中考数学模拟试卷(三模)
2024年河南省南阳市第三中学中考三模数学试题(含答案)

2024年南阳市三中三模数学(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列四个数中,绝对值最大的是( )A .2B .C .0D .2.如图所示的几何体是由6个大小相同的小正方体组成的,从左面观察该几何体,看到的图形为()A .B .C .D .3.国家统计局公布了2023年社会消费品零售情况,社会消费品零售总额比上年增长,约为亿元.的原数为( )A .470B .47000C .470000D .47000004.下列运算中,正确的是( )A .B .C .D .5.如图,已知直线m ,n 被一组平行线所截,交点分别为A ,B ,C 和D ,E ,F ,若,则等于( )A .B .C .D .6.一元二次方程根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根13-3-7.2%54.710⨯54.710⨯3243-=a a a 222()+=+a b a b 321÷=a a ()2224=aba b 123,,l l l 3,2==AB BC DEDF2325353222430-+=x x7.如图,线段DE 交线段BC 于点E ,,若,则等于()A .B .C .D .8.小卢在一次用频率估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A .掷一枚正六面体的骰子,出现2点的概率B .在“剪刀石头布”的游戏中,小李随机出“石头”的概率C .从1~10这10个整数中随机抽取1个整数,它能被5整除的概率D .任意买一张电影票,座位号是偶数的概率9.如图,C ,D 是上直径AB 两侧的两点,设,则等于()A .B .C .D .10.如图,抛物线与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③;④对于任意实数n ,.∥AB CD 140,360∠=︒∠=︒2∠10︒20︒30︒40︒O 25∠=︒ABC ∠BDC 85︒75︒70︒65︒2(0)=++≠y ax bx c a (3,0)-1=-x 20+=b a 42+<a c b 0++=a b c 2-≤+a b an bn正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共15分)11.定义一种运算__________.12.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这4本著作中随机抽取2本(先随机抽取1本,不放回,再随机抽取另1本),则抽取的2本恰好是《论语》和《大学》的概率是__________.13.已知点均在二次函数的图象上,则,的大小关系是__________(用“>”连接)14.如图,在中,,射线AB 交y 轴于点D ,交双曲线于点B ,C ,连接OB ,OC ,当OB 平分时,AO 与AC 满足,若的面积为4,则__________.15.如图,在中,,点P (点P 不与点A 、B 重合)为斜边AB 上的一个动点,过点P 作,垂足分别为点D 和点E ,连接DE ,P C 交于点Q ,连接AQ ,当为直角三角形时,AP 的长是__________.=-a bad bc c d ()()()1232,,1,,1,--A y B y C y 2$3(1)7=+-y x 123,,y y y △AOB =AO AB (0,0)=>>ky k x x∠DOC 23=AO AC △OBD =k △Rt ABC 90,60,2∠=︒∠=︒=ACB B BC ,⊥⊥PD AC PE BC △APQ三、解答题(本大题共8个小题,共75分)16.(8分)(1)计算:.(2)化简:.17.(9分)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大背少年带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生的成绩进行统计,按成绩(满分100分)分为5组(A 组:;B 组:;C 组:;D 组:;E 组:),并绘制了如下不完整的统计图.(1)本次调查一共随机抽取了__________名学生的成绩,频数分布直方图(图1)中__________,扇形统计图中A 组占__________.(2)补全学生成绩频数分布直方图.学生成绩频数分布直方图学生成绩扇形统计图图1 图2(3)若将竞赛成绩在90分及以上的记为优秀,求优秀学生所在扇形(图2)对应圆心角的度数.18.(8分)如图,已知及圆外一点A ,连接线段OA ,请用无刻度直尺和圆规完成操作并解答.(1)过点A 作出的两条切线AP ,AQ ,切点分别为点P 、点Q .(保留作图痕迹,不写作法和证明)2301|4|(1)20232-⎛⎫--+-⨯ ⎪⎝⎭2()(2)+-+a b b a b 7580≤<x 8085≤<x 8590≤<x 9095≤<x 95100≤<x =m % O O(2)在(1)的条件下,若点E 为优弧上不与端点重合的一点,且,求的度数.19.(9分)在学校的数学周活动中,李老师指导学生测量学校旗杆AB 的高度如图所示,在旗杆附近有一个斜坡,坡长米,坡度,小华在C 处测得旗杆顶端A 的仰角为,在D 处测得旗杆顶端A 的仰角为.求旗杆AB 的高度,(点A ,B ,C ,D 在同一平面内,B ,C 在同一水平线上,结果保留根号)20.(10分)随着国家乡村振兴政策的推进,某村的农副产品越来越丰富.为增加该村村民收入,该村计划定价销售某种土特产,他们把该土特产(每袋的成本是10元)进行4天试销售,日销售量y (袋)和每袋销售价x (元)的记录如下:时间第一天第二天第三天第四天元15202530袋25201510若试销售和正常销售期间,日销售量y 与每袋销售价x 的一次函数关系相同,请回答下列问题.(1)求日销售量y 与每袋销售价x 的函数关系式.(2)请你帮村民设计,每袋销售价定为多少元时才能使这种土特产每日销售的利润最大?请求出最大利润.(利润=销售额-成本)21.(9分)如图,一次函数与反比例函数的图象交于点轴于点C ,轴于点D .(1)填空:__________,__________,__________.(2)在第二象限内,x 取何值时,一次函数的值大于反比例函数的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若,求点P 的坐标.22.(10分)如图所示是某景区步行街的一个横断面为抛物线的拱形大门,点M 为顶点,其高为9米,宽OE 为18米,以点O 为原点,OE 所在直线为x 轴建立平面直角坐标系.矩形ABCD 是安装的一个“光带”,且点PQ64∠=︒PEQ ∠PAQ 10=CD 3:4=i 60︒45︒/x /y 12=+y x b (0)=<ky k x(4,),(1,2),--⊥A m B AC x ⊥BD y =m =b =k =△△PCA PDB S SA ,D 在抛物线上,点B ,C 在OE 上.(1)求该抛物线的函数表达式.(2)求所需的三根“光带”AB ,AD ,DC 的长度之和的最大值,并写出此时OB 的长.23.(12分)已知点E 是正方形ABCD 内部一点,且.①② 备用图【初步探究】(1)如图①,延长CE 交AD 于点P .求证:.【深入探究】(2)如图②,连接DB 并延长交BC 于点F ,当点F 是BC的中点时,求的值.【延伸探究】(3)连接DE 并延长交BC 于点F ,DF 把分成两个角,当这两个角的度数之比为时,请求出的值.参考答案一、选择题1.解:A .;B .;C .;D ..,∴四个数中绝对值最大的是.故选D .2.解:从左面看,底层是两个小正方形,上层的左边是一个小正方形.90∠=︒BEC △∽△BEC CDP CEBE∠BEC 1:2CE BE|2|2=1133-=|0|0=33-=∣∣10233<<< 3-故选B .3.解:,原数是470000.故选C .4.解:与不是同类项,不能合并,∴A 选项结论不正确,不符合题意;,∴B 选项结论不正确,不符合题意;,∴C 选项结论不正确,不符合题意;,∴D 选项结论正确,符合题意.故选D .5.解:,.,.故选C .6.解:,,∴方程没有实数根.故选D .7.解:,.,.故选B .8.解:A .掷一枚正六面体的骰子,出现2点的概率为,故此选项不符合题意;B .在“剪刀石头布”的游戏中,小李随机出“石头”的概率为,故此选项不符合题意;54.710470000⨯=34a 2a 222()2ab a ab b +=++ 32a a a ÷= ()2224ab a b = 3,2AB BC == 325AC AB BC ∴=+=+=123,3,2l l l AB BC ==∥∥ DE ABDF AC∴=22430x x -+= 2(4)4230∴∆=--⨯⨯<,140AB CD ∠=︒∥ 140C ∴∠=∠=︒360∠=︒ 2604020∴∠=︒-︒=︒1613C .从1~10这10个整数中随机抽取1个整数,它能被5整除的概率为,故此选项符合题意;D .任意买一张电影票,座位号是偶数的概率为,故此选项不符合题意,故选C .9.解法一:连接OC ,如图,,,,,解法二:是直径,,.故选D .10.解:抛物线的对称轴为直线,,,即,故①错误:由图象可知,时,,,即,故②正确;抛物线与x 轴交于点,其对称轴为直线,∴抛物线与x 轴交于另一点,,故③正确;由题意可知时,二次函数有最小值,∴无论x 取何值,二次函数值都大于,,整理得,故④正确.故选C .二、填空题20.210=1225ABC ∠=︒ 222550AOC ABC ∴∠=∠=⨯︒=︒180********BOC AOC ∴∠=︒-∠=︒-︒=︒111306522BDC BOC ∴∠=∠=⨯︒=︒AB 90ACB ∴∠=︒9065BDC CAB ABC ∴∠=∠=︒-∠=︒ 2(0)y ax bx c a =++≠1x =-12bx a∴=-=-2b a ∴=20b a -=2x =-0y <420a b c ∴-+<42a c b +< 2(0)y ax bx c a =++≠(3,0)-1x =-2(0)y ax bx c a =++≠(1,0)0a b c ∴++=1x =-y a b c =-+a b c -+2a b c an bn c ∴-+≤++2a b an bn -≤+11.解:,故答案为:.12.解:把《论语》《孟子》《大学》《中庸》分别记为A ,B ,C ,D ,共有12种等可能的情况,其中抽取的2本恰好是《论语》和《大学》的结果有2种,即AC ,CA ,抽取的2本恰好是《论语》和《大学》的概率是故答案为:.13.解:二次函数的图象开口向上,对称轴是直线,点在对称轴上,最小.点距离对称轴有个单位,点距离对称轴有个单位,.故答案为.14.解:作轴于M ,轴于N ,,.,=-a bad bc c d2sin 60=-︒2===∴21126=1623(1)7y x =+-1=-x 2(1,)B y -2∴y ()12,-A y 1(2)1---=()31,C y 1(1)2--=312∴>>y y y 312>>y y y ⊥BM x ⊥CN x = AO AB .∴∠=∠AOB ABO∴∠+∠=∠+∠AOD BOD OCB BOC ∠=∠ BOD BOC.,,.,.的面积为4,的面积为12.,,的面积为6,的面积为10,.设,则,,,解得,故答案为:.15.解:当时,如图,∴∠=∠AOD ACO ∠=∠ OAD CAO ∴△∽△AOD ACO 23∴==AD AO OA AC = AB OA 23∴=AD AB △OBD ∴△AOB 23= AO AC 23∴=AD AB ∴△BOC ∴COD 42105∴==B c X X 2,2⎛⎫ ⎪⎝⎭k B x x 5,5⎛⎫ ⎪⎝⎭k C x x 1,||2=+-==△△△△△梯形BOC BOM CON BOM CON BMNC S S S S S S k 1(52)225⎛⎫∴==+⋅- ⎪⎝⎭△梯形BOC BMNC k k S S x x x x 407=k 40790∠=︒APQ在中,,,,,当时,如图,,四边形DPE C 是矩形,.,垂直平分CP ,,综上所述,当为直角三角形时,AP 的长或故答案为:3或三、解答题16.解:(1)原式.(2)原式.17.解:(1)本次调查一共随机抽取的学生总人数为:(名),组的人数为:(名),.△Rt ABC 90,602∠=︒∠=︒=ACB B 30∴∠=︒BAC 2224∴==⨯=AB BC ∴===AC 3∴=AP 90∠=︒AQP ,,90⊥⊥∠=︒ PD AC PE BC ACB ∴∴=CQ QP 90∠=︒ AQP ∴AQ ∴==AP AC △APQ 44(1)11=-+-⨯=-222222=++--=a ab b ab b a 9624%400÷=∴B 40015%60⨯=60∴=m组的人数为20人,扇形统计图中A组占的百分比为:.故答案为:400,60,5.(2)E 组的人数为(人)补全学生成绒频数分布直方图如下:学生成绩频数直方图(3).答:优秀学生所在扇形对应圆心角的度数为.18.解:(1)如图所示,AP ,AQ 为所作.(2)连接PE ,QE ,如图所示,由圆周角定理可知:.,AQ 为的两条切线,,,.答:的度数为.A ∴20100%5%400⨯=44020609614480----=14480360201.6400+︒⨯=︒201.6︒2128∠=∠=︒POQ PEQ AP O ,∴⊥⊥OP AP OQ QA 90∴∠=∠=︒APO AQO 180********∴∠=︒-∠=︒-︒=︒PAQ POQ ∠PAQ 52︒19.解:过点D 作,垂足为E ,过点D 作,垂足为E .由题意得,坡长米,坡度,.设米,则米.在中,,,解得,米,米.设米,米.在中,,(米).在中,,米.,,解得:,米,旗杆AB 的高度为米.⊥DE BC ⊥DF AB ,==DF BE BF DE 10=CD 3:4=i 34∴=DECE 3=DE x 4=CE x △Rt CDE 5===CD x 510∴=x 2=x 8∴=CE 6==DE BF =BC y (8)∴==+=+DF BE BCCE y △Rt ABC 60∠=︒ACB tan 60∴=⋅︒=AB BC△Rt ADF 45∠=︒ADF tan 45(8)∴=⋅︒=+AF DF y=+ AB AF BF 86=++y 7=+y (21∴==+AB ∴(21+20.解:(1)依题意,根据表格中的数据,设日销售量y (袋)与销售价x (元)的函数关系式为,得解得故日销售量y (袋)与销售价x (元)的函数关系式为:.(2)依题意,设利润为w 元,得,得.,当时,w 取得最大值为225.故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.21.解:(1)一次函数与反比例函数图象交于点,,,故答案为:.(2)当时,一次函数的值大于反比例函数的值.(3)由(1)可知,一次函数.设P 点坐标为,和的面积相等,,解得,点坐标为.22.解:(1)由题意知,顶点,可设该抛物线的函数表达式为,=+y kx b 2515,2020,=+⎧⎨=+⎩k b k b 1,40,=-⎧⎨=⎩k b 40=-+y x 2(10)(40)50400=--+=-+-w x x x x 2(25)225=--+w x 10-< ∴25=x 12=+y x b (0)=<k y k x(4,),(1,2)--A m B 1412,2(1)2∴=-=-⨯=⨯-+k m b 15,2,22∴==-=m k b 15,,222-41-<<-x 1522=+y x 15,22⎛⎫+ ⎪⎝⎭t t △PCA △PDB 11115(4)1222222⎛⎫∴⨯⨯+=⨯⨯-- ⎪⎝⎭t t 52=-t ∴P 55,22⎛⎫- ⎪⎝⎭(9,9),(18,0)M E 2(9)9=-+y a x抛物线过原点,,解得,该抛物线的函数表达式为(2)设点A 的坐标为则,根据抛物线的轴对称性:质,可得,故,.,当米时,三根“光带”长度之和的最大值为米.23.(1)证明:四边形ABCD 是正方形,,.,,.(2)解:如图,作于G ,.四边形ABCD 是正方形,,,(0,0)O 2(09)90∴-+=a 19=-a ∴2211(9)9299=--+=-+y x x x 21,29⎛⎫-+ ⎪⎝⎭m m m 21,29===-+OB m AB DC m m ==OB CE m 182==-BC AD m 2222112294521822218999922⎛⎫∴++=-++--+=-++=--+ ⎪⎝⎭AB AD DC m m m m m m m m 209-< ∴92==OB m 452 90,∴∠=︒∥D AD BC ∴∠=∠CPD BCE 90∠=︒ BEC ∴∠=∠BEC D ∴△∽△BEC CDP ⊥EG BC 90∴∠=︒BGE 90,∴∠=︒=BCD CD BC ∴△∽△FGE FCD.,点F 是BC 的中点,.设,则,,,.,...,,(3)解:(方法一)如图,当时,即,.以BC 所在的直线为x 轴,CD 所在的直线为y 轴建立坐标系,设,,以BC 的中点W 为圆心,BC 为直径作圆W ,∴==EG FG EF CD FC DF90∠=︒ BEC 12∴===EF BF CF BC 1===EF BF CF 2,===CD BC DF 21∴==EG FG EG FG ∴==1CG CF FG ∴=-==90EGB EGC ∠=∠=︒ 90CEG ECG ∴∠+∠=︒90BEC ∠=︒ 90CEG BEG ∴∠+∠=︒BEG ECG ∴∠=∠BGE EGC ∴△∽△CE CG BE EG ===12BEF CEF ∠∠=::60CEF ∠=︒120DEC ∴∠=︒6BC CD ==(,)E x y,点E 在上,则,①.作等边三角形CDG ,作的外接圆V ,则点在上,则,②,由①②得,,.如图,当时,即,,则,同上作,作等边三角形CDV ,设,则,以V 为圆心、2为半径作,则点E 在上,同理可得90BEC ∠=︒ ∴W (3,0),(6,0)W B --222(3)3x y ∴++=CDG △V V CV =222((3)x y ∴+-=6x x y x =+=-CE BE ∴===:2:1BEF CEF ∠∠=60BEF ∠=︒30CEF ∠=︒150DEC ∠=︒W 2BC CD ==( 1.0),(2,0),W B V --V V 2222(1)1,((1)4,x y x y ⎧++=⎪⎨+-=⎪⎩222,x y x x ∴+=-=综上所述:.(方法二)如图,当时,即,设,分别延长CE ,BE ,分别交AD 于G ,交CD 于H ,,G ,D ,H ,E 共圆,,.,,.在中,,,,当时,即,同理可得:,,,CEBE ∴===CEBE =12BEF CEF ∠∠=::30BEF ∠=︒BC CD a ==180ADC HEG ∠+∠=︒ ∴30DGH DEH BEF ∴∠=∠=∠=︒DG ∴=BG BH ⊥ BCH CDG ∴≌△△CH DG ∴= Rt GDH △30DGH ∠=︒)CH a CH ∴=-CH ∴=tan CE CH CBH BE BC ∴∠===:2:1BEF CEF ∠∠=60BEF ∠=︒60DGH DEH ABE ∠=∠=∠=︒DH ∴=a CH ∴-=,综上所述:.CH∴=CEBE∴=CEBE=。
2024年上海市徐汇区中考三模数学试卷含详解

初三数学摸拟试卷(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列各数中,与112282-相等的是()A.122B.126C.2D.42.某公司三月份的产值为a 万元,比二月份增长了%m ,那么二月份的产值(单位:万元)为()A.()1%+a m B.()1%-a m C.1%+a m D.1%-a m 3.下列二次根式里,被开方数中各因式的指数都为1的是()A.B.C.D.4.如果点C 是线段AB 的中点,那么下列结论正确的是()A .0AC BC +=uuu r uu u r B.0AC BC -=uuu r uu u r C.0AC BC += D.0AC BC -= 5.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h 和注水时间t 之间关系的是()A. B.C. D.6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD BC ∥,下列判断中错误..的是()A.如果AB CD =,AC BD =,那么四边形ABCD 是矩形B.如果AB CD ∥,OA OB =,那么四边形ABCD 是矩形C.如果AD BC =,AC BD ⊥,那么四边形ABCD 是菱形D.如果OA OC =,AC BD ⊥,那么四边形ABCD 是菱形二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.当<2x -=________.8.不等式组10260x x -->⎧⎨--≤⎩的整数解是________.9.如果关于x 的方程210ax x -+=有实数根,那么a 的取值范围是________.10.在实数范围内分解因式,2231-+=x y xy ________.11.如果实数x 满足2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,那么1x x +的值是________.12.如果一次函数()211y m x m =-+-的图像一定经过第二、三象限,那么常数m 的取值范围为________.13.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是一男一女的概率是________.14.一斜坡的坡角为α,坡长比坡高多100米,那么斜坡的高为________(用α的锐角三角比表示).15.在Rt ABC △中,90ACB ∠=︒,点G 是重心,如果3AG =,4BG =,那么CG =________.16.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.17.如图,在ABC 中,4AB AC ==,1cos 4B =,BD 是中线,将ABC 沿直线BD 翻折后,点A 落在点E ,那么CE 的长为________.18.在一个三角形中,如果一个内角是另一内角的n 倍(n 为整数),那么我们称这个三角形为n 倍三角形.如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为________.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答应纸上]19.已知:1-==x y ,求:21122⎛⎫- ⎪⎝⎭x y 值.20.已知点()2,3A m +在双曲线my x=上.(1)求此双曲线的表达式与点A 的坐标;(2)如果点(),5B a a -在此双曲线上,图像经过点A 、B 的一次函数的函数值y 随x 的增大而增大,求此一次函数的解析式.21.已知:如图,在ABC 中,AB AC =,DC BC ⊥,2DC BC ==,90ADB ∠=︒,BD 与AC 相交于点G .求:(1)AB 的长;(2)AG 的长.22.20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:商品类型甲乙丙每个集装箱装载量(吨)865每吨价值(万元)121520(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式;(2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.23.已知:如图,在梯形ABCD 中,AD BC ∥,AB CD AD ==,点E 在BA 的延长线上,AE BC =.(1)求证:2BCD AED ∠=∠;(2)当ED 平分BEC ∠时,求证:EBC 是等腰直角三角形.24.如图,抛物线2y ax bx c =++顶点为坐标原点O 、且经过点()3,3A ,直线经过点A 和点()0,6B .(1)求抛物线与直线的表达式;(2)如果将此抛物线平移,平移后新抛物线的顶点C 在原抛物线上,新抛物线的对称轴与直线AB 在原抛物线的内部相交于点D ,且45COD ∠=︒,求新抛物线的表达式.25.已知:O 的直径8AB B = ,与O 相交于点C 、D ,O 的直径CF 与B 相交于点E ,设B 的半径为x ,OE 的长为y .(1)如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域;(2)当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3)设B 与AB 相交于G ,试问OEG 能否为等腰三角形?如果能够,请直接写出BC 弧的长度(不必写过程);如果不能,请简要说明理由初三数学摸拟试卷(满分150分,100分钟完成)一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列各数中,与112282-相等的是()A.122B.126C.2D.4【答案】A【分析】本题考查了幂的乘方逆运算和同底数幂乘法的逆运算,正确运用公式是解题关键.先利用幂的乘方的逆运算将128的底变为2,再通过同底数幂乘法的逆运算变出122,即可计算.【详解】解:()111311111111322222222222822222222222+-=-=-=-=⨯-=,故选:A .2.某公司三月份的产值为a 万元,比二月份增长了%m ,那么二月份的产值(单位:万元)为()A.()1%+a mB.()1%-a m C.1%+a m D.1%-a m 【答案】C【分析】本题考查了列代数式,根据“三月份的产值为a 万元,比二月份增长了%m ”,得出答案即可,理解题意、正确列出代数式是解题的关键.【详解】解:∵三月份的产值为a 万元,比二月份增长了%m ,∴二月份的产值()1%1%aa m m =¸+=+,故选:C .3.下列二次根式里,被开方数中各因式的指数都为1的是()A.B.C.D.【答案】B【分析】根据二次根式的定义判断即可.【详解】解:A .x ,y 的指数分别为2,2,此选项错误;B .22xy +的指数为1,此选项正确;C .x +y 的指数为2,此选项错误;D .x ,y 的指数分别为1,2.此选项错误;故选:B .【点睛】本题主要考查了二次根式的定义,分清因数和指数是解答此题的关键.4.如果点C 是线段AB 的中点,那么下列结论正确的是()A.0AC BC +=uuu r uu u r B.0AC BC -=uuu r uu u r C.0AC BC += D.0AC BC -= 【答案】C【分析】根据点C 是线段AB 的中点,可以判断AC BC =,但它们的方向相反,继而即可得出答案.【详解】解:由题意,∵点C 是线段AB 的中点,∴AC BC= ∵AC 与BC为相反向量,∴0AC BC +=;故选:C .【点睛】本题考查了平面向量的知识,注意向量包括长度及方向,及0与0的不同.5.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h 和注水时间t 之间关系的是()A.B.C. D.【答案】C【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,每一段h 随t 的增大而增大,增大的速度是先快后慢.故选C .【点睛】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD BC ∥,下列判断中错误..的是()A.如果AB CD =,AC BD =,那么四边形ABCD 是矩形B.如果AB CD ∥,OA OB =,那么四边形ABCD 是矩形C.如果AD BC =,AC BD ⊥,那么四边形ABCD 是菱形D.如果OA OC =,AC BD ⊥,那么四边形ABCD 是菱形【答案】A【分析】本题考查了平行四边形、矩形、菱形、正方形的判定,根据平行四边形、矩形、菱形、正方形的判定方法逐项进行分析判定即可得答案.【详解】解:A 、如果AD BC ≠,AD BC ∥,那么四边形ABCD 是梯形,不是平行四边形也就不是矩形,故A 选项错误,符合题意;B 、如果AB CD ∥,AD BC ∥,则四边形ABCD 是平行四边形,则12OA AC =,12OB BD =,因为OA OB =所以AC BD =,那么平行四边形ABCD 是矩形,故B 选项正确,不符合题意;C 、如果AD BC =,AD BC ∥,则四边形ABCD 是平行四边形,又AC BD ⊥,那么平行四边形ABCD 是菱形,故C 选项正确,不符合题意;D 、如果AD BC ∥,OA OC =,则可以证得四边形ABCD 是平行四边形,又AC BD ⊥,那么平行四边形ABCD 是菱形,故D 选项正确,不符合题意,故选A .二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.当<2x -=________.【答案】12--x【分析】本题考查了二次根式的性质与化简,熟练掌握a =是解题的关键.a =的进行计算即可.12x ==+,∵<2x -,∴11<2022x -++<∴1122x x =+=--.故答案为:12--x .8.不等式组10260x x -->⎧⎨--≤⎩的整数解是________.【答案】3-,2-【分析】本题考查了解一元一次不等式组,整数解的问题,熟练掌握知识点是解题的关键.写解每一个不等式,再取解集的公共部分,然后即可求解.【详解】解:10260x x -->⎧⎨--≤⎩①②,由①得:1x <-,由②得:3x ≥-,∴原不等式的解集为:31x -≤<-,∴整数解为:3-,2-,故答案为:3-,2-.9.如果关于x 的方程210ax x -+=有实数根,那么a 的取值范围是________.【答案】14a ≤【分析】本题考查了一元二次方程的判别式,根据关于x 的方程210ax x -+=有实数根,得出240b ac ∆=-≥,代入数值进行计算,即可作答.【详解】解:∵关于x 的方程210ax x -+=有实数根,∴()2Δ1410a =--⨯≥,解得14a ≤,故答案为:14a ≤.10.在实数范围内分解因式,2231-+=x y xy ________.【答案】3322⎛⎫⎛⎫+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭xy xy 【分析】本题考查因式分解,二次根式的乘法,熟练掌握公式法进行因式分解是解决本题的关键.根据题意,利用十字相乘因式分解.【详解】解:2231x y xy -+()233322xy xy ⎛⎫⎛⎫+-=-+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3322xy xy ⎛⎫⎛⎫+-=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.11.如果实数x 满足2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,那么1x x +的值是________.【答案】3【分析】本题主要考查了用换元法解一元二次方程、解分式方程,利用完全平方公式把方程变形是解题的关键.利用完全平方公式把方程变形为211230x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎪⎝⎭⎝⎭,利用换元法,设1x m x +=,则2230m m --=,转化为解一元二次方程,求出1x x+可能的值,分别得出分式方程,计算检验是否有解,即可得出答案.【详解】解:∵2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,∴22112230x x xx 骣÷ç++-+-=÷ç÷ç桫,211230x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎝⎭⎝⎭,设1x m x+=,则2230m m --=,因式分解得:()()310m m -+=,∴30m -=或10m +=,解得:3m =或1m =-,当3m =时,则13x x+=,整理得:2310x x -+=,∴439435222b x a -===,解得:1352x +=,2352x -=,经检验,1352x +=,2352x =都是方程13x x +=的解,∴1x x+的值为3;当1m =-时,则11x x+=-,整理得:210x x ++=,241430b ac ∆=-=-=-<,∴11x x+=-时,方程无解.综上所述,1x x+的值为3,故答案为:3.12.如果一次函数()211y m x m =-+-的图像一定经过第二、三象限,那么常数m 的取值范围为________.【答案】1m >-且1m ≠【分析】本题考查一次函数的图像与性质,运用数形结合思想解题是解题的关键,根据“一次函数()211y m x m =-+-的图像一定经过第二、三象限”可知,此图像与x 轴的交点在原点的左边,即与x 轴交点的横坐标小于0,从而得解.【详解】解:∵一次函数()211y m x m =-+-的图像一定经过第二、三象限,∴此图像与x 轴的交点在原点的左边,且10m -≠,即1m ≠,∴此图像与与x 轴交点的横坐标小于0,令()2110y m x m =-+-=,解得:21101m x m m -=-=--<-,解得:1m >-,∴常数m 的取值范围为1m >-且1m ≠,故答案为:1m >-且1m ≠.13.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是一男一女的概率是________.【答案】35##0.6【分析】本题考查的是画树状图法求概率.树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.先画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得到答案.【详解】解:根据题意画图如下:共有20种等可能的情况数,选出的2位同学恰好为一男一女的有12种,则主持人是一男一女的概率为123205=.故答案为:35.14.一斜坡的坡角为α,坡长比坡高多100米,那么斜坡的高为________(用α的锐角三角比表示).【答案】100sin 1sin -αα【分析】本题考查了正弦函数的应用.利用所给角的正弦函数求解.【详解】解:如图所示.由题意得100AB BC =+,∵90C ∠=︒,sin sin A A BC B α==,∴0s n 10i BC BC α+=,整理得100sin 1sin BC αα=-,∴斜坡的高为100sin 1sin -αα米.故答案为:100sin 1sin -αα.15.在Rt ABC △中,90ACB ∠=︒,点G 是重心,如果3AG =,4BG =,那么CG =________.【答案】【分析】本题考查了重心的定义与性质,结合勾股定理,直角三角形斜边中线的性质,关键是掌握重心性质并运用勾股定理列式求解是解题关键.本题先利用重心求出AD 和BE ,再利用勾股定理列式整体法求出AB ,最后利用直角三角形斜边中线性质和重心性质求出CG .【详解】解:如图,设AG 延长线交BC 于点D ,BG 延长线交AC 于点E ,CG 延长线交AB 于点F ,∵点G 是重心,3AG =,4BG =,∴3922AD AG ==,362BE BG ==,∵90ACB ∠=︒,∴222AD AC CD =+,222BE CE BC =+,∴22222292262BC AC AC BC ⎧⎛⎫⎛⎫=+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩①②,①+②得:22815536444AC BC +=+,化简得:2245AC BC +=,∴22245AB AC BC =+=,∴AB =,∵点G 是重心,90ACB ∠=︒,∴12CF AB ==∴23CG CF ==,.16.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.【答案】32或92.【分析】根据两圆内切时圆心距=两圆半径之差的绝对值,分两种情况求解即可.【详解】当点O 在点A 左侧时,⊙O 半径r=101922-=,当点O 在点B 右侧时,⊙O 半径r=107322-=.故填92或32.【点睛】此题考查圆与圆之间的位置关系,解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量之间的联系.17.如图,在ABC 中,4AB AC ==,1cos 4B =,BD 是中线,将ABC 沿直线BD 翻折后,点A 落在点E ,那么CE 的长为________.【答案】6【分析】本题考查三角形的翻折综合计算,涉及三角函数,等腰三角形,平行四边形及勾股定理,能正确进行线段的转换及作辅助线解非直角三角形是解题关键.本题先过点A 作AM BC ⊥于点M ,计算得出AD CD DE BC ===,再证明四边形BCED 是平行四边形,得CE BD =,再在BCD △中求解BD 即可.【详解】解:如图,过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,∵4AB AC ==,∴BM CM =,∵1cos 44BM BM B AB ===,∴1BM CM ==,∴2BC =,∵BD 是中线,∴122CD AD AC ===,由翻折知2AD DE ==,∴AD CD DE BC ===,∴CBD CDB ∠=∠,设DCB α∠=,∴1802CDB α︒-∠=,∴1801809022ADB αα︒-∠=︒-=︒+,由翻折知902EDB ADB α∠=∠=︒+,∴1809022EDC EDB CDB ααα︒-∠=∠-∠=︒+-=,∴EDC DCB ∠=∠,∴DE BC ∥,∴四边形BCED 是平行四边形,∴CE BD =,∵DN BC ⊥,∴1cos cos 24CN CN C B CD ====,∴12CN =,∴13222BN BC CN =-=-=,152DN ==,∴BD ==∴CE BD ==,.18.在一个三角形中,如果一个内角是另一内角的n 倍(n 为整数),那么我们称这个三角形为n 倍三角形.如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为________.【答案】30︒或20︒或18︒或360(11°【分析】根据n 倍三角形的定义结合三角形内角和定理,进行分类讨论计算即可.【详解】设最小的内角为x ︒.分类讨论:①当2倍角为2x ︒,3倍角为3x ︒时,可得:23180x x x ︒+︒+︒=︒,解得30x =.②当2倍角为2x ︒,3倍角为6x ︒时,可得:26180x x x ︒+︒+︒=︒,解得20x =.③当3倍角为3x ︒,2倍角为6x ︒时,可得:36180x x x ︒+︒+︒=︒,解得18x =.④当3x ︒即是2倍角又是三倍角时,即另一个内角为32x ︒,可得:331802x x x ︒+︒+︒=︒,解得36011x =.综上可知,最小的内角为30︒或20︒或18︒或360()11°.【点睛】本题考查三角形内角和定理.理解题干中n 倍三角形的定义以及利用分类讨论的思想是解答本题的关键.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答应纸上]19.已知:1-==x y ,求:21122⎛⎫- ⎪⎝⎭x y 值.【答案】2【分析】本题考查了负整数指数幂、分母有理化以及完全平方公式的运算,先整理得出2x =+,2y =-1xy =,再运用完全平方公式展开代入数值,进行计算即可作答.【详解】解:∵1-==x y∴2x =+,2y =1xy=.∴21111122222222212x y x y x y ⎛⎫-=+-=+⨯= ⎪⎝⎭20.已知点()2,3A m +在双曲线m y x=上.(1)求此双曲线的表达式与点A 的坐标;(2)如果点(),5B a a -在此双曲线上,图像经过点A 、B 的一次函数的函数值y 随x 的增大而增大,求此一次函数的解析式.【答案】(1)6y x =-,()2,3A -;(2)1y x 42=-.【分析】(1)把点A (2,m +3)代入m y x =求得m ,即可求出结果;(2)把点B (a ,5-a )代入m y x =求得a 得到B 点的坐标,根据A 点坐标和函数的增减性排除掉不符合题意的点,再由待定系数法求出一次函数解析式.【详解】解:(1)∵点A (2,m +3)在双曲线m y x=上,∴.32m m +=,解得:m =-6,∴m +3=-3,∴此双曲线的表达式为6y x -=,点A 的坐标为(2,-3);(2)∵点B (a ,5-a )在此双曲线6y x -=上,∴6.5a a--=,解得:a =-1或a =6,经检验:1,6a a =-=都是原方程的根,且符合题意,∴点B 的坐标为(-1,6)或(6,-1),∵一次函数的函数值y 随x 的增大而增大,由(1)知A (2,-3),∴点B 的坐标只能为(6,-1),设一次函数的解析式为y =kx +b ,∴3216k b k b -=+⎧⎨-=+⎩,解得:124k b ⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为1y x 42=-.【点睛】本题主要考查了待定系数法求反比例函数解析式和一次函数解析式以及一次函数的性质,熟练掌握待定系数法求解析式是解题的关键.21.已知:如图,在ABC 中,AB AC =,DC BC ⊥,2DC BC ==,90ADB ∠=︒,BD 与AC 相交于点G.求:(1)AB 的长;(2)AG 的长.【答案】(1)AB =(2)AG =【分析】(1)过点A 作AE BC ⊥于E ,交BD 于F .则45CDB CBD ∠=∠=︒,由勾股定理得,BD =.由AB AC =,AE BC ⊥,可得112BE BC ==,45EFB EBF ∠=︒=∠,则1EF BE ==,45AFD EFB ∠=∠=︒,AD DF =,由勾股定理得,BF =,则AD DF BD BF ==-=,由勾股定理得,AB =,计算求解即可;(2)由题意知,2cos 45DF CD AF ===︒,证明()AAS AGF CGD ≌,则AG CG =,由AG CG +=可求AG .【小问1详解】解:过点A 作AE BC ⊥于E ,交BD 于F .∵90BCD ∠=︒,2BC CD ==,∴45CDB CBD ∠=∠=︒,由勾股定理得,BD ==.∵AB AC =,AE BC ⊥,∴112BE BC ==,45EFB EBF ∠=︒=∠,∴1EF BE ==,45AFD EFB ∠=∠=︒,∴45DAF AFD ∠=︒=∠,∴AD DF =,由勾股定理得,BF ==∴AD DF BD BF ==-=由勾股定理得,AB ==∴AB =;【小问2详解】解:由题意知,2cos 45DF CD AF ===︒,又∵45AFG CDG ∠=︒=∠,AGF CGD ∠=∠,∴()AAS AGF CGD ≌,∴AG CG =,∵AG CG +=∴102AG GC ==,∴102AG =.【点睛】本题考查了等腰三角形的判定与性质,勾股定理,余弦,全等三角形的判定与性质等知识.熟练掌握等腰三角形的判定与性质,勾股定理,余弦,全等三角形的判定与性质是解题的关键.22.20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:商品类型甲乙丙每个集装箱装载量(吨)865每吨价值(万元)121520(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式;(2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.【答案】(1)320y x =-+(2)每个集装箱装载商品总价值的中位数是98万元【分析】本题考查了根据实际问题列函数关系式及中位数,正确认识题中图表及理解题意是解题关键.(1)先列出三种商品装集装箱的个数的式子,再利用三种商品共120吨列式即可;(2)先得出三种商品装载集装箱的个数,再得出20个集装箱装载商品总价值分别是多少,利用中位数定义即可求解.【小问1详解】解:∵甲种商品装x 个集装箱,乙种商品装y 个集装箱,一共20个集装箱,∴丙种商品装()20x y --个集装箱,∴由题意得:()86520120x y x y ++--=,化简得:320y x =-+;【小问2详解】当5x =时,35205y =-⨯+=,20205510x y --=--=,∴甲、乙、丙三种商品装载集装箱个数分别是5、5、10,由表可知每个甲集装箱装载商品总价值为81296⨯=(万元),每个乙集装箱装载商品总价值为61590⨯=(万元),每个丙集装箱装载商品总价值为520100⨯=(万元),∴20个集装箱装载商品总价值有5个90万元,5个96万元,10个100万元,∴这20个数据从小到大排列后第10、11个数据分别是96、100万元,∴每个集装箱装载商品总价值的中位数是96100982+=(万元).23.已知:如图,在梯形ABCD 中,AD BC ∥,AB CD AD ==,点E 在BA 的延长线上,AE BC =.(1)求证:2BCD AED ∠=∠;(2)当ED 平分BEC ∠时,求证:EBC 是等腰直角三角形.【答案】(1)见解析(2)见解析【分析】(1)连接AC ,由梯形ABCD ,AD BC ∥,可得EAD B ∠=∠,DAC BCA ∠=∠.证明()SAS DEA ACB ≌.则AED BCA ∠=∠.由AD CD =,可得DCA DAC BCA ∠=∠=∠.进而可得22BCD DCA BCA BCA AED ∠=∠+∠==∠.(2)由ED 平分BEC ∠,可得2AEC AED ∠=∠.即AEC BCD ∠=∠,由梯形ABCD ,AD BC ∥,AB CD =,可得EAD B BCD AEC ∠=∠=∠=∠.则CE BC AE ==.证明()SSS AED CED ≌,则ECD EAD B ∠=∠=∠,由180AEC ECD BCD B ∠+∠+∠+∠=︒,可求45AEC ECD BCD B ∠=∠=∠=∠=︒,进而可得90ECB ECD BCD ∠=∠+∠=︒,进而结论得证.【小问1详解】证明:连接AC ,∵梯形ABCD ,AD BC ∥,∴EAD B ∠=∠,DAC BCA ∠=∠.又∵AE BC =,AD AB =,∴()SAS DEA ACB ≌.∴AED BCA ∠=∠.∵AD CD =,∴DCA DAC BCA ∠=∠=∠.∴22BCD DCA BCA BCA AED ∠=∠+∠==∠,∴2BCD AED ∠=∠.【小问2详解】证明:∵ED 平分BEC ∠,∴2AEC AED ∠=∠.∵2BCD AED ∠=∠,∴AEC BCD ∠=∠,∵梯形ABCD ,AD BC ∥,AB CD =,∴EAD B BCD AEC ∠=∠=∠=∠.∴CE BC AE ==.∵AE CE DE DE AD CD ===,,,∴()SSS AED CED ≌,∴ECD EAD B ∠=∠=∠,∵180AEC ECD BCD B ∠+∠+∠+∠=︒,∴45AEC ECD BCD B ∠=∠=∠=∠=︒,∴90ECB ECD BCD ∠=∠+∠=︒,∴EBC 是等腰直角三角形.【点睛】本题考查了等腰梯形的性质,平行线的性质,角平分线,全等三角形的判定与性质,三角形内角和定理,等腰三角形的判定等知识.熟练掌握等腰梯形的性质,平行线的性质,角平分线,全等三角形的判定与性质,三角形内角和定理,等腰三角形的判定是解题的关键.24.如图,抛物线2y ax bx c =++顶点为坐标原点O 、且经过点()3,3A ,直线经过点A 和点()0,6B .(1)求抛物线与直线的表达式;(2)如果将此抛物线平移,平移后新抛物线的顶点C 在原抛物线上,新抛物线的对称轴与直线AB 在原抛物线的内部相交于点D ,且45COD ∠=︒,求新抛物线的表达式.【答案】(1)抛物线表达式为213y x =,直线的表达式为6y x =-+(2)新抛物线的表达式2133324y x ⎛⎫=-+ ⎪⎝⎭或21335935322y x ⎛--=-+ ⎝⎭【分析】(1)利用待定系数法求解即可;(2)设直线6y x =-+与x 轴交于点E ,求出()6,0E ,设点D 的坐标为(),6m m -+,则点C 的坐标为21,3m m ⎛⎫ ⎪⎝⎭,分①当点D 在线段AB 上时,②当点D 在AB 延长线上时两种情况讨论即可;本题考查二次函数的图象与性质,相似三角形的判定与性质,熟练掌握知识点的应用是解题的关键.【小问1详解】∵抛物线2y ax bx c =++顶点为坐标原点O ,∴0b =,0c =,∵点()3,3A 在二次函数图象上,∴39a =,∴13a =,∴抛物线表达式为213y x =,设直线的表达式为1y kx b =+,∵直线经过点A 和点()0,6B ,∴113306k b k b =+⎧⎨=+⎩,∴116k b =-⎧⎨=⎩,∴直线的表达式为6y x =-+;【小问2详解】设直线6y x =-+与x 轴交于点E ,∴当0y =时,6x =,∴()6,0E ,∴6OE OB ==,∴45EBO ∠=︒,设点D 的坐标为(),6m m -+,∴点C 的坐标为21,3m m ⎛⎫ ⎪⎝⎭,∵CD y ∥轴,∴∠=∠BOD ODC ,当点D 在线段AB 上时,如图,∵45=︒=∠∠DBO COD ,∴∽△△CDO DOB ,∴=CD DO DO OB,∴2=⋅C D D O OB ,∴()2222621236OD m m m m =+-=-+,2163=-+-CD m m ,∴22121236663m m m m ⎛⎫-+=-+-⎪⎝⎭,∴2460m m -=,∵0m ≠,∴32m =,∴点C 的坐标为33,24⎛⎫ ⎪⎝⎭,∴新拋物线的表达式2133324y x ⎛⎫=-+ ⎪⎝⎭,当点D 在AB 延长线上时,延长DC 交x 轴于点H ,在DH 的延长线上截取HF HO =,连接FO ,如图,则45==∠∠∠︒=HFO HOF COD ,662=--=-DF m m m ,∵∠=∠ODF CDO ,∴△∽△CDO ODF ,∴=CD DO DO DF,∴2=⋅C D D O DF ,∴()221212366263m m m m m ⎛⎫-+=--+- ⎪⎝⎭,∴32390--=m m m ,∵0m ≠,∴32±=m (正值不符合题意,舍去),∴点C 的坐标为335935,22⎛-- ⎝⎭.∴新抛物线的表达式2139322y x ⎛--=-+ ⎝⎭.25.已知:O 的直径8AB B = ,与O 相交于点C 、D ,O 的直径CF 与B 相交于点E ,设B 的半径为x ,OE 的长为y .(1)如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域;(2)当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3)设B 与AB 相交于G ,试问OEG 能否为等腰三角形?如果能够,请直接写出BC 弧的长度(不必写过程);如果不能,请简要说明理由【答案】(1)()214044y x x =-<≤(21537(3)OEG 能为等腰三角形, BC 的长度为45π或127π【分析】本题主要考查了垂径定理、相似三角形的性质与判定,解直角三角形,圆的基本知识,做题时一定要分析各种情况,不要遗漏.(1)欲求y 关于x 的函数解析式,连接BE ,证明BCE OCB ∽即可;(2)求公共弦CD 的长,作BM CE ⊥,垂足为M .通过圆的知识得出12BM CD =,转化为求BM 的长;分为两种情况:点E 在线段OC 上时;点E 在线段OF 上时,求出BM 的长;(3)OEG 为等腰三角形,分为两种情况:点E 在线段OC 上时;点E 在线段OF 上时,根据角的关系先求出角的度数,从而求出 BC的长度.【小问1详解】解:连接BE ,∵O 的直径8AB =,∴142OC OB AB ===.∵BC BE OC OB ==,,∴BEC C CBO ∠=∠=∠.∴BCE OCB ∽.∴CE BC CB OC=.∵–4CE OC OE y ==-,∴44y x x -=.∴y 关于x 的函数解析式为()214044y x x =-<≤;【小问2详解】解:如图所所示,当点E 在线段OC 上时,作BM CE ⊥,垂足为M ,∵43OC OE ==,,∴1CE =,∴1122EM CE ==,∴72OM =,∴152B M ===;设两圆的公共弦CD 与AB 相交于H ,则AB 垂直平分CD .∴sin sin OC COB OB COB B C M H ⋅∠=⋅∠==.∴22CD CH BM ===.当点E 在线段OF 上时,作BM CE ⊥,垂足为M ,∵7OE OC OE =+=,∴1722EM CE ==∴–71322OM EM OE ==-=,∴372B M ==.同理可得2237CD CH BM ===综上所述,CD 1537【小问3详解】解:如图所示,当点E 在线段OC 上时,∵BG BE =,∴BEG BGE ∠=∠,∵180180BEG OEG BGE OGE +≠︒+=︒∠∠,∠∠,∴OEG OGE ≠∠∠,即OE OG ≠;∵180EOB OEB EBG ++=︒∠∠∠,∴180EOB OEG BEG EBG +++=︒∠∠∠∠,又∵180EGO BGE +=︒∠∠,∴EGO EOB OEG EBO =++∠∠∠∠,∴EOG EGO ≠∠∠,即OE GE ≠;当OG EG =时,设2OEG EOG x ==∠∠,∴4BEG BGE OEG EOG x ==+=∠∠∠∠,∴1801808OBE OEB EOB x =︒--=︒-∠∠∠,由(1)得180902BOC BEC OCB CBO x ︒-∠=∠=∠==︒-∠,∴1802CBE BEC BCE x =︒--=∠∠∠,∴1808290x x x ︒-+=︒-,解得18x =︒,∴36BOC ∠=︒,∴ BC 的长为36441805ππ⨯⨯=;如图所示,当点E 在线段OF 上时,同理可证明OG OE OG GE ≠≠,,当OE GE =时,设EOG EGO x ==∠∠,则1802GEO x =︒-∠,∵BG BE =,∴BEG BGE x ==∠∠,∴1801802GBE BGE BEG x =︒--=︒-∠∠∠;∵BC BE =,∴3180BCE BEC BEG GEO x ==-=-︒∠∠∠∠,∴1805406CBE BEC BEC x =︒--=︒-∠∠∠,∵OC OB =,∴3180OBC OCB x ==-︒∠∠,∴318018025406x x x -︒+︒-=︒-,解得5407x ⎛⎫=︒ ⎪⎝⎭,∴ BC 的长为54041271807ππ⨯⨯=;45π或127π.综上所述,OEG能为等腰三角形, BC的长度为。
2023年中考数学第三次模拟考试卷及解析(青岛卷)

2023年中考数学第三次模拟考试卷及解析(青岛卷)第Ⅰ卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(本题3分)下列各式运算结果是负数的是()A .()20231--B .2023-C ()21-D .()02023-【答案】A【解析】【分析】根据负整数指数幂的运算,绝对值的化简,零指数幂,算术平方根的意义计算选择即可.【详解】A 、()()2023202311==1111-=----,是负数,符合题意;B 、20232023-=,是正数,不符合题意;C ()211-=,是正数,不符合题意;D 、()020231-=,是正数,不符合题意;故选A .【点睛】本题考查了负整数指数幂的运算,绝对值的化简,零指数幂,算术平方根的意义,熟练掌握运算法则是解题的关键.2.(本题3分)窗棂即窗格(窗里面的横的、竖的或斜的格)是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种化纹,构成种类繁多的优美图案,下列表示我国古代窗棂样式结构图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 选项,是轴对称图形,不是中心对称图形,故此选项不符合题意;B 选项,既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C 选项,既是轴对称图形,也是中心对称图形,故此选项符合题意;D 选项,是中心对称图形,不是轴对称图形,故此选项不符合题意;故选:C .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(本题3分)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用,22纳米0.000000022=米,将0.000000022用科学记数法表示为()A .82.210⨯B .82.210-⨯C .70.2210-⨯D .92210-⨯【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:0.000000022用科学记数法表示为82.210-⨯.故选B .【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值.4.(本题3分)我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法:如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是()A .B .C .D .【答案】D【解析】【分析】根据左视图是从左边观察物体得到的视图来判断.【详解】解:左视图为.故选:D .【点睛】本题考查三视图,解题的关键是理解三视图的含义.5.(本题3分)如图,在平面直角坐标系中,将线段AB 先绕原点O 按逆时针方向旋转90︒,再向下平移4个单位长度,得到线段A B '',则点A 的对应点A '的坐标是()A.(1,6)-B.(1,6)----C.(1,2)-D.(1,2)【答案】D【解析】【分析】根据旋转及平移的性质画出图形,然后问题可求解.-,【详解】A点绕O点逆时针旋转90︒,得到点A''(1,2)A'--,A''向下平移4个单位,得到(1,2)故选:D.【点睛】本题主要考查旋转的性质、坐标与图形及平移的性质,熟练掌握旋转的性质、坐标与图形及平移的性质是解题的关键.6.(本题3分)如图,AB是O 的直径,点E,C在O 上,点A是 EC的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为()A .29.5︒B .31.5︒C .58.5︒D .63︒【答案】B【解析】【分析】根据切线的性质得到BA ⊥AD ,根据直角三角形的性质求出∠B ,根据圆周角定理得到∠ACB =90°,进而求出∠BAC ,根据垂径定理得到BA ⊥EC ,进而得出答案.【详解】解:∵AD 是⊙O 的切线,∴BA ⊥AD ,∵∠ADB =58.5°,∴∠B =90°-∠ADB =31.5°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC =90°-∠B =58.5°,∵点A 是弧EC 的中点,∴BA ⊥EC ,∴∠ACE =90°-∠BAC =31.5°,故选:B .【点睛】本题考查的是切线的性质、圆周角定理、垂径定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.(本题3分)如图所示,在长方形ABCD 中,AB =2,在线段BC 上取一点E ,连接AE 、ED ,将 ABE 沿AE 翻折,点B 落在点B '处,线段E B '交AD 于点F .将 ECD 沿DE 翻折,点C 的对应C '恰好落在线段EB '上,且点C '为EB '的中点,则线段EF 的长为()A .3B .23C .4D .32【答案】A【解析】【分析】由折叠的性质可得AB =A B '=CD =C 'D =2∠B =∠B '=90°=∠C =∠D C 'E ,BE =B 'E ,CE =C 'E ,由中点性质可得B 'E =2C 'E ,可得BC =AD =3EC ,由勾股定理可求CE 的长,由“AAS ”可证AB F ' ≌DC F '△,可得C F B F ''==1,即可求解.【详解】解:∵四边形ABCD 是矩形,∴AB =CD =2AD =BC ,∠B =∠C =90°由折叠的性质可得:AB =AB '=CD =C D '=2∠B =∠B '=90°=∠C =∠DC E ',BE =B E ',CE =C E ',∠BEA =∠B EA '=12BEB '∠,∠CED =∠C ED '=12CEC '∠∴∠AED =12BEB '∠+12CEC '∠=1()2BEB CEC ''∠+∠=11802⨯︒=90︒∴AED △是直角三角形∴AD 2=AE 2+DE 2,∵点C '恰好为EB '的中点,∴B E '=2C E ',∴BE =2CE ,∴BC =AD =3EC ,∵AE 2=AB 2+BE 2,DE 2=DC 2+CE 2,∴(3CE )2=AB 2+BE 2+DC 2+CE 2即9CE 2=8+4CE 2+8+CE 2,∴CE =2,∴B E '=BE =4,BC =AD =6,C E '=2,∴B C ''=2,∵∠B '=∠DC 'F =90°,∠AF B '=∠DFC ',A B '=C 'D ,∴ A B 'F ≌ D C 'F (AAS ),∴C 'F =B 'F =1,∴EF =C 'E +C 'F =3,故选:A .【点睛】此题考查了翻折变换、矩形的性质、全等三角形的性质、勾股定理等,解题的关键是求出CE 的长.8.(本题3分)如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,②320a b +>,③24b a c ac >++,④a c b >>.正确结论的个数为()A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x 轴的交点已经x =-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y 轴的交点以及a -b +c <0,即可判断④.【详解】∵对称轴为直线x =1,-2<x 1<-1,∴3<x 2<4,①正确,∵2b a-=1,∴b =-2а,∴3a +2b =3a -4a =-a ,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2-4ac>0,根据题意可知x=-1时,y<0,∴a-b+c<0,∴a+c<b,∵a>0,∴b=-2a<0,∴a+c<0,∴b2-4ac>a+c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b=–2a,∴b>c,以④错误;故选B【点睛】本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)9.(本题3分)计算:41233=______.【答案】4【解析】【分析】根据二次根式的混合法则运算计算即可.【详解】解:原式232333⎛= ⎝⎭4333=⨯4=,故答案为:4.【点睛】本题考查二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.10.(本题3分)在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个.【答案】17【解析】【分析】根据口袋中有3个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x 个红球,∴3x x +=0.85,解得:x =17,经检验x =17是分式方程的解,∴口袋中有红球约有17个.故答案为:17.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.11.某人5次射击命中的环数分别为5,10,7,x ,10,若这组数据的中位数为8,则这组数据的方差为________.【答案】3.6【解析】【分析】根据中位数的性质,得8x =;再根据方差的性质计算,即可得到答案.【详解】根据题意,8x =∴5次射击命中的环数分别为5,10,7,8,10∴这组数据的平均数为:510781085++++=∴这组数据的方差为:()()()()()222225810878881089414 3.655-+-+-+-+-+++==故答案为:3.6.【点睛】本题考查了数据分析的知识;解题的关键是熟练掌握中位数、方差的性质,从而完成求解.12.(本题3分)如图,已知在平面直角坐标系中,点A在x轴负半轴上,点B在第二象限内,反比例函数kyx=的图象经过△OAB的顶点B和边AB的中点C,如果△OAB的面积为6,那么k的值是_____.【答案】-4【解析】【分析】过B作BD OA⊥于D,设B m n(,),根据三角形的面积公式求得12 OAn=,进而得到点A的坐标,再求得点C的坐标,结合一次函数的解析式得到列出方程求解.【详解】解:过B作BD OA⊥于D,如下图.∵点B在反比例函数kyx=的图象上,∴设B m n(,).∵OAB的面积为6,∴12 OAn=,∴12,0An⎛⎫-⎪⎝⎭.∵点C是AB的中点,∴12,22mn nCn-⎛⎫⎪⎝⎭.∵点C在反比例函数kyx=的图象上,∴1222mn n mnn-⋅=,∴4mn=-,∴4k=-.故答案为:-4.【点睛】本题考查了反比例函数系数k的几何意义,三角形的面积公式,中点坐标的求法,正确的理解题意是解题的关键.13.(本题3分)如图,将半径为4,圆心角为120°的扇形OAB绕点B逆时针旋转60°,得到扇形O'A'B,其中点A的运动路径为AA',则图中阴影部分的面积和为_______.【答案】83π-838π-【解析】【分析】连接OO ',AO ',AB ,A’B 根据旋转,结合等边三角形的判定,得出OBO '∆为等边三角形,得出60BOO '∠=︒,BO BO '=,再证明AOO '∆为等边三角形,从而证明四边形AOBO ¢为菱形,证明=,S S S -阴影扇形菱形从而可得答案.【详解】解:连接OO ',AO ',AB ,A’B 如图所示:根据旋转可知,60,OBO ABA ''∠=︒=∠∵OB OO '=,∴OBO '∆为等边三角形,60BOO '∴∠=︒,BO BO '=,∵120AOB ∠=︒,∴60AOO '∠=︒,AO OO '= ,∴AOO '∆为等边三角形,AO AO '∴=,∠AOO’=∠BOO’=60°OA OB BO AO ''===∴,∴四边形AOBO’为菱形,∴AO BO S S ''=弓形弓形,记菱形的对角线的交点为H ,且OB=OA=AO’=BO’=OO’=4,所以OH=O’H=2,BH=AH所以S 菱形AOBO’=3834421=⨯⨯ 四边形AOBO’为菱形,∠OBO’=∠ABA’=60°所以∠ABO’=30°=∠A’BO’,因为AB=AB ,BO=BO所以O B A O AB ''∆≅'∆所以38==+'''∆'∆O AOB O B A O AB S S S 菱形因为()ππ836034602=⨯='A BA S 扇形所以388-=-=π菱形扇形阴影S S S 故答案为:83π-.【点睛】本题主要考查了扇形的面积公式,等边三角形的判定和性质,菱形的判定和性质,解题的关键是熟练掌握扇形面积公式,看出图中=S S S -阴影扇形菱形是解本题的关键.14.(本题3分)如图,ABC 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将∆ADE 沿直线DE 翻折得到∆FDE ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.9833【解析】【分析】根据△ABC 为等边三角形,△ADE 与△FDE 关于DE 成轴对称,可证△BDF ∽△CFE ,根据BF =4CF ,可得CF =4,根据AF 为轴对称图形对应点的连线,DE 为对称轴,可得DE ⊥AF ,根据S 四边形ADFE =12DE AF ⋅=S △CEF =-S △ABC -S △CEF ,进而可求9833DE AF ⋅=.【详解】解:如图,作△ABC 的高AL ,作△BDF 的高DH ,∵△ABC 为等边三角形,△ADE 与△FDE 关于DE 成轴对称,∴∠DFE =∠DAE =60°,AD =DF ,∴∠CFE +∠FEC =∠CFE +∠DFB =120°,∴∠DFB =∠CEF ,又∠B =∠C =60°,∴△BDF ∽△CFE ,∴BD CFBE CE =,即BF CFCE BD ⋅=,设CF =x (x >0),∵BF =4CF ,∴BF =4x ,∵BD =3,∴243x CE =,∵45BC BF CF x x x =+=+=,∴53AD AB BD BC BD DF x =-=-==-,2453x AE EF x ==-,∵△BDF ∽△CFE ,∴DFBDEF CF =,∴2533453x x xx -=-解得:x =2,∴CF =4,∴BC =5x =10,∵在Rt △ABL 中,∠B =60°,∴AL=AB sin60°=10×323∴S△ABC =11033 2⨯⨯,∵在Rt△BHD中,BD=3,∠B=60°,∴DH=BD sin60°=333 322=∴S△BDF =1133863 222BF DH⋅=⨯⨯=∵△BDF∽△CFE,∴223924 BDFCFES BDS CF⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,∵S△BDF=63∴S△CEF 833,又∵AF为轴对称图形对应点的连线,DE为对称轴,∴AD=DF,△ADF为等腰三角形,DE⊥AF,∴S四边形ADFE =12DE AF⋅=S△CEF=-S△ABC-S△CEF=83493 253333=∴9833DE AF⋅=.故答案为9833.【点睛】本题主要考查等边三角形的和折叠的性质,一线三等角证明k型相似,以及“垂美四边形”的性质:对角线互相垂直的四边形的面积=对角线乘积的一半.三、作图题(本大题共4分)15.(本题4分)尺规作图:(不写作法,保留作图痕迹)已知:O 和O 外一点P .求作:过点P 的O 的切线PA ,PB .【答案】见解析【解析】【分析】根据几何语言画出对应的几何图形即可;【详解】作图如图,直线PA 、PB 即为所作的O 的切线.【点睛】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,满分74分)16.(本题8分)(1)化简求值:先化简再求值:22381631a a a a a a ++⎛⎫+-÷ ⎪++⎝⎭,其中a 满足240a a --=.【答案】24a a +,1【解析】【分析】先根据分式四则混合运算法则化简,再由240a a --=得到24a a =+,然后整体代入计算即可.【详解】解:22381631a a a a a a ++⎛⎫+-÷ ⎪++⎝⎭=()()()()23143111a a a a a a a +++⎛⎫-÷ ⎪+++⎝⎭=()()224433111a a a a a a a +⎛⎫++-÷ ⎪+++⎝⎭=()()224411a a a a a a ++÷++=()()()24114a a a a a a ++⨯++=24a a +;由240a a --=得到24a a=+所以22214a a a a ==+.【点睛】本题主要考查了分式的化简求值、代数求值等知识点,掌握分式的四则混合运算法则和整体法成为解答本题的关键.(2)解不等式组1233(1)42x x x x -⎧≥⎪⎨⎪+>+⎩,并写出不等式组的所有整数解.【答案】-2≤x <1;整数解为-2,-1,0【解析】【分析】求得123x x-≥的解集为x≥-2,3(1)42+>+x x的解集为x<1,确定解集,求整数解即可.【详解】∵123x x-≥的解集为x≥-2,3(1)42+>+x x的解集为x<1,∴1233(1)42x xx x-⎧≥⎪⎨⎪+>+⎩的解集为-2≤x<1;所有的整数解为-2,-1,0.【点睛】本题考查了不等式组的解集,不等式组的解集的整数解,熟练解不等式,准确确定不等式组的解集是解题的关键.17.(本题6分)2023年春节档电影《满江红》和《流浪地球2》上映后,热度持续不减,小明一家想选择其中的一部一起观看:哥哥想看《满江红》,弟弟想看《流浪地球2》,妈妈让哥哥和弟弟用掷骰子(骰子质地均匀)的游戏决定听谁的,游戏规则如下:两人随机各掷一枚骰子,若两枚骰子朝上的点数之和为偶数,则哥哥获胜;若两枚骰子朝上的点数之和为奇数,则弟弟获胜.根据上述规则,解答下列问题:(1)弟弟随机掷一枚骰子,点数“6”朝上的概率为______;(2)请用列表格或画树状图的方法判断此游戏是否公平,并说明理由.【答案】(1)1 6(2)公平,理由见解析【解析】【分析】(1)根据概率公式直接计算;(2)首先根据题意列出表格,,然后由表格即可求得所有等可能的结果与点数和为偶数和奇数的情况,再利用概率公式即可求得两人获胜的概率,可得结果.【详解】(1)解:∵骰子共有6个面,∴点数“6”朝上的概率为1 6;(2)列表得:123456123456723456783456789456789105678910116789101112∵共有36种等可能的结果,点数和为偶数的有18种情况,∴哥哥获胜的概率为181 362=,点数和为奇数的有18种情况,∴弟弟获胜的概率为181 362=,∴此游戏公平.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.18.(本题6分)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,5 2.24≈)【答案】(1)6.7m(2)4.5m【解析】【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题.【详解】(1)解:如图2,连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H .在Rt ABH 中,18037ABH ABC ∠=︒-∠=︒,sin 37AH AB︒=,所以sin373m AH AB =⋅︒≈,cos37BH AB ︒=,所以cos374m BH AB =⋅︒≈,在Rt ACH 中,3AH =m ,6CH BC BH =+=m ,根据勾股定理得2235 6.7AC CH AH +=≈m ,答:A 、C 两点之间的距离约6.7m .(2)如图2,过点A 作AG DC ⊥,垂足为G ,则四边形AGDO 为矩形,1GD AO ==m ,AG OD =,所以5CG CD GD =-=m ,在Rt ACGCG=m,中,35AG=,5根据勾股定理得2225 4.5=-=≈m.AG AC CG4.5∴==m.OD AG答:OD的长为4.5m.【点睛】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解19.(本题6分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了________名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α=________度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.【答案】(1)①200;②见解析;③54(2)1120(3)16【解析】【分析】(1)①由B 组的人数及其所占百分比可得样本容量;②由总人数减去除C 组的人数即可得到C 组的人数;③用360︒乘以C 组人数所占比例即可;(2)用3200乘以D 组人数所占比例即可;(3)根据题意列出树状图即可求解【详解】(1)解:(1)①5025%200÷=;②C 组人数2003050702030=----=,补全的条形统计图如图所示:③3036054200︒⨯=︒;(2)解:7032001120200⨯=;(3)解:画树状图如下:从甲、乙、丙、四位学生中随机抽取两人共有12种等可能性的结果,恰好抽中甲、乙两人的所有等可能性结果有2种,因此,P (恰好抽中甲、乙两人)21126==.【点睛】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(本题10分)探索并解决问题(1)【证明体验】如图1,AD 为△ABC 的角平分线,∠ADC =60°,点E 在线段AB 上,AE =AC ,求证:DE 平分∠ADB ;(2)【思考探究】如图2,在(1)的条件下,F 为AB 上一点,连接FC 交AD 于点G .若FB =FC ,求证:DE 2=BD ·DG ;(3)【拓展延伸】如图3,在四边形ABCD 中,对角线AC 平分∠BAD ,∠BCA =2∠DCA ,点E 在AC 上,∠EDC =∠ABC ,若BC =5,=25CD ,AD =2AE ,求AC 的长.【答案】(1)见解析;(2)见解析;(3)163【解析】【分析】(1)由△EAD ≌△CAD 得∠ADE =∠ADC =60°,因而∠BDE =60°,所以DE 平分∠ADB ;(2)先证明△BDE ∽△CDG ,得到BD DE CD DG=,再将比例式化为乘积式即可;(3)根据角平分线的特点,在AB 上截取AF =AD ,连结CF ,构造全等三角形和相似三角形,由相似三角形的性质求出AC 的长.【详解】(1)证明:∵AD 平分BAC ∠,∴EAD CAD ∠=∠,∵AE AC =,AD AD=∴(SAS)EAD CAD ≅ ,∴60ADE ADC ∠=∠=︒,∴18060EDB ADE ADC ∠=︒-∠-∠=︒,∴BDE ADE =∠∠,即DE 平分ADB ∠;(2)证明:∵FB FC =,∴EBD GCD ∠=∠,∵60BDE GDC ∠=∠=︒,∴~EBD GCD ,∴BD DE CD DG=,由(1)知EAD CAD ≅ ,∴DE CD =,∴2DE BD DG =⋅;(3)解:如图3,在AB 上取一点F 使AF =AD ,连接CF ,∵AC 平分BAD ∠,∴FAC DAC ∠=∠,∵AC AC =,∴AFC ADC ≅ ,∴CF CD =,ACF ACD ∠=∠,AFC ADC ∠=∠,∵2ACF BCF ACB ACD ∠+∠=∠=∠,∴DCE BCF ∠=∠,∵EDC FBC ∠=∠,∴~DCE BCF ,∴CD CE BC CF=,CED BFC ∠=∠,∵5BC =,25CF CD ==∴4CE =,∵180180AEC CED BFC AFC ADC ∠=︒-∠=︒-∠=∠=∠,EAD DAC ∠=∠,∴~EAD DAC ,∴AE AD AD AC=,∵2AD AE =,∴224AE AE AE AE =+,∴43AE =,即416433AC CE AE =+=+=【点睛】此题重点考查全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质等知识,解第(3)题时,应注意探究题中的隐含条件,通过适当添加辅助线构造全等三角形和相似三角形;此题难度较大,属于考试压轴题.21.(本题6分)如图,在平面直角坐标系中,一次函数y x m =-+的图像与反比例函数()0ky x x =>的图像交于点()3,1B ,C 两点.(1)求反比例函数的解析式及点C 的坐标;(2)点P 是线段BC 上一点,过点P 向x 轴做垂线段,垂足为Q ,连接OP ,POQ △的面积是否存在最大值,若存在,请求出最大面积及点P 坐标,若不存在,请说明理由.【答案】(1)()30y x x=>,点C 的坐标为()1,3(2)POQ △面积存在最大值,最大值为2,点P 坐标为()2,2【解析】【分析】(1)先利用待定系数法求出反比例函数解析式和一次函数解析式,再联立求出点C 的坐标即可;(2)由点P 是线段BC 上一点,可设点P 坐标为(),4n n -+,且()13n ≤≤,得到()()21142222POQ S n n n =⨯-+=--+ ,根据二次函数的性质得到2n =时,POQ △面积最大,且最大值为2,再求出点P 的坐标即可.【详解】(1)解: 反比例函数()0ky x x =>经过点()3,1B ,313k ∴=⨯=,∴反比例函数解析式为()30y x x=>, 一次函数y x m =-+的图像过点()3,1B ,134m ∴=+=,∴一次函数解析式为4y x =-+,联立方程组得43y x y x =-+⎧⎪⎨=⎪⎩,解得31x y =⎧⎨=⎩,13x y =⎧⎨=⎩,∴点C 的坐标为()1,3;(2)存在最大值,理由如下:点P 是线段BC 上一点,∴设点P 坐标为(),4n n -+,且()13n ≤≤,OQ n ∴=,4PQ n =-+,()()21142222POQ S n n n ∴=⨯-+=--+ ,102-< 且13n ≤≤2n ∴=时,POQ △面积最大,且最大值为2,当2n =时,42n -+=,此时点P 坐标为()2,2.【点睛】此题考查了反比例函数和一次函数交点问题、待定系数法、二次函数的最值问题等知识,数形结合和准确计算是解题的关键.22.(本题6分)如图,已知平行四边形ABCD 中3AB =,AC AB ⊥,E 是AD 的中点,连接CE 并延长,与BA 的延长线交于点F ,与BD 交于点G ,连接DF .(1)求证:四边形ACDF 是矩形.(2)若平行四边形ABCD 的面积是18,求CG 的长.【答案】(1)证明见解析5【解析】【分析】(1)先证明()ASA AEF DEC ≌△△,则AF CD =,可证四边形ACDF 是平行四边形,根据90CAF =︒∠,结论得证;(2)如图,由18ABCD S AB AC =⨯= ,3AB =,可得6AC =,则132AO AC AB ===,证明ABO 是等腰直角三角形,则∆BDF 是等腰直角三角形,即6BF FD AC ===,3CD AF BF AB ==-=,在Rt ACF 中,由勾股定理求CF 的值,证明CDG FBG △∽△,则CG CD FG FB =3635CG =-,计算求解即可.【详解】(1)证明:∵平行四边形ABCD ,∴AF D C ∥,∴FAE CDE ∠=∠,∵E 是AD 的中点,∴AE DE =,在AEF △和DEC 中,∵FAE CDE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AEF DEC ≌△△,∴AF CD =,∴四边形ACDF 是平行四边形,∵AC AB ⊥,∴90CAF =︒∠,∴四边形ACDF 是矩形;(2)解:如图,∵18ABCD S AB AC =⨯= ,3AB =,∴6AC =,∴132AO AC AB ===,∴ABO 是等腰直角三角形,∴45ABO ∠=︒,∴∆BDF 是等腰直角三角形,∴6BF FD AC ===,3CD AF BF AB ==-=,在Rt ACF 中,由勾股定理得2235CF AC AF =+∵AF D C ∥,∴CDG FBG ∠=∠,DCG BFG ∠∠=,∴CDG FBG △∽△,∴CG CD FG FB =3635CG =-,解得5CG =∴CG 5【点睛】本题考查了平行四边形的性质,矩形的判定与性质,等腰三角形的判定与性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识.解题的关键在于对知识的熟练掌握与灵活运用.23.(本题8分)某商店决定购A ,B 两种“冰墩墩”纪念品进行销售.已知每件A 种纪念品比每件B 种纪念品的进价高30元.用1000元购进A 种纪念品的数量和用400元购进B 种纪念品的数量相同.(1)求A ,B 两种纪念品每件的进价分别是多少元?(2)该商场通过市场调查,整理出A 型纪念品的售价与数量的关系如下表,售价x (元/件)5060x ≤≤6080x <≤销售量(件)1004005x-①当x 为何值时,售出A 纪念品所获利润最大,最大利润为多少?②该商场购进A ,B 型纪念品共200件,其中A 型纪念品的件数小于B 型纪念品的件数,但不小于50件.若B 型纪念品的售价为每件()30m m >元时,商场将A ,B 型纪念品均全部售出后获得的最大利润为2800元,直接写出m 的值.【答案】(1)A ,B 两种纪念品每件的进价分别是50元和20元(2)①当65x =时,售出A 纪念品所获利润最大,最大利润为1125元;②32【解析】【分析】(1)设B 纪念品每件的进价是x 元,则A 纪念品每件的进价是()30x +元,根据用1000元购进A 种纪念品的数量和用400元购进B 种纪念品的数量相同,列出分式方程,进行求解即可;(2)①设利润为w ,根据图表,利用总利润等于单件利润乘以销售数量,列出函数关系式,根据函数的性质,求出最值即可;②根据题意可得6080x <≤,此时该商场购进A 型纪念品为()4005x -件,再由A 型纪念品的件数不小于50件,可得6070x <≤,设总利润为y ,求出函数关系式,根据二次函数函数的性质,即可求出m 的值.【详解】(1)解:设B 纪念品每件的进价是x 元,则A 纪念品每件的进价是()30x +元,由题意,得:100040030x x=+,解得:20x =,经检验:20x =是原方程的解;当20x =时:30203050x +=+=;∴A ,B 两种纪念品每件的进价分别是50元和20元;(2)解:①设利润为w ,由表格,得:当5060x ≤≤时,()501001005000w x x =-⨯=-,∵1000k =>,∴w 随着x 的增大而增大,∴当售价为60元时,利润最大为:1006050001000⨯-=元;当6080x <≤,()()()225040055650200005651125w x x x x x =--=-+-=--+,∵50a =-<,∴当65x =时,利润最大为1125元;综上:当65x =时,售出A 纪念品所获利润最大,最大利润为1125元.②∵商场购进A ,B 型纪念品共200件,其中A 型纪念品的件数小于B 型纪念品的件数,∴A 型纪念品的件数小于100件,∴6080x <≤,此时该商场购进A 型纪念品为()4005x -件,∴购进B 型纪念品为()()020********x x =---件,∵A 型纪念品的件数不小于50件,∴504005100x ≤-<,∴6070x <≤,设总利润为y 元,根据题意得:()()()()504005205200y x x m x =--+--,∴()25550520016000y x m x m =-++--2255557587524m x m m ⎛⎫=---++- ⎪⎝⎭,∴当552m x <+时,y 随x 的增大而增大,∵30m >,∴55702m x =+>,∴当70x =时,y 有最大值,∵将A ,B 型纪念品均全部售出后获得的最大利润为2800元,∴2255705575875280024m m m ⎛⎫---++-= ⎪⎝⎭,解得:32m =.【点睛】本题考查分式方程的应用,一次函数的应用,二次函数的应用.根据题意,正确的列出分式方程和函数表示式,利用函数的性质,求最值是解题的关键.24.(本题8分)二次函数()230y ax bx a =++≠的图象与x 轴交于()1,0A -,()3,0B ,与y 轴交于点C .(1)求该二次函数解析式;(2)如图1,第一象限内该二次函数图象上有一动点P ,连接BP CP ,,求BCP 面积的最大值;(3)如图2,将该二次函数图象在x 轴上方的部分沿x 轴翻折后,所得新函数图象如图2所示,若直线y x m =+与新函数图象恰好有三个公共点时,则m 的值为______.【答案】(1)223y x x =-++(2)278(3)3m =-或214m =-【解析】【分析】(1)将点()1,0A -,()3,0B ,代入()230y ax bx a =++≠,待定系数法求解析式即可求解;(2)如图所示,过点P 作PD x ⊥轴于点D ,交BC 于点Q ,直线BC 的解析式为:3y x =-+,设()2,23P m m m -++,则(),3Q m m -+,然后根据三角形面积公式得出关于m 的二次函数关系,根据二次函数的性质即可求解;(3)根据轴对称的性质得出在13x -<<时,函数解析式为()214y x =--,即2=23y x x --,结合函数图象,可知①当y x m =+经过点B 时,②当y x m =+与2=23y x x --只有1个交点时,符合题意,据此即可求解.【详解】(1)将点()1,0A -,()3,0B ,代入()230y ax bx a =++≠得,309330a b a b -+=⎧⎨++=⎩解得:12a b =-⎧⎨=⎩∴223y x x =-++(2)解:如图所示,过点P 作PD x ⊥轴于点D ,交BC 于点Q ,由223y x x =-++,当0x =时,3y =,∴()0,3C ,设直线BC 的解析式为:3y kx =+,将点()3,0B ,代入得,033k =+,解得:1k =-,∴直线BC 的解析式为:3y x =-+,设()2,23P m m m -++,则(),3Q m m -+,∴()22239233324PQ m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭∵10-<,∴当32m =时,PQ 取得最大值,最大值为94,∵12BCP S PQ QB =⨯ ,∴PQ 取得最大值时,BCP 面积取得最大值,∴BCP 面积的最大值为1192732248PQ OB ⨯=⨯⨯=(3)解:由223y x x =-++与x 轴交于()1,0A -,()3,0B ,()222314y x x x =-++=--+顶点坐标为()1,4将该二次函数图象在x 轴上方的部分沿x 轴翻折后,顶点坐标为()1,4-,开口向上,∴在13x -<<时,函数解析式为()214y x =--,即2=23y x x --,依题意,直线y x m =+与新函数图象恰好有三个公共点时,①当y x m =+经过点B 时,即03=+m ,解得:3m =-,②当y x m =+与2=23y x x --只有1个交点时,∴223x x x m --=+有2个相等实数根即2330x x m ---=,∴()2494130b ac m ∆=-=-⨯⨯--=,解得:214m =-,综上所述,3m =-或214m =-.【点睛】本题考查了二次函数综合运用,待定系数法求解析式,面积问题,轴对称的性质,根据函数图象确定方程的解,熟练掌握是解题的关键.26.如图,在矩形ABCD 中,8cm AB =,6cm BC =,连接AC ,点O 为AC 的中点,点E 为边BC 上的一个动点,连接OE ,作OF OE ⊥,交边AB 于点F .已知点E 从点B 开始,以1cm/s 的速度在线段BC 上移动,设运动时间为()()6s 0t t <<.解答下列问题:(1)当t 为何值时,//OE AB ?(2)连接EF ,设OEF 的面积为()2cm y ,求y 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使:51:384OEF ABCD S S =△矩形?若存在,求出t 的值;若不存在,请说明理由;(4)连接OB ,在运动过程中,是否存在某一时刻t ,使OB 恰好将OEF 分成面积比为1:2的两部分?若存在,直接写出t 的值;若不存在,请说明理由.【答案】(1)3;(2)23975(06)848y t t t =-+<<;(3)2s 或4s ;(4)7575s,s 4117t =【解析】【分析】(1)根据平行线分线段成比例定理列式得方程,求解即可;(2)证明△OFM OEN ∆∽,求得3|3|4FM t =-,分03t <≤和36t <<两种情况,结合EOF ABC OCE OAF BEF S S S S S ∆∆∆∆∆=---求解即可;(3)根据:51:384OEF ABCD S S =△矩形列出方程求解即可;。
2023年辽宁省抚顺市新抚区中考数学三模试卷(含解析)

2023年辽宁省抚顺市新抚区中考数学三模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在实数−2,−4,0,2中,最小的实数是( )A. −2B. −4C. 0D. 22. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B.C. D.3.如图,若AB//CD//EF,∠1=15°,∠2=60°,那么∠BCE=( )A. 120°B. 125°C. 130°D. 135°4.如图为一个台阶的示意图,它的主视图是( )A.B.C.D.5. 下列运算正确的是( )A. a2⋅a4=a6B. (a2)3=a5C. a6÷a2=a3D. 4a3−3a=a26. 一组数据−1,−3,2,4,0,2的众数是( )A. 0B. 1C. 2D. 37. 下列事件为必然事件的是( )A. 小王参加本次数学考试,成绩是500分B. 某射击运动员射靶一次,正中靶心C. 打开电视机,CCTV第一套节目正在播放新闻D. 口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球8. 某商场品牌手机经过5,6月份连续两次降价每部售价由5000元降到3600元.且第一次降价的百分率是第二次的2倍,设第二次降价的百分率为x,根据题意可列方程( )A. 5000(1−x)(1−2x)=3600B. 3600(1−x)(1−2x)=5000C. 5000(1−x)(1−x2)=3600 D. 3600(1+x)(1+2x)=50009.如图,在矩形纸片ABCD中,AB=10,AD=12,点E,F分别在AD,BC上,把纸片按如图所示的方式沿EF折叠,点A,B的对应点分别为A′,B′,连接AA′并延长交边CD于点G,当G为线段CD中点时,线段EF的长为( )A. 656B. 11 C. 12 D. 25210.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC−CD−DA运动,到达点A停止运动,另一动点N同时从点B 出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是( )A. B.C. D.第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)11. 计算:16=______.12. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,将4600000000用科学记数法表示为______ .13. 不等式组{2x−3≤53(x+1)>2的解集是______ .14. 从长度分别为3,5,7,10的四条线段中任选三条作边,能构成三角形的概率为______ .15. 若关于x的一元二次方程2x2−x+m=0有两个相等的实数根,则m的值为.16.如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为______.17. 直线y=−x+4与x轴交于点C,与y轴交于D,与双曲线y=kx交于A,B两点,S四边形B C E F−S△A O F=1,则k=______ .218.如图,正方形ABCD的边长为3,E为BC边上的动点,连接EA,将EA绕点E顺时针旋转90°得到线段EF,连接FD,则FD+2FE的最小值是______ .三、解答题(本大题共8小题,共96.0分。
2024年北京市人大附中朝阳学校中考数学三模试卷(含答案)

2024年北京市人大附中朝阳学校中考数学三模试卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下面几何体中,是三棱锥的是( )A. B. C. D.2.2024年5月3日,我国嫦娥六号顺利发射飞向太空,随后历时五天抵达第四阶段,进行环月飞行任务.6月2号早上嫦娥六号在月球背面的南极−艾特肯盆地成功落月,月球距离地球约384000000千米,将384000000用科学记数法表示为( )A. 38.4×107B. 3.84×108C. 3.84×109D. 0.384×1093.如图,点O在直线AB上,OC⊥OD.若∠AOC=120°,则∠BOD的大小为 ( )A. 30°B. 40°C. 50°D. 60°4.已知x−1>0,则下列结论正确的是( )A. −x<−1<1<xB. x<−1<−x<1C. −x<−1<x<1D. −1<−x<1<x5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次摸球摸到一个红球一个绿球的概率是( )A. 34B. 13C. 12D. 146.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A. −4B. −14C. 14D. 47.已知432=1849,442=1936,452=2025,462=2116.若n为整数,且n<2024<n+1,则n的值为( )A. 43B. 44C. 45D. 468.下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共8小题,每小题2分,共16分。
2023年山东省潍坊市中考数学三模试卷及参考答案

2023年山东省潍坊市中考数学三模试卷一、单项选择题(本题共6小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,多选、不选、错选均记0分.)1.下列计算结果正确的是()A.7a﹣5a=2B.9a÷3a=3a C.a5÷a3=a2D.(3a2)3=9a62.星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度1纳秒=1×10﹣9秒,那么20纳秒用科学记数法表示为()A.2×10﹣8秒B.2×10﹣9秒C.20×10﹣9秒D.2×10﹣10秒3.如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变4.把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为()A.15°B.20°C.25°D.30°5.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当R<0.25时,I<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.256.某函数的图象如图所示,当0≤x≤a时,在该函数图象上可找到n个不同的点(x1,y1),(x2,y2),…,(x n,y n),使得,则n的取值不可能为()A.3B.4C.5D.6二、多项选择题(本题共4小题,每小题4分,共16分,在每小题给出的选项中,有多项符合题目要求,全部选对的得4分,有选错的得0分,部分选对的得2分.)7.实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A.2B.﹣1C.﹣2D.18.疾控中心每学期都对我校学生进行健康体检,小亮将领航班所有学生测量体温的结果制成如下统计图表.下列说法不正确的是()体温℃36.136.236.336.436.536.6人数/人48810m2A.这个班有40名学生B.m=8C.这些体温的众数是8D.这些体温的中位数是36.359.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,则下列结论正确的是()A.abc>0B.a+b+c>0C.3b<2c D.b>a+c(多选)10.如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD 上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E,G,连接GF,下列结论正确的是()A.∠AGD=112.5°B.C.S△AGD=2S△OGD D.四边形AEFG是菱形三、填空题(本题共4小题,共16分,只要求填写最后结果,每小题填对得4分)11.分解因式:a3﹣2a2b+ab2=.12.疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是.13.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为.14.如图,在△ABC中,AB=AC=10,BC=6,延长AB至D,使得BD=AB,点P为动点,且PB=PC,连接PD,则PD的最小值为.四、解答题(本题共8小题,共94分,解答应写出文字说明、证明过程或演算步骤)15.(1)计算:;(2)解不等式组:16.如图,小明练习册上的一个等腰三角形被墨迹污染了,只有它的底边AB和∠B还保留着.(1)小明要在练习册上画出原来的等腰△ABC,用到的基本作图可以是(填写正确答案的序号);①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的平分线;④作已知线段的垂直平分线;⑤过一点作已知直线的垂线;(2)CE为△ABC边AB上的中线,若∠B的一个外角为110°,求∠BCD的度数.17.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数,并补全条形统计图.(2)若本市人口300万人,估算该市对市创卫工作表示满意和非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自同区的概率.18.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM =30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE∥BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:取1.41,取1.73,sin22°取0.37,cos22°取0.93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)19.在初中阶段的函数学习中,我们经历了“确定函数的表达式,利用函数图象研究其性质,运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题:在y=a|x﹣1|+b中,如表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…7m31n13…(1)m=,n=;(2)平面直角坐标系中,画出函数的图象;(3)根据图象,判断下列关于该函数性质的说法是否正确,正确的打√,错误的打×.①该函数图象是轴对称图形,对称轴为直线x=1.(判断对错)②当x<1时,y随x的增大而增大,当x≥1时,y随x的增大而减小.(判断对错)③该函数在自变量的取值范围内有最小值,当x=1时有最小值﹣1.(判断对错)(4)若方程组有且只有一个公共解,则t的取值范围是.20.振华公司对其办公楼大厅一块6×6米的正方形ABCD墙面进行了如图所示的设计装修(四周阴影部分是八个全等的矩形,用材料甲装修,中心区域是正方形EFGH,用材料乙装修).两种材料的成本如下:材料甲乙单价(元/米2)800600设矩形的较短边AM的长为x米,装修材料的总费用为y元.(1)求y与x之间的关系式;(2)当中心区域的边长EF不小于2米时,预备材料的购买资金28000元够用吗?请说明理由.21.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC 的视角为;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x=﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.22.如图1,将一个等腰直角三角尺ABC的顶点C放置在直线l上,∠ABC=90°,AB=BC,过点A作AD⊥l于点D,过点B作BE⊥l于点E.观察发现:(1)如图1,当A,B两点均在直线l的上方时①猜测线段AD,CE与BE的数量关系并说理由;②直接写出线段DC,AD与BE的数量关系;操作证明:(2)将等腰直角三角尺ABC绕着点C逆时针旋转至图2位置时,线段DC,AD与BE又有怎样的数量关系,请写出你的猜想,并写出证明过程;拓广探索:(3)将等腰直角三角尺ABC绕着点C继续旋转至图3位置时,AD与BC交于点H,若CD=3,AD=9,请直接写出DH的长度.参考答案一、单项选择题(本题共6小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,多选、不选、错选均记0分.)1.下列计算结果正确的是()A.7a﹣5a=2B.9a÷3a=3a C.a5÷a3=a2D.(3a2)3=9a6【分析】根据合并同类项的方法可以判断A;根据单项式的除法可以判断B;根据同底数幂的除法可以判断C;根据积的乘方可以判断D.解:7a﹣5a=2a,故选项A错误,不符合题意;9a÷3a=3,故选项B错误,不符合题意;a5÷a3=a2,故选项C正确,符合题意;(3a2)3=27a6,故选项D错误,不符合题意;故选:C.【点评】本题考查整式的混合运算,熟练掌握运算法则是解答本题的关键.2.星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度1纳秒=1×10﹣9秒,那么20纳秒用科学记数法表示为()A.2×10﹣8秒B.2×10﹣9秒C.20×10﹣9秒D.2×10﹣10秒【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:用科学记数法表示20纳秒为20×1×10﹣9秒=2×10﹣8秒.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变【分析】分别得到将正方体变化前后的三视图,依此即可作出判断.解:正方体移走前的主视图正方形的个数为1,2,1;正方体移走后的主视图正方形的个数为1,2,1;不发生改变.正方体移走前的左视图正方形的个数为2,1,1;正方体移走后的左视图正方形的个数为2,1;发生改变.正方体移走前的俯视图正方形的个数为3,1,1;正方体移走后的俯视图正方形的个数为:2,1,2;发生改变.故选:B.【点评】此题主要考查了三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.4.把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为()A.15°B.20°C.25°D.30°【分析】利用平行线的性质求出∠3可得结论.解:如图,∵a∥b,∴∠1=∠3=25°,∵∠2+∠3=45°,∴∠2=45°﹣∠3=20°,故选:B.【点评】本题考查平行线的性质,等腰直角三角形的性质等知识,解题的关键是利用平行线的性质求出∠3.5.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当R<0.25时,I<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.25【分析】由待定系数法求出反比例函数的解析式,根据反比例函数的性质逐项分析即可得到结论.解:设I与R的函数关系式是I=(R>0),∵该图象经过点P(880,0.25),∴=0.25,∴U=220,∴I与R的函数关系式是I=(R>0),故选项B不符合题意;当R=0.25时,I=880,当R=1000时,I=0.22,∵反比例函数I=(R>0)I随R的增大而减小,当R<0.25时,I>880,当R>1000时,I<0.22,故选项A,C不符合题意;∵R=0.25时,I=880,当R=1000时,I=0.22,∴当880<R<1000时,I的取值范围是0.22<I<0.25,故D符合题意;故选:D.【点评】本题主要考查了反比例函数的应用,由待定系数法求出反比例函数的解析式是解决问题的关键.6.某函数的图象如图所示,当0≤x≤a时,在该函数图象上可找到n个不同的点(x1,y1),(x2,y2),…,(x n,y n),使得,则n的取值不可能为()A.3B.4C.5D.6【分析】设=k,则在该函数图象上n个不同的点(x1,y1),(x2,y2),…,(x n,y n)也都在函数y=kx的图象上,根据正比例函数y=kx的图象与如图所示的图象的交点的个数即可得出答案.解:设=k,则在该函数图象上n个不同的点(x1,y1),(x2,y2),…,(x n,y n)也都在函数y=kx的图象上,即:正比例函数y=kx的图象与如图所示的图象的交点,由图象可知,正比例函数y=kx的图象与如图所示的图象的交点可能有1个或2个或3个或4个或5个.故选:D.【点评】本题主要考查了函数图象,数形结合是解题的关键.二、多项选择题(本题共4小题,每小题4分,共16分,在每小题给出的选项中,有多项符合题目要求,全部选对的得4分,有选错的得0分,部分选对的得2分.)7.实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A.2B.﹣1C.﹣2D.1【分析】先根据数轴得出a的取值范围,结合题意得出b的取值范围,从答案中筛选即可.解:﹣a<b<a,∴|b|<a,又∵1<a<2,所以b可以是﹣1.故选:B.【点评】本题考查实数与数轴,需要充分运用数形结合的思想方法.8.疾控中心每学期都对我校学生进行健康体检,小亮将领航班所有学生测量体温的结果制成如下统计图表.下列说法不正确的是()体温℃36.136.236.336.436.536.6人数/人48810m2A.这个班有40名学生B.m=8C.这些体温的众数是8D.这些体温的中位数是36.35【分析】根据扇形统计图可知:36.1℃所在扇形圆心角为36°,由此可得36.1℃在总体中所占的百分比;再结合36.1℃的频数,就可求出学生总数,进而可求出x的值;然后根据众数和中位数的定义就可解决问题.解:由扇形统计图可知,体温为36.1°C的学生人数所占百分比为=10%,故这个班有学生=40(名),所以m=40﹣4﹣8﹣8﹣10﹣2=8,故选项A、B不符合题意;这些体温的众数是36.4,故选项C符合题意;这些体温的中位数是=36.35,故选项D不符合题意.故选:C.【点评】本题考查表格与扇形统计图、众数及中位数的定义,解题的关键是利用圆心角度数与项目所占百分比的关系求总人数.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,则下列结论正确的是()A.abc>0B.a+b+c>0C.3b<2c D.b>a+c【分析】根据二次函数的图象与系数的关系求解.解:A、由图象得:﹣=1,a>0,c<0,∴b=﹣2a<0,∴abc>0,故A正确,符合题意;B、由图象可知,当x=1时,y<0,∴a+b+c<0,故B错误,不合题意;C、∵x=﹣1时,y=0,∴a﹣b+c=0,∵a=﹣,∴c=b,即3b=2c,故C错误,不合题意;D、∵x=﹣1时,y=0,∴a﹣b+c=0,即b=a+c,故D错误,不合题意;故选:A.【点评】本题考查了二次函数的性质,掌握二次函数的图象与系数的关系是解题的关键.(多选)10.如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD 上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E,G,连接GF,下列结论正确的是()A.∠AGD=112.5°B.C.S△AGD=2S△OGD D.四边形AEFG是菱形【分析】根据矩形的性质可得∠OAD=∠ODA=45°,由折叠的性质得到∠ADE=∠FDE==22.5°,再利用三角形内角和定理即可求出∠AGD,以此判断A选项;由折叠的性质得到∠DFE=∠DAE=90°,AE=EF,AD=DF,易得△BEF为等腰直角三角形,则BF=EF=AE,设AD=AB=a,则DF=a,BD=a,AE=EF=BF=,在Rt△ADE中,利用正切函数的定义判断B选项;由折叠的性质可得,AE=EF,AG=FG,∠AEG=∠FEG,由∠DFE=∠AOB=90°可知EF∥AO,得到∠FEG=∠AGE,进而得到∠AEG=∠AGE,于是得到AE=AG=FG=EF,以此可判定四边形AEFG为菱形,即可判断D选项;由GF∥AB得到∠GFO=∠ABO=45°,则AG=FG=OG,再根据三角形的面积公式即可判断C选项.解:∵四边形ABCD为正方形,∴AB=BC=CD=AD,OA=DC=OB=OD,AC⊥BD,∴∠OAD=∠ODA=45°,根据折叠的性质可得,∠ADE=∠FDE==22.5°,∴∠AGD=180°﹣∠DAG﹣∠=180°﹣45°﹣22.5°=112.5°,故A选项正确,符合题意;根据折叠的性质可得,∠DFE=∠DAE=90°,AE=EF,AD=DF,∴∠BFE=90°,∵OA=OB,AO⊥OB,∴∠ABO=45°,∴△BEF为等腰直角三角形,∴BF=EF=AE,设AD=AB=a,则DF=a,∴BD=a,∴BF=BD﹣DF=,∴AE=EF=BF=,在Rt△ADE中,tan∠AED===,故B选项正确,符合题意;由折叠的性质可得,AE=EF,AG=FG,∠AEG=∠FEG,∵∠DFE=∠AOB=90°,∴EF∥AO,∴∠FEG=∠AGE,∴∠AEG=∠AGE,∴AE=AG=FG=EF,∴四边形AEFG为菱形,故D选项正确,符合题意;∵四边形AEFG为菱形,∴GF∥AB,∴∠GFO=∠ABO=45°,∴FG=OG,∴AG=FG=OG,==OG•OD,S△OGD=,∴S△AGD∴,故C选项错误,不符合题意.故选:ABD.【点评】本题主要考查正方形的性质、折叠的性质、三角形内角和定理、解直角三角形、等腰三角形的判定与性质、菱形的判定与性质,解题关键是熟知折叠的性质.折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、填空题(本题共4小题,共16分,只要求填写最后结果,每小题填对得4分)11.分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.12.疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是30%.【分析】设二、三两个月新注册用户每月平均增长率是x,根据该买菜APP今年一月份及三月份新注册用户人数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.解:设二、三两个月新注册用户每月平均增长率是x,依题意,得:200(1+x)2=338,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).故答案为:30%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为10.【分析】连接OA,OB,根据圆周角定理得到∠AOB=2∠ADB=36°,于是得到结论.解:连接OA,OB,∵A、B、C、D为一个正多边形的顶点,O为正多边形的中心,∴点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数==10,故答案为:10.【点评】本题考查了正多边形与圆,圆周角定理,正确的理解题意是解题的关键.14.如图,在△ABC中,AB=AC=10,BC=6,延长AB至D,使得BD=AB,点P为动点,且PB=PC,连接PD,则PD的最小值为.【分析】根据已知易得直线AP是BC的垂直平分线,从而可得BE=BC=3,BC⊥AP,进而可得当DP⊥AP 时,DP最短,然后根据垂直定义可得∠APD=∠AEB=90°,再根据已知可得AD=15,最后证明A字模型相似三角形△AEB∽△APD,从而利用相似三角形的性质进行计算,即可解答.解:如图:∵AB=AC=10,PB=PC,∴直线AP是BC的垂直平分线,∴BE=BC=3,BC⊥AP,∴当DP⊥AP时,DP最短,∴∠APD=∠AEB=90°,∵BD=AB,∴AD=AB=15,∵∠EAB=∠PAD,∴△AEB∽△APD,∴=,∴=,∴DP=,∴PD的最小值为,故答案为:.【点评】本题考查了相似三角形的判定与性质,垂线段最短,熟练掌握相似三角形的判定与性质是解题的关键.四、解答题(本题共8小题,共94分,解答应写出文字说明、证明过程或演算步骤)15.(1)计算:;(2)解不等式组:【分析】(1)根据分式混合运算的法则进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集即可.解:(1)原式=•=•=a﹣2;(2),由①得,x≤1,由②得,x<4,故不等式的解集为x≤1.【点评】本题考查的的是分式的混合运算及解一元一次不等式组,熟知运算法则是解题的关键.16.如图,小明练习册上的一个等腰三角形被墨迹污染了,只有它的底边AB和∠B还保留着.(1)小明要在练习册上画出原来的等腰△ABC,用到的基本作图可以是④(填写正确答案的序号);①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的平分线;④作已知线段的垂直平分线;⑤过一点作已知直线的垂线;(2)CE为△ABC边AB上的中线,若∠B的一个外角为110°,求∠BCD的度数.【分析】(1)作线段AB的垂直平分线MN,C垂足为D,∠B的另一边交直线MN于点C,连接AC.△ABC 即为所求作.(2)利用钝角三角形的性质求解即可.解:(1)如图,△ABC即为所求作.作线段AB的垂直平分线MN,C垂足为D,∠B的另一边交直线MN于点C,连接AC.△ABC即为所求作,故答案为:④;(2)∵∠B的一个外角为110°,∴∠B=70°,∵CA=CB,∴∠A=∠B=70°,∴∠ACB=180°﹣2×70°=40°,∵CA=CB,CD⊥AB,∴∠BCD=∠ACB=20°.【点评】本题考查作图﹣应用与设计作图,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数,并补全条形统计图.(2)若本市人口300万人,估算该市对市创卫工作表示满意和非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自同区的概率.【分析】(1)由非常满意的有20人,占40%,即可求得此次调查中接受调查的人数,用总人数减去其他几项的人数即为满意的人数,再补全统计图即可.(2)根据(1)求得的非常满意的人数和满意人数,用300×即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自同区的情况,再利用概率公式即可求得答案.解:(1)∵非常满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人),∴此次调查中结果为满意的人数为:50﹣4﹣8﹣20=18(人),补全统计图如下:(2)该市对市创卫工作表示满意的人数==108(万),该市对市创卫工作表示非常满意的人数=300×=120(万),答:估算该市对市创卫工作表示满意和非常满意的人数分别为108万,120万;(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自同区的有4种情况,∴选择的市民均来自甲区的概率为:=.【点评】本题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM =30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE∥BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:取1.41,取1.73,sin22°取0.37,cos22°取0.93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)【分析】(1)根据题意和锐角三角函数,可以求得CF和BF的值,然后即可计算出BC的值;(2)根据(1)中的结果和锐角三角函数,可以求得水池的深.解:(1)作AF⊥BC,交CB的延长线于点F,则AF∥MN∥M′N′,∴∠ABM=∠BAF,∠ACM′=∠CAF,∵∠ABM=30°,∠ACM′=60°,∴∠BAF=30°,∠CAF=60°,∵AF=6米,∴BF=AF•tan30°=6×=2(米),CF=AF•tan60°=6×=6(米),∴BC=CF﹣BF=6﹣2=4(米),即BC的长为4米;(2)设水池的深为x米,则BN=CN′=x米,由题意可知:∠DBN=22°,∠ECN′=40.5°.DE=8.72米,∴DN=BN•tan22°≈0.4x(米),N′E=CN′•tan40.5°≈0.85x(米),∵DN+DE=BC+N′E,∴0.4x+8.72=4+0.85x,解得x≈4,即水池的深约为4米.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.19.在初中阶段的函数学习中,我们经历了“确定函数的表达式,利用函数图象研究其性质,运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题:在y=a|x﹣1|+b中,如表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…7m31n13…(1)m=5,n=﹣1;(2)平面直角坐标系中,画出函数的图象;(3)根据图象,判断下列关于该函数性质的说法是否正确,正确的打√,错误的打×.①该函数图象是轴对称图形,对称轴为直线x=1.√(判断对错)②当x<1时,y随x的增大而增大,当x≥1时,y随x的增大而减小.×(判断对错)③该函数在自变量的取值范围内有最小值,当x=1时有最小值﹣1.√(判断对错)(4)若方程组有且只有一个公共解,则t的取值范围是t>﹣3.【分析】(1)观察表格,函数图象经过点(﹣1,3),(0,1),将这两点的坐标分别代入y=a|x|+b,利用待定系数法即可求出这个函数的表达式;把x=﹣2代入即可求出m,将x=1代入即可求出n;(2)根据表格数据,描点连线即可画出该函数的图象;(3)根据图象判断即可;(4)根据图象得出当t>﹣3时,直线y=2x+t与函数y=2|x﹣1|﹣1的图象只有一个交点,即可得出方程组有且只有一个公共解,则t的取值范围是t>﹣3.解:(1)∵函数y=a|x﹣1|+b的图象经过点(﹣1,3),(0,1),∴,解得,∴y=2|x﹣1|﹣1,∴当x=﹣2时,m=2×|﹣2﹣1|﹣1=5,当x=1时,n=2×|1﹣1|﹣1=﹣1.故答案为:5,﹣1;(2)函数y=2|x﹣1|﹣1的图象如图所示:(3)根据图象可知,①该函数图象是轴对称图形,对称轴为直线x=1.正确;②当x<1时,y随x的增大而增大,当x≥1时,y随x的增大而减小.错误;③该函数在自变量的取值范围内有最小值,当x=1时有最小值﹣1.正确;故答案为:√;×;√;(4)把(1,﹣1)代入y=2x+t得,t=﹣3,∴当t>﹣3时,直线y=2x+t与函数y=2|x﹣1|﹣1的图象只有一个交点,∴方程组有且只有一个公共解,则t的取值范围是t>﹣3.故答案为:t>﹣3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象与性质,综合性较强,难度适中.画出函数的图象利用数形结合是解题的关键.20.振华公司对其办公楼大厅一块6×6米的正方形ABCD墙面进行了如图所示的设计装修(四周阴影部分是八个全等的矩形,用材料甲装修,中心区域是正方形EFGH,用材料乙装修).两种材料的成本如下:材料甲乙单价(元/米2)800600。
2023年山东省枣庄市滕州市中考三模数学试题(含答案)

2023年枣庄市初中学业水平考试模拟试题(三)数学注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案,填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试题和答题卡一并交回.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列各数中,是负数的是( )A.B .C .D.2.我国古代数学家祖冲之推算出的近似值为,它与的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )A .B .C .D .3.下面四幅图是我国一些博物馆的标志,其中既是轴对称图形又是中心对称图形的是( )A .山东博物馆B .西藏博物馆C .温州博物馆D .湖北博物馆4.已知经过闭合电路的电流(单位:)与电路的电阻(单位:)是反比例函数关系.根据下表判断和的大小关系为()5...a .........b (120)30405060708090100A .a >bB .a ≥bC .a <bD .a ≤b5.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()2-2(0(1)-23-π355113π7310-⨯60.310-⨯6310-⨯7310⨯I A R Ωa b /I A /R ΩA.5分B .4分C .3分D .45%6.如图、在中,,点D 在AB 的延长线上,连接CD ,若,,则的值为( )A .1B .2C .D .7.如图,为正方形对角线的中点,为等边三角形.若,则的长度为()A B .C .D8.某款“不倒翁”(图1)的主视图是图分别与所在圆相切于点.若该圆半径是,,则的长是( )ABC △90ACB ∠=︒2AB BD =2tan 3BCD ∠=AC BC1232O ABCD AC ACE △2AB =OE 2,,PA PB AMB ,A B 9cm 40P ∠=︒ AMBA .B.C .D .9.如图,在平面直角坐标系中,边长为2的正六边形的中心与原点重合,轴,交轴于点.将绕点顺时针旋转,每次旋转,则第2022次旋转结束时,点的坐标为()A .B .C .D .10.如图,抛物线的对称轴是直线,并与轴交于两点,若,则下列结论中:①;②;③;④若为任意实数,则,正确的个数是()A .1B .2C .3D.4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共6小题,满分18分,请将答案填在答题卡的相应位11cmπ11cm 2π7cmπ7cm2πABCDEF O AB x ∥y P OAP △O 90︒A )1-(1,-()1-(()20yax bx c a =++≠2x =-x ,A B 5OA OB =0abc >22()0a c b +-=940a c +<m 224am bm b a ++≥置.11.分解因式:______.12.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是______.13.如图,在中,,通过尺规作图得到的直线分别交于,连接.若,则______.14.如图,是的切线,为切点,与交于点,以点为圆心、以的长为半径作,分别交于点.若,则图中阴影部分的面积为______.15.在水光潋滟的墨子湖畔,苳庄市首条湖底隧道建设格外受人关注.如图,沿方向修建隧道箱体,为加快施工进度,在直线上湖的另一边的处同时施工.取,,,则两点的距离是______m .16.如图,在中,为的中点,点在上,且,将绕点在平面内旋转,点的对应点为点,连接.当时,的长为______.39x y xy -=Rt ABC △90ACB ∠=︒MN ,AB AC ,D E CD 113CE AE ==CD =AB O B OA O C A OCEF,AB AC ,E F 2,4OC AB ==AB AB D 150ABC ∠=︒1600m BC =105BCD ∠=︒,C D Rt ABC △90,ACB AC BC ∠==︒=D AB P AC 1CP =CP C P Q ,AQ DQ 90ADQ ∠=︒AQ三、解答题:本大题共8小题,满分72分.解答时,要写出必要的文字说明、证明过程或演算步骤.17.(本题满分6分)已知方程组的解满足,求的取值范围.18.(本题满分6分)先化简,再求代数式的值,其中.19.(本题满分10分)在“双减”背景下,某区教育部门想了解该区A ,B 两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:【收集数据】A 学校50名九年级学生中,课后书面作业时长在组的具体数据如下:74,72,72,73,74,75,75,75,75,75,75,76,76,76,77,77,78,80.【整理数据】不完整的两所学校的频数分布表如下,不完整的A 学校频数分布直方图如图所示:组别A学校515x84B 学校71012174【分析数据】两组数据的平均数、众数、中位数、方差如下表:特征数平均数众数中位数方差A 学校7475y 127.36B 学校748573144.1231x y x y +=⎧⎨-=⎩①②235kx y -<k 21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭2cos451x =︒+70.580.5x ≤<50.560.5x ≤<60.570.5x ≤<70.580.5x ≤<80.590.5x ≤<90.5100.5x ≤<根据以上信息,回答下列问题:(1)本次调查是______调查(选填“抽样”或“全面”);(2)统计表中,______,______;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是______学校(选填“A ”或“B ”);(5)按规定,九年级学生每天课后书面作业时长不得过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有______人.20.(本题满分8分)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的学院路地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?21.(本题满分10分)如图,中,AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.(1)求证:;(2)设,当k 为何值时,四边形DEBF 是矩形?请说明理由.22.(本题满分10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为∠BAD ,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环⊙O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.x =y =ABCD BE DF =ACk BD=(1)求证:.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得.已知铁环⊙O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.23.(本题满分10分)已知反比例函数和一次函数,其中一次函数图象过,两点.(1)求反比例函数的关系式;(2)如图,函数,的图象分别与函数图象交于两点,在轴上是否存在点,使得周长最小?若存在,求出周长的最小值;若不存在,请说明理由.24.(本题满分12分)在平面直角坐标系中,为坐标原点,抛物线与轴交于点.(1)求抛物线的解析式.(2)如图,将抛物线向左平移1个单位长度,记平移后的抛物线顶点为,平移后的抛物线与轴交于两点(点在点的右侧),与轴交于点.判断以90BOC BAD ∠+∠=︒3cos 5BAD ∠=ky x=1y x =-()3,a b 31,3k a b ⎛⎫++ ⎪⎝⎭13y x =3y x =(0)ky x x =>,A B y P ABP △O 2y x c =-+y ()0,4P 2y x c =-+Q x ,A B A B y C三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线与抛物线交于两点(点在点的右侧),当轴上存在一点,能使以三点为顶点的三角形与相似时,请直接写出点的坐标.2023年枣庄市初中学业水平考试模拟试题(三)数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共10小题,每小题3分,共30分)题号12345678910答案DACABBDABC二、填空题:(本大题共6小题,每小题3分,共18分)11. 12.1314. 15.16三、解答题:(本大题共8小题,共72分)17.解:①+②得:,∴,①-②得:,∴,∴方程组的解为,代入得:,∴.18.原式,,B C Q BC 2y x c =-+,M N N M x T ,,B N T ABC △T ()()33xy x x +-124π-24x =2x =22y =1y =21x y =⎧⎨=⎩235kx y -<435k -<2k <21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭当时,原式19.解:(1)抽样.(2)18,74.5.(3)补全频数分布直方图:(4)A .(5)920.解:(1)设原计划每天改造管网米,则实际施工时每天改造管网米,由题意得:,解得:,经检验,是原方程的解,且符合题意.此时,(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加米,由题意得:,解得:.答:以后每天改造管网至少还要增加36米.21.(1)证明:如图,连接DE ,BF ,∵四边形ABCD 是平行四边形,∴,,∵E ,F 分别为AO ,OC 的中点,∴,,2131(1)2x x x x --+-=⋅-2112x =⋅-11x =-2cos451211x =+=+=+︒==x ()120%x +()3600360010120%x x-=+60x =60x =()60120%72⨯+=m ()()40207236007220m -+≥-⨯36m ≥BO OD =AO OC =12EO OA =12OF OC =∴,∵,,∴四边形BFDE 是平行四边形,∴;(2)解:当时,四边形DEBF 是矩形;理由如下:当时,四边形DEBF 是矩形,∴当时,四边形DEBF 是矩形,∵,∴,∴当时,四边形DEBF 是矩形.22.(1)证明:如图1,过点B 作,分别交AD 于点E ,交OC 于点F .∵CD 与⊙O 相切于点C ,∴.∵AD ⊥CD ,∴.∵,∴,∴,,∵AB 为⊙O 的切线,∴.∴,∴,∴;(2)解:如图1,在中,∵,,∴.由(1)知,,∴,在中,∵,∴,∴.∵,∴.∵,∴四边形CDEF 为矩形,∴,∴.23.解:(1)把代人中可得:EO FO =BO OD =EO FO =BE DF =2k =BD EF =OD OE =AE OE =2AC BD =2k =EF CD ∥90OCD ∠=︒90ADC ∠=︒EF CD ∥90OFB AEB ∠=∠=︒90BOC OBF∠+∠=︒90ABE BAD ∠+∠=︒90OBA ∠=︒90OBF ABE ∠+∠=︒OBF BAD ∠=∠90BOC BAD ∠+∠=︒Rt ABE △75AB =3cos 5BAD ∠=45AE =OBFBAD ∠=∠3cos 5OBF ∠=Rt OBF △25OB =15BF =20OF =25OC =5CF=90OCD ADC CFE ∠=∠=∠=︒5DE CF ==50cm AD AE ED =+=()3,,31,3k a b a b ⎛⎫++⎪⎝⎭1y x =-,解得:,∴反比例函数的关系式为:;(2)存在.作点关于轴的对称点,连接交轴于点,连接,此时的最小,即周长最小,由题意得:,解得:或,∴,由题意得:,解得:或,∴,∴,∵点与点关于轴对称,∴,∴∴的最小值为∴周长最小值周长的最小值为.24.解:(1)∵抛物线与轴交于点,∴,∴抛物线的解析式为;(2)是直角三角形.理由如下:将抛物线向左平移1个单位长度,得新抛物线,∴平移后的抛物线顶点为,令,得,∴,令,得,解得:,∴,如图1,连接,∵,∴轴,,313113b a k b a =-⎧⎪⎨+=+-⎪⎩3k =3y x=B y B 'AB 'y P BP AP BP +ABP △33y x y x⎧=⎪⎨⎪=⎩13x y =⎧⎨=⎩13x y =-⎧⎨=-⎩()1,3B 313y x y x ⎧=⎪⎪⎨⎪=⎪⎩31x y =⎧⎨=⎩31x y =-⎧⎨=-⎩()3,1A AB =B B 'y ()1,3,B BP B P '-='AB '=AP BP AP B P AB '='+=+=AP BP +ABP △=+ABP △+2y x c =-+y ()0,4P 4c =24y x =-+BCQ △24y x =-+2(1)4y x =-++()1,4Q -0x =143y =-+=()0,3C 0y =2(1)40x -++=121,3x x ==-()()3,0,1,0B A -,,BQ CQ PQ ()()0,4,1,4P Q -PQ y ⊥1PQ =∵,∴,∴是等腰直角三角形,∴,∵,∴是等腰直角三角形,∴,∴,∴是直角三角形.(3)点的坐标或.431CP =-=,90PQ CP CPQ =∠=︒CPQ △45PCQ ∠=︒3,90OB OC BOC ==∠=︒BOC △45BCO ∠=︒180454590BCQ ︒︒=-︒∠-=︒BCQ △T T ⎫⎪⎭⎫⎪⎭。
2023年甘肃省武威市中考三模数学试题

2023年甘肃省武威市中考三模数学试题
学校:___________姓名:___________班级:___________考号:___________
()
AB
40ππ3200π
A.6 B.10 C.12 D.20
12
三、解答题
3
“民乐风韵”、“武术雄姿”、“围旗圣手”四个社团(依次记为A 、B 、C 、D ).小华和小莉两名同学报名参加社团,一人只能参加一个社团.
(1)小华参加“诗词雅颂”社团的概率是___________;
(2)请用列表法或画树状图的方法,求小华和小莉两名同学参加同一社团的概率. 24.“春节”是我国最重要的传统佳节,民间历来有除夕夜吃饺子的习俗.我市某食品厂为了解市民对今年销售的四种口味的饺子(A 什锦馅饺子,B 素菜馅饺子,C 羊肉馅饺子,D 牛肉馅饺子)的喜爱情况,在节后对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有_________人;
(2)将两幅不完整的统计图补充完整;
(3)该居民区共有常住居民约60000人,那么估计有多少人喜欢羊肉馅饺子? 25.如图,在直角坐标系xOy 中,反比例函数图象与直线2y x =相交于点A ,且点A 的横坐标为2.点B 在该反比例函数的图象上,且点B 的纵坐标为1,连接AB .
(1)求反比例函数的解析式;
(2)求OAB ∠的度数.
26.如图,O e 是ABC V 的外接圆,AB 是O e 的直径,过O 作OD AC ⊥于点E ,延长OE 至点D ,连结CD ,使D A ∠=∠.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1BDA C图1. . C. D.中考数学模拟试题(三模)一、选择题1.下列判断中,你认为正确的是……………………………………………………【 】A .0的绝对值是0B .31是无理数 C .4的平方根是2 D .1的倒数是1-2.方程230x -=的根是………………………………………………………………【 】A.3x =B.123,3x x ==-C.x =D.12x x ==3.下列说法中正确的是……………………………………………【 】 A .“打开电视,正在播放《今日说法》”是必然事件B .要调查人们对“低碳生活”的了解程度,宜采用抽查方式C .数据1,1,1,2,2,3的众数是3D .一组数据的波动越小,方差越大4.如图1,AB ∥CD ,∠A = 40°,∠D = 45°,则∠1的度数为【 】A .5°B . 40°C .45°D . 85°5.如图2所示几何体的俯视图是…………………………………【 】6.已知a -b =1,则代数式2b -2a -3的值是…………………………………………【 】A .-1图2正面图B .1C .-5D .4 7. 关于x 的方程32mx x -=的解为正实数,则m 的取值范围是……………………【 】A .m ≥2B .m >2C .m ≤2D .m<28. 如图3,AB 是⊙O 的直径,C 是⊙O 上的一点,若AB =10,OD ⊥BC 于点D ,则OD A .3 B .4 D .69. 点A (x 1,y 1)、B (x 2,y 2) 在函数12y x =y 1>y 2 ,则 x 1、x 2的大小关系为……………………【 】A .大于B .等于C .小于D .不确定10.河北省的黄骅冬枣是我省的特产,冬季加工后出售,单价可提高20%,但重量会减少10%.现有未加工的冬枣30千克,加工后可以比不加工多卖12元,设冬枣加工前每千克卖x 元,加工后每千克卖y 元,根据题意,x 和y 满足的方程组是…………【 】 A .(120)30(110)3012y x y x =+⎧⎨--=⎩%% B .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%C .(120)30(110)3012y x y x =-⎧⎨--=⎩%% D .(120)30(110)3012y xy x =-⎧⎨+-=⎩%%11.如图4,在△ABC 中,AB =AC ,BC =10,AD 是底边上的高,AD =12,E 为AC 中点,则DE 的长为………………………………………………………………【 】 A .6.5 B .6 C .5ACDNP图6A .B .C .D .D .412.如图5,点P 是菱形ABCD 的对角线AC 上的一个动点,过 点P 作垂直于AC 的直线交菱形ABCD 的边于M 、N 两点. 设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是…………………………………【 】 卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上) 13.分解因式:21a -= .14.已知三角形的两边长为2,5,则第三边的长度可以是 (写出一个即可).15.将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 .16.如图6,已知AB 是⊙O 的一条直径,延长AB 至使得AC =3BC ,CD 与⊙O 相切,切点为D .若线段BC 的长度等于 .17.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒) 之间的函数关系式是s =60t -1.5t 2.测得飞机着陆后滑行的距 离为600米,则飞机着陆后滑行______秒才能停下来.三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(本题满分8分)求值:2112x xxx x⎛⎫++÷-⎪⎝⎭,其中1x=.20.(本小题满分8分)如图8,已知反比例函数y=mx(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=17(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.零花钱用途学习资料零食文具它图10-1 图10-2 21.(本小题满分8分)小亮同学去石家庄展览馆看展览,如图9,该展览馆有2个验票口A 、B (可进出),另外还有2个出口C 、D (不许进).(1)小亮从进入到离开共有多少种可能的进出方式?(要求用列表或树状图) (2)小亮不从同一个验票口进出的概率是多少?22.(本小题满分8分)石家庄28中七(8)班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况、八年级300名同学零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图10-1、频数分布直方图10-2、表格来描述整理得到的数据.九年级同学完成家庭作业时间情况统计表展览大厅出口C出口验票口A验票口B图9根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?求出扇形统计图中“冰红茶”所在扇形圆心角的度数;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时(结果保留一位小数)?23.(本小题满分9分)如图11,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为3,BE=1,求cos A图11如图12-1,点C 是线段AB 上一动点,分别以线段AC 、CB 为边,在线段AB 的同侧作正方形ACDE 和等腰直角三角形BCF ,∠BCF =90°,连接AF 、BD .(1)猜想线段AF 与线段BD 的数量关系和位置关系(不用证明).(2)当点C 在线段AB 上方时,其它条件不变,如图12-2,(1)中的结论是否成立?说明你的理由.(3)在图12-1的条件下,探究:当点C 在线段AB 上运动到什么位置时,直线AF 垂直平分线段BD ?ABCDFE 图12-1ABCDFE图12-2如图13,已知抛物线y=x2-2mx+4m-8的顶点为A.(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围;(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在抛物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由;(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数Array..m的值.图13B C图14-1图14-2如图14-1,梯形ABCD中,∠C=90°.动点E、F同时从点B 出发,点E沿折线BA-AD-DC运动到点C时停止运动,点F沿BC 运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发t s 时,△EBF的面积为y cm2.已知y与t的函数图象如图14-2所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:(1)梯形上底的长AD=__________cm,梯形ABCD的面积=__________cm2;(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);(3)当t为何值时,△EBF与梯形ABCD的面积之比为1:3.三模答案一、选择题(1—6小题,每小题2分;7—12小题,每小题3分,共30分)13.(1)(1)a a -+; 14.大于3小于7的任意一个数均可; 15.45; 16; 17.20; 18.左起第45列,上起第14行. 三、解答题(本大题共8个小题;共72分)19.解:原式=221212x x x x x+--÷------------------------------2分 =12(1)(1)x xx x x ++------------------------------------------4分=21x -. ----------------------------------------------6分开始进出 B AC D A BB C DA 结果 A A AAB B BB将1x =代入上式得原式2==.-----------8分20.解:(1)∵一次函数y =ax +b 的图象经过A (-4,0)和B (0,2)∴⎩⎪⎨⎪⎧-4a +b =0b =2 ∴⎩⎪⎨⎪⎧a = 12 b =2, ∴一次函数的关系式为:y =12x +2 .--------------------------2分 (2)∵PO = 17,AO =4,∴PA =1,∴点P 的坐标为(-4,-1),---------------------------------4分 把(-4,-1)代入y = mx ,解得m =4,∴反比例函数的关系式为y = 4x . ------------------------------5分 (3)∵PO = 17,AO =4,∴PA =1,点P (-4,-1)关于原点的对称点为Q (4,1),-----------------7分 满足y =4x ,∴点Q 在该反比例函数的图象上. ------------------8分21.解法一:用树状图分析如下:-------------------4分解法二:用列表法分析如下:∴小张不从同一个验票口进出的概率是:P (小张不从同一个验票口进出)= 6 8 = 34.-------8分22.(1)400(125%25%10%)160⨯---=,360(125%25%10%)144︒︒⨯---=,∴七年级400名同学中最喜欢喝“冰红茶”的人数是160人,冰红茶”所在扇形圆心角的度数为144°.------------------------------4分 (2)买学习资料的频数为:300-75-100-25=100,补图略.----------------6分 (3)1535(150 1.5802120 2.550) 1.8300300x =⨯⨯+⨯+⨯+⨯=≈. ∴九年级300名同学中完成家庭作业的平均时间大约是1.8小时.------------8分23.(1)证明:连结AD 、OD .∵AC 是⊙O 的直径,∴AD ⊥BC .-------------------1分 ∵AB =AC ∴D 是BC 的中点,又∵O 是AC 的中点 ∴OD ∥AB .∵DE ⊥AB ∴OD ⊥DE ,∴DE 是⊙O 的切线.------------------------------4分(2)解:由(1)知OD ∥AE ,∠FAE =∠∴△FOD ∽△FAE,∴FA FO =AEOD, ---------------------5分 ∴AC FC OC FC ++=BE AB OD-, ∴36FC FC ++=361-, 解得FC =32,∴AF =6+31522=,------------------------7分 ∴在Rt △AEF 中,cos A =AF AE =AF BEAB -=61152-=23--------9分24.解:(1)AF =BD ,AF ⊥BD .----------------------------------------------2分(2)答:(1)中的结论仍成立,即AF =BD ,AF ⊥BD .------3分 理由:如图2-1∵四边形ACDE 为正方形,∴∠DCA =90°,∵∠BCF =90°,CF =BC , ∴∠DCA =∠∴∠DCA +∠DCF =∠BCF +∠DCF , 即∠ACF =∠DCB ,∴△ACF ≌△DCB , ---------------------5分 ∴AF =BD ,∠CAF =∠CDB . 又∵∠1=∠2,∠CAF +∠1=90°, ∴∠CDB +∠2=90°,∴AF ⊥BD .------------------------6分(3)探究:当AC =22AB 时,直线AF 垂直平分线段BD .--7分如图2-2,连接AD ,则AD =2AC .--------------------8分 ∵直线AF 垂直平分线段BD ,∴AB =AD =2AC , ∴AC =22AB . ---------------------------------10分 AB 图2-1ABC DFE图25.解:(1)∵y =x 2-2mx +4m -8=( x -m )2+4m -8-m 2,∴抛物线的对称轴为x =m ,∵当x ≤2时,函数值y 随x 的增大而减小, ∴m ≥2 .---------------------------------------2分 (2)根据抛物线和正三角形的对称性,可知MN ⊥y 轴, 设抛物线的对称轴与MN 交于点B ,则AB =3BM设M (a ,b ),(m <a ), 则BM =a -m ,又AB =y B -y A =b -(4m -8-m2)=a2-2(4m -8-m 2)=a 2-2ma +m 2=( a -m )2,∴( a -m )2=3( a -m ),∴a -m =3,∴BM =3,AB =3, ∴S △AMN =1 2 AB ·2BM = 1 2×3×2×3=3 3, ∴△AMN 的面积是与m 无关的定值.---------------7分 (3)令y =0,即x 2-2mx +4m -8=0,解得x =m ±( m -2)2+4,由题意,( m -2)2+4为完全平方数,令( m -2)2+4=n 2,即( n +m -2)( n -m +2)=4.∵m ,n 为整数,∴n +m -2,n -m +2的奇偶性相同,∴⎩⎪⎨⎪⎧n +m -2=2n -m +2=2 或 ⎩⎪⎨⎪⎧n +m -2=-2n -m +2=-2,解得 ⎩⎪⎨⎪⎧m =2n =2 或 ⎩⎪⎨⎪⎧m =2n =-2,综合得m =2. ----------------------------10分 26.解:(1)2 14;-----------------------2分 (2)当0<t ≤5时,点E 在BA 上运动,如图4-1,EA D图3过E 作EG ⊥BC 于G ,过A 作AH ⊥BC 于H . 由△EBG ∽△ABH 得EBEG =AB AH, 即tEG=54,∴EG =54t , ∴y =21BF ·EG =21t ·54t =52t 2, 即y =52t 2(0≤t ≤5).---------------6分 当7≤t <11时,点E 在DC 上运动,如图4-2,y =21BC ·EC =21×5×(11-t )=-25t +255即y =-25t +255(7≤t <11).------------8分 (3)若△EBF 与梯形ABCD 的面积之比为1 : 3,则y =72.-----9分 当0<t ≤5时,得52t 2=72,解得t =2.----------------10分 当7≤t <11时,得-25t +255=72,解得t =485.-----------11分 故当t =2或485时,△EBF 与梯形ABCD 的面积之比为1 :3. -------12分BCEA D图H。