状况,计划拓宽一条现有道路。
现有道路的宽度为10米,经过调查发现,道路的宽度每增加1米,道路的日均车流量会减少100辆。
设道路宽度从10米增加到x米,日均车流量减少的辆数为(100(x−10))。
根据上述情况,下列哪个函数模型描述了道路宽度与日均车流量之间的关系?A.(y=1000x)B.(y=1000(10−x))C.(y=1000(x+10))D.(y=1000(10−x))3、已知某工厂生产某种产品,每增加一个工人的工作效率,每天能多生产50个产品。
现有10名工人,每天能生产1000个产品。
设工人人数为x,每天生产的产品数量为y,根据题意可建立函数模型为()A. y = 50x + 1000B. y = 50x + 100C. y = 50x + 50D. y = 50x - 10004、某次数学建模活动中,参与者需要根据给定的数据建立一个线性函数模型来描述某种商品的销售量与价格之间的关系。
已知当价格为10元时,销售量为200件;当价格为15元时,销售量为150件。
若设销售量为y,价格为x,则建立的线性函数模型为()。
x)A、(y=200−53x)B、(y=−200+53C、(y=−200+5x)D、(y=−200+10x)5、在研究某种商品的需求关系时,研究人员得到一组数据如下:商品价格(元)为10, 15, 20, 25, 30,商品销售量(件)为500, 450, 400, 350, 300。
为了建立商品价格与销售量之间的关系,最适合采用的数学模型是:A. 二次函数模型B. 线性函数模型C. 几何模型D. 对数函数模型6、在解决实际问题时,以下哪个函数模型最适合描述某城市人口随时间的变化?A、一次函数模型C、对数函数模型D、幂函数模型7、若一家工厂每天生产x件产品,每件产品的成本为c元,售价为p元,每天的固定成本为f元,则该工厂的日利润y与x的关系式为:A)y = x(p - c) - fB)y = x(c - p) - fC)y = x(c - p) + fD)y = x(p - c) + f8、已知某工厂生产一批产品,根据实验数据得出每增加一个工时,产品的合格率增加2%,生产x个工时后,产品的合格率为y%,那么函数模型可以表示为:A、y = 2x + 1B、y = 2x² + 1C、y = x + 2D、y = 2x² + 2(x + 1)二、多选题(本大题有3小题,每小题6分,共18分)1、以下哪些函数模型可以用来描述现实生活中的实际问题?A. 线性函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型2、一个直角三角形的两直角边长分别为a和b,斜边长为c。
数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
《数学建模》考试试卷与参考答案

《数学建模》试卷 第 1 页 共 4 页《数学建模》试题一、填空题(每题5分,满分20分):1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 .2. 设年利率为0.05,则10年后20万元的现值按照复利计算应为 .3. 所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 .4. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 .二、分析判断题(每题10分,满分20分):1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
2. 某公司经营的一种产品拥有四个客户,由公司所辖三个工厂生产,每月产量分别为3000,5000和4000件.公司已承诺下月出售4000件给客户1,出售3000件给客户2以及至少1000件给客户3,另外客户3和4都想尽可能多购剩下的件数.已知各厂运销一件产品给客户可得到的净利润如表1所示,问该公司应如何拟订运销方案,才能在履行诺言的前提下获利最多?表1单位:元/件上述问题可否转化为运输模型?若可以则转化之(只需写出其产销平衡运价表即可),否则说明理由。
三、计算题(每题20分,满分40分):1. 有一批货物要从厂家A 运往三个销售地B 、C 、D ,中间可经过9个转运站.,,,,,,,,321321321G G G F F F E E E 从A 到321,,E E E 的运价依次为3、8、7;从1E 到21,F F 的运价为4、3;从2E 到321,,F F F 的运价为2、8、4;从3E 到32,F F 的运价为7、6;从1F 到21,G G 的运价为10、12;从2F 到321,,G G G 的运价为13、5、7;从3F 到32,G G 的运价为6、8;从密线封层次报读学校专业姓名317《数学建模》试卷 第 2 页 共 4 页1G 到C B ,的运价为9、10;从2G 到D C B ,,的运价为5、10、15;从3G 到D C ,的运价为8、7。
数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
数学建模试卷及参考答案

数学建模试卷及参考答案一.概念题〔共3小题,每题5分,本大题共15分〕1、一般状况下,建立数学模型要经过哪些步骤?〔5分〕答:数学建模的一般步骤包括:模型打算、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应留意培育哪几个实力?(5分)答:视察力、联想力、洞察力、计算机应用实力。
3、人工神经网络方法有什么特点?(5分)答:〔1〕可处理非线性;〔2〕并行构造.;〔3〕具有学习和记忆实力;〔4〕对数据的可容性大;〔5〕神经网络可以用大规模集成电路来实现。
二、模型求证题〔共2小题,每题10分,本大题共20分〕1、某人早8:00从山下旅店动身,沿一条途径上山,下午5:00到达山顶并留宿.次日早8:00沿同一途径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记动身时刻为,到达目的时刻为,从旅店到山顶的路程为s.设某人上山途径的运动方程为f(t), 下山运动方程为g(t)是一天内时刻变量,那么f(t)(t)在[]是连续函数。
作协助函数F(t)(t)(t),它也是连续的,那么由f(a)=0(b)>0和g(a)>0(b)=0,可知F 〔a 〕<0, F(b)>0, 由介值定理知存在t0属于()使F(t0)=0, 即f(t0)(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能包容二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权驾驭在商人们手中,商人们怎样才能平安渡河呢?(15分) 解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =〔k x ,k y 〕定义为状态。
平安渡河条件下的状态集合称为允许状态集合,记做S 。
()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x 〔3分〕记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =〔k u ,k v 〕定义为决策。
数学建模试题及答案

1. 食品厂用三种原料生产两种糖果,糖果的成分要求和销售价见表1。
各种原料的可供量和成本见表2。
该厂根据订单至少需要生产600公斤高级奶糖,800公斤水果糖,为求最大利润,试建立线性规划模型并求解。
2.某商业公司计划开办5家新商店。
为了尽早建成营业,商业公司决定由5家建筑公司分别承建。
已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。
商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?
3.求解下列方程的三个实根
x x 24=
提示:首先在21≤≤-x 和172≤≤x 两个不同区域中绘制函数图形。
4\.求图1所示网络中s v 到t v 的最短路径及长度。
2
v 5
t
图1 网络图
5.某商业公司计划开办5家新商店。
为了尽早建成营业,商业公司决定由5家建筑公司分别承建。
已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。
商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?。
数学建模小学试题及答案

数学建模小学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:A2. 一个长方形的长是8厘米,宽是4厘米,那么它的面积是多少平方厘米?A. 16B. 24C. 32D. 48答案:C3. 一个数的3倍是45,这个数是多少?A. 15B. 12C. 10D. 5答案:A4. 一个班级有40名学生,其中女生占全班人数的1/3,那么女生有多少人?A. 10B. 13D. 20答案:D5. 一个数加上它的一半等于10,这个数是多少?A. 5B. 6C. 7D. 8答案:B6. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5B. 10C. 15D. 20答案:A7. 一个数的4倍是32,这个数是多少?A. 6B. 8C. 10D. 12答案:B8. 一个班级有60名学生,其中男生占全班人数的2/3,那么男生有多少人?A. 40B. 50C. 60D. 809. 一个数减去它的1/4等于9,这个数是多少?A. 12B. 11C. 10D. 9答案:A10. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 25C. 20D. 15答案:A二、填空题(每题4分,共20分)1. 一个数的5倍加上20等于50,这个数是______。
答案:62. 一个数的3倍减去10等于20,这个数是______。
答案:103. 一个班级有50名学生,其中男生占全班人数的3/5,那么男生有______人。
答案:304. 一个数的2倍减去5等于15,这个数是______。
答案:105. 一个长方形的长是12厘米,宽是8厘米,那么它的面积是______平方厘米。
答案:96三、解答题(每题10分,共50分)1. 一个数的4倍加上8等于40,求这个数。
答案:设这个数为x,则有4x + 8 = 40。
解这个方程,我们得到4x = 32,所以x = 8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为,到达目的时刻为,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t)是一天内时刻变量,则f(t)(t)在[]是连续函数。
作辅助函数F(t)(t)(t),它也是连续的,则由f(a)=0(b)>0和g(a)>0(b)=0,可知F (a )<0, F(b)>0, 由介值定理知存在t0属于()使F(t0)=0, 即f(t0)(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分) 解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x (3分)记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =(k u ,k v )定义为决策。
允许决策集合记作D ,由小船的容量可知(){2,1,0,,1|,=≤+≤v u v v u v u }(3分)状态ks 随kd 的变化规律是:1+k s =ks +()k k d *-1(3分)模型求解 用图解法解这个模型更为方便,如下:(6分)三、计算题(共5小题,每小题9分,本大题共45分)1、⎪⎪⎪⎭⎫ ⎝⎛=14/13/1411311A 试用和法求出A 的最大特征值,并做一致性检验(3时, 0.58)。
答:⎪⎪⎪⎭⎫ ⎝⎛=14/13/1411311A 中各列归一化 ⎪⎪⎪⎭⎫ ⎝⎛8/19/17/18/49/47/38/39/47/3各行求和 ⎪⎪⎪⎭⎫ ⎝⎛569.0373.1248.1=w 2分 而⎪⎪⎪⎭⎫⎝⎛=328.1897.4328.4Aw ,(1分) 所以最大特征根为123.3)569.0328.1373.1897.4248.1328.4(31)(3131=++==∑=i i i w Aw λ2分其一致性指标为:061.023123.3133=-=--λ2分1.0106.058.0061.0>==RI CI 所以A 不通过一致性检验。
2分2、一块土地,若从事农业生产可收100元,若将土地租给某乙用于工业生产,可收200元。
若租给某丙开发旅游业可收300元。
当丙请乙参与经营时,收入达400元,为促成最高收入的实现,试用值方法分配各人的所得。
(9分)答:甲、乙、丙所得应为250元,50元,100元(步骤略) 3、产品每天需求量为常数r, 每次生产准备费用为C 1,每天每件产品贮存费用为C 2, 缺货损失费为C 3,试作一合理假设,建立允许缺贷的存贮模型,求生产周期及产量使总费用最小。
(9分) 解:模型假设:1. 产品每天需求量为常数r2. 每次生产准备费用为c1,每天每件产品贮存费用为c23. 生产能力无限大 ,缺货损失费为C 3 ,当1时产品已用完4. 生产周期为T,产量为Q(2分) 模型建立一周期总费用如下: 2)(2213121T T r C QT C C C -++=(2分)一周期平均费用为 rTQ rT C rT Q C T C Q T f 2)(2),(23221-++=(2分)模型求解: 用微分法解得周期 32321)(2C rC C C C T +=(1分)产量)(232231C C C C rC Q +=(1分)4、人的状态分为三种:1(健康),2(患病),3(死亡)。
设对特定年龄段的人,今年健康,明年保持健康的概率为0.8,患病的概率为0.18,而今年患病的人明年健康的概率为0.65,健康的概率为0.25,构造马氏链模型,说明它是吸收链,并求健康,患病出发变成死亡的平均转移次数。
解:状态()()()死亡患病健康32,1===,i i i依歇易得转移概率阵为 ⎝⎛=065.08.0P25.018.0⎪⎪⎪⎭⎫11.002.0 2分记()()())(),(,321n a n a n a n =α, 则()P n n ⋅=+)(1αα ),2,1(⋯⋯=n ………… (1分)易是:()。
,i 马氏链是吸收链是吸收状态死亡∴=3 (2分) ⎝⎛=O Q P ⎪⎪⎭⎫I R ⎝⎛=65.08.0Q ⎪⎪⎭⎫25.018.0 ⎪⎪⎭⎫⎝⎛=1.002.0R () ⎝⎛-=-=-65.02.01Q I M ⎝⎛=⎪⎪⎭⎫--65.075.0043.0125.018.01⎪⎪⎭⎫2.018.0 ⎪⎪⎭⎫⎝⎛==85.093.0043.01Me y (3分)∴ 由健康、患病出发变成死亡的平均转移次数分别为4385043930和 。
(1分)5.设渔场鱼量满足下列方程:(9分)h Nx rx t x --=))(1()(2& (1)讨论鱼场鱼量方程的平衡点稳定状况 (2)如何获得最大持续产量 解:令h Nx rx x F --=))(1()(2,)31()(22N xr x F -='h Nx rx x f --=))(1()(2的最大值点为)32,3(rN N (2分) 当3/2rN h >时,无平衡点(1分)当3/2rN h <时,有两个平衡点)3/(1N x <和)3/(2N x >,经过判断x 1不稳定2稳定(2分)当3/2rN h =时,平衡点3/0N x =,由0)(0='x F 不能判断它稳定性(2分)(2)为了获得最大持续产量,应使3/N x >且尽量3/N x =接近,但操作困难 (2分)四、建模题(共2小题,每小题10分,本大题共20分)1考虑药物在体内的分布与排除之二室模型即:把整个机体分为中心室与周边室两室,两室之间的血药相互转移,转移速率与该室的血药浓度成正比,且只有中心室与体外有药物交换,药物向体外排除的速率与该室的血药浓度成正比,试建立两室血药浓度与时间的关系。
(不必求解)解:假设)(t c i 、)(t x i 和i V 分别表示第i 室)2.1(=i 的血药浓度,药量和容积,2112k k 和是两室之间药物转移速率系数,13k 是从中心室(第1室)向体外排除的速率系数 ……………3分 则⎩⎨⎧⋅-=+⋅+⋅--=221112************)()()(x k x k t xt f x k x k x k t x &&……(1) ……………6分(其中)(0t f 是给药速率) 及)2()()(ΛΛΛt c V t x i i i ⋅=于是:⎪⎪⎩⎪⎪⎨⎧-⋅=+⋅+⋅+-=2211122121022*********)()3()()()(c k c k v v t c v t f c k v v c k k t c &ΛΛΛ& …………4分2、某工厂拟安排生产计划,已知一桶原料可加工10小时后生产A 产品2公斤,A 产品可获利30元/公斤 ,或加工8小时可生产B 产品3公斤,B 产品可获利18元/公斤,或加工6小时可生产C 产品4公斤,C 产品可获利12元/公斤,现每天可供加工的原料为60桶,加工工时至多为460小时,且A 产品至多只能生产58公斤。
为获取最大利润,问每应如何安排生产计划?请建立相应的线性规划模型(不必求解,10分)。
答:设每天安排x 1桶原料生产A 产品,x 2桶原料生产B 产品,x 3桶原料生产C 产品,则有:⎪⎪⎩⎪⎪⎨⎧≥≤≤++≤++++=0,,582460681060432..485460max3211321321321x x x x x x x x x x t s x x x z参考评分标准:目标函数3分,约束条件7分。