精馏过程节能技术综述

合集下载

化工精馏高效节能技术的开发及应用

化工精馏高效节能技术的开发及应用

化工精馏高效节能技术的开发及应用随着化工工艺技术的不断发展和市场需求的变化,化工精馏技术的发展变得越来越重要。

化工精馏是一种分离纯化技术,广泛应用于石化、化肥、冶金等行业中。

当前,化工企业在实现高效精馏的同时也面临着能源消耗和环保要求的压力,因此需要开发和应用高效节能的化工精馏技术。

1. 传统化工精馏技术的问题(1)能量消耗大。

精馏塔中需要加热物料并进行冷却,大量热量被浪费。

(2)操作复杂、人工控制难度高。

由于物料的液、气相流动状态复杂,需要通过观察物料颜色和嗅觉等手段来判断操作状态,容易出现操作失误。

(3)易产生污染物。

传统精馏操作中使用的溶剂、助剂等会对环境产生污染,不利于环保。

为了解决传统精馏技术存在的问题,近年来发展了许多高效节能的化工精馏技术,包括以下几个方面:(1)膜分离技术。

膜分离技术是一种基于膜的物质分离技术,可以代替传统的精馏技术进行气体、液体和固体混合物的分离。

(2)超声波精馏技术。

超声波精馏技术是一种利用超声波的高能量和高频振动对物料进行分离的技术,可以实现高效的分离,同时减少能源和化学消耗。

(3)蒸气分离技术。

蒸气分离技术是一种利用水平和垂直分子扩散的不同速度进行分离的技术,可以高效地分离化学物质。

(4)微波加热精馏技术。

微波加热精馏技术是一种利用微波加热来控制物料温度并进行分离的技术,可以高效地进行精馏,并大大降低能耗。

3. 应用情况与前景展望高效节能的化工精馏技术已经在一些企业中得到应用,取得了一定的效果。

例如,蒸气分离技术在石油化工生产中应用广泛,可以实现高效的分离和回收。

未来,随着化工企业对节能环保的要求越来越高,高效节能的化工精馏技术将得到更广泛的应用。

同时,随着科技的不断进步,化工精馏技术也将不断创新,为化工企业的发展提供更多的支持。

精馏塔控制和节能优化研究综述

精馏塔控制和节能优化研究综述

173经济全球一体化以来,人们的生活质量以及生活水平逐渐提升,对石油化等工业需求越来越高,对产品纯度的需求也在逐渐提升,使精馏有了更加广泛的应用。

为了与绿色、节能理念相契合,给精馏过程带来了新的挑战,对精馏过程进行严格的控制以及优化是十分重要的。

但是,在对精馏塔进行控制以及节能优化之前,必须有效确保整个精馏过程中所生产的产品质量,只有产品达到了相关标准,才可以进行装置优化,从而降低能耗、有效提升回收率,做到将成本最大化的转变成经济效益。

1 精馏原理以及操作过程精馏就是将一定浓度的液体输送到精馏装置中,常见的精馏设备就是图1所示的连续精馏装置。

精馏装置主要分为五个大部分:一是精馏塔;二是冷凝器;三是再沸器;四是回流罐;五是回流罐。

连续精馏装置的工作原理是由进料泵将溶液供给到精馏塔,由于溶液中的液体沸点不同,就会将溶液分为低沸点组和高沸点组,低沸点组也就是易挥发组会因为汽化而向上升腾;高沸点组会因其难挥发而向下流淌,并与向上升腾的蒸汽在塔板之间发生接触,从而实现相际传质[1]。

在相对恒压的条件下,若对单组液体进行持续加热,温度并不会出现变化,但是,在对混合溶液进行沸腾后持续加热,其温度必然会发生变化。

在恒压的条件下,溶液的组分情况会与气相平衡有着密切的联系,其中组分的沸点与浓度成正比,沸点越高浓度就会越高,当然平衡温度也就会更高。

与纯物质相比,混合溶液中液相与气相均处于平衡状态下的温度是不一样的。

当沸点高的液体流到釜液泵后,就会成为塔底产品,而沸点低的液体就会成为塔顶产品,这两段操作的结合,可以将混合溶液中的液体分为两个部分,并进行分离,从而精馏出两种所需纯度的产品。

精馏可以将混合物液体进行分离,主要利用的就是液体的沸点不同,通过汽化以及冷凝的方式,经过精馏装置对其进行反复冷凝以及汽化,从而有效的不同组分的液体完全分离。

所以,整个精馏过程其实就是进行多次汽化、多次冷凝的过程,并且,溶液会在汽化以及冷凝的过程中会吸收和释放大量的热量,因此精馏装置必须具备冷凝器以及再沸器等装置给予辅助,从而实现整个精馏装置的完整运行,从而得到预期塔顶以及塔底的产品[2]。

化工精馏技术的应用及节能措施

化工精馏技术的应用及节能措施

化工精馏技术的应用及节能措施摘要:化工企业作为能源消耗的重要企业,需要将节能减排放在重要位置,加强对化工精馏技术的应用,树立良好的节能减排观念,科学制定节能措施,保证能源资源在得到充分运用的同时,使能耗问题可以彻底解决,让化工生产过程更为环保,促进化工行业可持续发展目标的实现。

化工精馏技术经过多轮技术革新,已经在生产效率、节能环保、资源利用、精确控制方面有了长足进步。

本文对化工精馏技术的应用及节能措施进行分析,探求更加科学高效的技术应用策略。

关键词:化工精馏技术;多效精馏技术;节能措施引言催化精馏技术与其他技术相比具有十分明显的技术优势,在实际应用中具有性能良好、操作便捷、反应速度快、技术成本低廉等特点,因此受到化工行业的重点关注。

催化精馏技术在实际应用中发生的催化、分离等化学反应过程都是在特定的反应塔内进行的,能够有效提高化工产品的生产质量与效率,具有十分可观的实际应用价值。

1精馏技术概述化工生产中应用的精馏技术,主要是将化工生产中所需要的混合物,利用精馏技术按照混合物不同的挥发程度,实现混合物有效分离的一项生产技术。

在化工生产中,一般是利用精馏塔进行精馏作业,利用气体与液体的逆流相接产生的热量传递,实现物质的有效分离。

精馏技术在实际的应用中,会受到多种因素的影响,如精馏塔的设计与应用、压力、温度等因素,这些影响会使精馏技术在实际作业过程中产生大量的能源消耗,导致化工生产能源消耗增加。

化工生产精馏技术工艺流程,首先从精馏塔的底部灌入气体,精馏塔内部的液体会进行自上而下的流动,并在流动过程中与向上的气体产生接触,气体与混合物液体在接触的过程中,会挥发掉一部分混合物,但仍有一部分难以完全挥发,会逐步转化为另一形态的物质,最后混合物液体会向着塔底运动,气体会在精馏塔顶部聚集,完成液体与气体的分离作业。

其中,完成分离作业的气体会进入到冷凝器内,混合物液体一部分会作为分离物质从精馏塔内取出,另一部分会继续留在精馏塔内重复工艺流程。

化工精馏高效节能技术的开发及应用

化工精馏高效节能技术的开发及应用

化工精馏高效节能技术的开发及应用随着工业化的发展,化工行业成为了国民经济的重要组成部分。

在化工生产过程中,精馏技术是一种常见且重要的分离技术,通过不同组分的沸点差异实现混合物的分离。

传统的精馏技术存在能耗高、产能低、塔效低等问题,不符合当前节能减排的要求。

开发和应用化工精馏高效节能技术是当前的重要研究方向之一。

化工精馏的高效节能技术主要包括下面几个方面:改变传统精馏所采用的分离策略。

传统精馏通常采用连续塔式和间歇塔式两种方式,其耗能量较大。

而采用较新的策略,如非传统精馏技术则能够大大降低能耗。

压力摩擦传递介质技术(PTMD)利用流体在压力梯度下的摩擦生热来辅助分离,能够降低能耗并提高分离效率;旋涡扩散沉降技术以涡旋流形成和沉降效应为基础,通过改善气泡和干涉片状瞬时流动的混合状态,提高了分离效率;蒸汽再生精馏技术通过再生过程中废热的利用,减少了外部能量的输入。

优化传统塔设备结构和工艺参数。

在传统精馏塔的设计和操作上进行优化,可以进一步提高能源利用率和分离效率。

通过改变塔板孔径和数量,增加留存时间以提高传质效率;使用高效填料或结构来改善传质和传热特性,以提高传热和传质效率;采用多级回流功能,减少塔底和塔顶的温差,提高塔效。

引入辅助技术提高精馏的效率。

引入膜分离技术来提高精馏的选择性和效率。

膜分离技术在分子尺度上实现组分之间的物质传递,降低了能量消耗,并具有简单操作、占地面积小等优点。

还可以引入辅助剂来改变精馏物的沸点和挥发度,从而实现高效节能。

提高工艺综合效益。

除了提高精馏过程的效率外,还可以通过优化其他工艺参数来实现综合节能。

通过调整进料和塔回流比例,优化能量利用;在回收和再利用产品中的热量和化学物质,实现能量和物质的循环利用。

化工精馏高效节能技术的开发和应用对于提高化工生产过程的能源利用效率和环境保护具有重要意义。

通过改变传统精馏策略、优化设备和工艺参数、引入辅助技术以及提高工艺综合效益等手段,可以实现精馏过程的高效节能,并为化工行业的绿色发展做出贡献。

化工精馏技术的应用及节能研究

化工精馏技术的应用及节能研究

化工精馏技术的应用及节能研究摘要:化工行业应积极开展节能减排工作,优化改革化工生产过程,达到降耗节能的目的,同时减少对生态环境的污染与破坏。

化工行业的发展,为人们生产生活带来了便利,但也带来了环境污染和能源浪费问题。

因此,实现化工行业可持续发展,必须采取节能减排措施,优化化工生产过程,降低能耗和污染。

化工生产过程分离与反应两个过程,其中分离过程所造成的能源消耗量占据整体能源消耗量的75%。

这是化工生产中能源浪费的主要原因,因此,降低分离过程的能耗是化工行业节能减排的一个重要方向。

关键词:化工;精馏;节能技术;应用1化工精馏分析化工蒸馏技术是将不同性质的物料放入蒸馏塔装置中,通过塔板装置实现传质传热,在塔板中进行汽化分离。

传统的蒸馏技术虽然可以实现物料的分离,但是会造成大量的蒸汽损耗,导致能源浪费。

为了实现节能降耗,化工精馏技术应运而生。

化工精馏技术能够合理利用多余热量,实现能源的有效利用。

但是,化工精馏技术受到许多因素的影响,如回流比例、环境温度、塔内压力、物料量等,需要注重控制。

如果这些因素不能得到有效的控制,将会导致化工精馏技术的效率降低,甚至出现质量问题。

传统的化工精馏需要大量能源物质加热蒸馏塔底部结构,且存在热量损耗与能源浪费现象。

因此,需要创新研发高效应用化工精馏节能降耗技术。

这样不仅可以降低能源消耗,减少对环境的影响,还可以提高生产效率,降低生产成本,推动化工行业的可持续发展。

化工精馏技术是化工行业中的重要技术之一,它的应用能够实现物料的分离和能源的节约。

在未来的发展中,化工精馏技术需要不断创新,应用高效节能降耗技术,实现更加可持续的发展。

2化工精馏高效节能技术开发及应用的现实意义2.1有助于提高化工精馏过程的效率与质量化工精馏在许多工业领域中都扮演着重要的角色,它能够将混合物质分离出不同的组分,达到纯净度的要求。

然而,精馏蒸馏塔的多流程串联运行特点使得化工精馏过程中的能量损耗现象比较严重。

化工精馏节能技术探讨

化工精馏节能技术探讨

化工精馏节能技术探讨化工精馏是一种广泛的分离技术,广泛应用于炼油、化工、精细化工、制药等行业。

由于化工精馏的能耗和排放量较高,为了减少对环境的影响以及降低生产成本,探究化工精馏节能技术的应用显得十分重要。

一、精馏原理精馏是一种将混合物中的组分分离为一系列固定沸点组分的方法。

在一个精馏塔中,混合物在塔底蒸发后升往塔顶,通过多级板或者填料进一步蒸馏和分离。

不同沸点的组分会在不同的塔板或填料层凝结、液化分离出来。

经过多次分离,可以得到高纯度的分离产物。

二、节能措施1. 优化工艺参数通过客观分析和实验对化工精馏的工艺参数进行优化,可以达到节能的目的。

优化参数包括塔径、进料温度、进料速率、再沸点的选择等。

优化参数的主要目的是降低热量的损耗,提高再沸进料的回收,提高产品的纯度。

2. 应用热力学分析方法化工精馏通过热量供给来产生馏出性的分级蒸馏过程。

对于具有相同沸点的混合物,应用热力学分析方法来计算馏出程度,优化精馏条件,可达到节约热量、降低气体排放的目的。

3. 利用先进的装置技术采用先进的塔板、塔壳、填料技术,可以优化气液流动、充分利用热量,提高馏分的产量和质量。

例如,采用结构平面装置来提高塔顶的分馏效果,以及选用有效的填料来提高再沸孔的分馏效果等,都是有效的节能措施。

4. 优化回收系统采用高效的回收系统能够有效地提高化工精馏的再利用效益。

例如,实施热回收技术来回收热量和回收常温下的再沸馏分等都能达到节能的目的。

三、总结化工精馏在工业生产和人类生活中有着广泛的应用,同时其高耗能、高排放的特点也给环境带来了不小的影响。

为了减少对环境的影响,降低生产成本,我们需要探究化工精馏的节能降耗技术。

采取以上措施,能够有效地降低化工精馏的能耗和排放,提高生产效益,是企业可持续发展的重要措施。

精馏节能减耗总结

精馏节能减耗总结

精馏节能减耗总结引言在许多化学工艺中,精馏作为一种常见的分离技术,广泛应用于石油化工、化学制药、能源等行业。

然而,传统的精馏过程存在能源消耗大的问题。

为了减少精馏过程中的能源消耗,提高能源利用率,许多节能减耗技术被引入并逐渐得到应用。

本文将对精馏节能减耗的相关技术进行总结,包括辅助加热装置、改进的精馏塔结构以及新型精馏塔填料等。

通过这些节能减耗技术的应用,精馏过程的能耗问题可以得到一定程度的改善,从而实现能源的可持续利用。

辅助加热装置传统的精馏过程中,常常需要大量的蒸汽或热能来提供塔底部的加热需求。

为了减少能源的消耗,引入一些辅助加热装置可以起到节能降耗的效果。

多效加热器多效加热器是一种高效的辅助加热装置,能够通过热传递的方式将高温废热回收利用。

其原理是在精馏塔的塔顶和塔底之间设置多级的加热器,利用顶部产生的低温蒸汽将底部的高温液体加热,从而实现能量的再利用。

热泵热泵是另一种常用的辅助加热装置,通过将低温的热能转移到高温区域,从而实现能量的传递和利用。

在精馏过程中,可以利用热泵将废热转化为可用的热能,供给精馏塔的加热需求。

这样不仅可以减少能源的消耗,还可以达到能源利用的最大化。

改进的精馏塔结构传统的精馏塔结构存在一些不利于能源节约的问题,如传质效率低、压力损失大等。

通过改进精馏塔的结构,可以减少能源的消耗,提高精馏效率。

塔板结构优化传统的精馏塔中,常见的结构是塔板结构,它的主要问题是传质效率低。

为了提高传质效率,可以引入一些新的塔板结构,如泡沫塔板、视窗塔板等。

这些新型塔板结构具有更大的表面积和更好的传质性能,能够有效地提高精馏效率,降低能源消耗。

塔内增加填料层除了改进塔板结构,也可以在精馏塔内部增加填料层,以增加界面面积,提高传质效果。

常见的填料包括金属填料、陶瓷填料、塑料填料等。

这些填料具有较大的表面积和较好的传质性能,能够增加相接触的机会,从而提高传质效率,减少能源消耗。

新型精馏塔填料塔填料作为精馏过程中的重要组成部分,对其传质效率和能源消耗有着直接的影响。

空分精馏节能技术的应用

空分精馏节能技术的应用

空分精馏节能技术的应用
空分精馏是一种广泛应用于化工、石油、医药、电子、新能源等领域的重要分离技术。

传统的空分精馏过程需要大量的能源消耗,因此节能成为了一个重要的问题。

近年来,为
了降低能源消耗、提高生产效率,人们不断尝试采用各种新技术来改进空分精馏过程。


面将重点介绍空分精馏节能技术的应用情况。

1. 热积分技术(HIP)
热积分技术是一种应用于空分精馏中的先进节能技术。

该技术采用循环热交换的方式
使高温精馏侧的排放热能够在低温侧得到回收,从而达到节能的目的。

2. 极低温气体分离技术(VLG)
极低温气体分离技术(VLG)是一种利用Clausius-Clapeyron方程,通过控制温度和
压力调节气体的相对挥发度来实现气体分离的新技术,标志着空分精馏技术的进一步革命。

相对于传统的空分精馏技术,VLG技术能够在更低的温度和压力下实现气体的分离,同时
使能源消耗大幅降低。

3. 旋转蒸发式空分精馏技术
旋转蒸发式空分精馏技术利用比传统空分精馏更高效的离心力对混合气体进行分离,
使得分离的过程更快,更具有规模化的可能。

这种技术可以大大减少能耗同时提高生产效率,使空分精馏产品的纯度和质量更稳定,同时还可以有效地保护环境。

总体而言,随着科技的不断进步,各种新型空分精馏节能技术的应用得以不断拓展。

这些新技术不仅使空分精馏的能源消耗大幅降低,同时也大大提高了生产效率,使得空分
精馏技术更加普及和成熟。

未来,我们有理由相信,空分精馏节能技术将继续以更加高效
和绿色的方式为我们带来更好的生产和生活。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精馆过程节能技术综述石油化工是我国国民经济发展的支柱产业,据统计其能耗占全国工业总能耗的15%左右,而化工过程中40%〜70%的能耗用于分离,精镭能耗乂占其中的95%。

分离是非常重要的单元操作过程,是石油化工生产过程中必不可少的操作,它直接决定了最终产品的质量和收率,而精镭乂是占据着主导地位的分离方法,所以在当今世界能源日益短缺的情况下研究和探讨精镭过程的节能原理、节能技术,并使其应用于工业生产,就显得十分重要。

精谓是化工及燃油工业中的主要分离技术,技术成熟可幕,投资相对较低, 所以在石油化工生产过程中应用广泛,但现有精谓技术在热力学上是低效的耗能过程,有极高的热力学不可逆性,分离lkg产品所需能量(比能耗)相当高,所以寻找精憎工程中有效可行的节能途径显得至关重要。

通过对精镭塔传热过程的分析可以得到如下节能途径:优化操作条件、塔系的热集成技术、内部能量热集成以及加强操作控制管理。

优化操作条件精懈塔的主要操作条件包括操作压力、操作温度、塔板压降,进料位置及温度、理论板数、回流比以及回流温度、塔顶塔底采出量、关键组份的清晰分割程度,塔顶塔底热负荷,塔类型及填料类型等等。

下面从充分利用精憎系统的热能、减少对热负荷的需求和提高精镭系统热力学效率三方面进行介绍。

充分利用精憎系统的热能精谓系统中,所需的热量全部山加热蒸气经再沸器输人,分离后的余热山冷却介质从冷凝器移出。

若能合理利用精镭过程中本身的能量,就能降低整个过程对能量的需求。

可通过采取保温、热量回收、强化换热器以及夹点技术的措施来实现。

在精懈过程中使用的设备主要为精憎塔和换热器,同时还有各种管道,这些设备的材质导热系数较高,若对其釆取保温隔热的措施就可大大降低设备与环境之间的热传递作用,以达到节能降耗的目的。

高温物料携带大量热量可在塔外吸收利用,比如回收塔顶物料蒸气的潜热和回收塔釜废液的显热,使其用于工艺流程的其他需要加热的操作;使塔顶、塔釜物料与原料液进行换热,对原料液进行预热。

这样就避免了额外能量的消耗以达到节能目的,且操作简单,控制方便,投资费用也很小。

精谓系统的合理用能主要山换热器来体现,强化再沸器和冷凝器中的传热可使传热温差下降,同时还可提高塔顶冷却剂温度,降低塔釜的加热温度。

因而采用高效的换热设备或元件可大大提高传热系数,节约能量。

比如采用多孔相变化传热面积,包括微孔沸腾表面及特殊处理的冷凝表面,均可使沸腾或冷凝给热系数比光管提高10〜30倍;增大传热面积,包括釆用翅片管或开槽沟,可以使传热系数提高不少。

亦可釆用更有效的换热介质来提高传热系数。

当有多股热流冷流进行换热时,可将所有的热流合并成一根热复合曲线,所有的冷流合并成一根冷复合曲线,然后将两线表示在温一焰图上,冷、热复合温度曲线在某点重合,当系统内部换热的极限,即该重合点的传热温差为最小,该点即为夹点。

在夹点为零下操作时,需要无限大的传热面积,可以通过技术经济评价而确定一个系统最小的传热温差一一夹点温差,在精懈换热网络的合成中,利用夹点技术考虑各种物流匹配,可使换热网络的热量利用达到最优。

减少对热负荷的需求在精僻过程中,若要减少对热负荷的需求,考虑精镭操作的气液平衡状态是非常重要的。

通过操作线的改进来接近气液平衡线、通过添加第三组分或降低操作压力来改进气液平衡状态等来实现。

减小回流比是一种容易使操作线接近于平衡线的方法。

回流比越接近于最小回流比,则操作线就越接近于平衡线,系统节能效果就更加明显。

所谓最小回流比就是在某种情况下,使平衡线组成(&•,打)接近于进料浓度(X」处,从而使进料板至其上一块塔板没有发生增浓现象。

当系统回流比最小时,虽然系统节能效果显著,即操作费用(主要山塔内水蒸汽和冷却水消耗来决定)较小.但是塔设备费用(塔板数增加)却迅速增加.蒸镭总费用(设备费用和操作费用之和)也随着增加。

通常,回流比选择应使设备费用和操作费用之和最小,即最佳经济回流比。

其实际值一般为最小回流比的1.1-1.5倍。

为了确保得到纯度合格的产品,设讣时都有一定的回流余量。

余量越大,能耗越高。

对于回流余量较大的精懈塔,在不降低产品质量等级的情况下,只要在R附近适当降低回流比, 就可使操作线更接近于平衡线,即可大大降低塔底再沸器的能耗。

对于某些装置,也可通过适当地增加一些塔板数以减小Ro但用增加板数以降低热负荷是有限度的,当塔板数增大到无穷多时,回流比将趋近最小回流比,适宜值为塔板数增加10% — 30%。

进料状态将直接影响到精镭塔能耗的大小,选择适宜的进料状态,可以使操作线更接近于气液平衡线可节省蒸汽能耗。

当塔主要受提流段支配时,进料的预热将使q变小.使操作线更接近于汽液平衡线,使提憎段塔板数减少.提懈段的蒸汽负荷减少,从而可节省蒸汽。

当塔主要受精镭段支配时,进料的冷却将使得q增大,从而使精镭段塔板数降低,提流段数增加,蒸汽量增加,但分离效果得到改善。

当组分的含量差异较大时,可将混合物料进行单塔处理或一塔多股进料,一般多股进料完成相同的分离任务时,能耗较低。

因此在一定的操作条件下,通过改变进料热状况,某些情况下可取得良好的节能效果。

另外在保证产品质量的前提下,如果进料中重组分增加,可降低进料口位置,从而可降低所需的加热热量。

改变气液平衡状态可降低精镭过程的能耗。

气液平衡状态的改进是通过添加第三组分或降低操作压力来实现的。

添加笫三组份,使要分离的两组份的相对挥发度增加,破坏或利用共沸,来使组份变得更加容易分离,降低能耗。

一般在分离较困难的系统中采用,但如果第三组份回收困难,或分离所需能耗很大,或混入成品笫三组分对成品纯度影响较大的场合,其应用往往受到限制。

降低操作压力被分离物系各组分间的相对挥发度增加,分离效果得到了改善,在热能利用效果和效率方面,达到了节能U,若同时采用较低压差.使平均相对挥发度增加,塔底温度下降,达到节能的效果。

特别引人注U的是釆用高效填料时,节能效果更加明显。

选择适宜的进料板位置也可降低能耗。

在精镭操作条件不变的情况下,若进塔物料组成与加料板的组成差别较大,则应更换进料位置,在保持产品同一质量品质的前提下,进料中重组分增加,可降低进料口位置,减小提憎段;或被分离的物料来源不同,各组分的含量差异较大,可将各种物料进行一塔多股进料。

实际证实调节进料口位置或多股进料完成相同的分离任务,能耗较低。

这是因为混合过程是增爛过程,各组分不同的儿股物料的混合,增加了过程的不可逆性,这必然增加精憎过程的能耗。

提高精憎系统热力学效率主要是提高产品的分离效率和产品回收率,可通过采用新型塔板和高效填料,以及加中间换热器等方式来提高分离效果和降低能耗。

塔板和填料是精镭塔最为重要的传质内件,新型塔板和高效填料具有效率高、压降低的优点。

如采用伞形气帽、浮动筛板、新垂直筛板及穿流式浮板等新型塔板,可以降低精僻塔的操作压力,使被分离物系各组分间的相对挥发度增大,有利于提高分离效率和降低能耗。

填料性能主要取决于填料表面的湿润程度和气液两相流体分布的均匀程度。

LI前的高效填料有:新型高效规整填料; 新型高效散堆填料;阶梯填料;金属环矩鞍填料等。

新型高效填料在精谓塔器中的应用,均可以达到扩产、节能、降耗的效果。

中间换热器可用来节省或回收热量(冷量)。

在塔顶和塔釜的温度差较大的情况下可在精憎段中间设置冷凝器,在提懈段中间设置再沸器,可降低精憎操作费用。

这是因为精镭过程的热能费用取决于传热量和所用热载体的温位。

在传热量一定的条件下,设置中间冷凝器,可用温位较高、价格较便宜的冷却剂, 使上升蒸汽部分冷凝,以减少塔顶低温冷却剂用量。

中间再沸器则同理。

对塔底再沸器来说,中间冷凝器是回收热量,中间再沸器是节省热量;而对于塔顶冷凝器来说,中问冷凝器是节省冷量,中间再沸器是回收冷量。

塔系的热集成技术热集成精懾系统综合的U标就是寻找既能够按要求实现组分分离,乂能使年度总费用达到最小的精镭序列及热集成结构。

通过精懈塔间的热集成,可以用温位较高的冷凝物流来加热温位较低的再沸物流,这样就可同时节约冷却和加热的公用工程,且所节省的潜热远大于换热网络所回收的流股间的显热。

通过对普通精镭塔热量和冷量回收利用的方式和途径以及分离物系的不同,就形成了许多不同的节能型精憎流程。

下面将主要介绍多塔分离序列、多效精憎、热泵精係和热偶精镭。

多塔分离序列当采用精谓塔将多个组分进行分离时,精谓塔的排列顺序可以有多种方案,也必然存在一个最优的方案使得耗能最小,根据前人经验我们得到了以下规则:对易造成系统腐蚀或结焦的组分应首先除去,以降低后续设备的材质要求或稳定操作;再把进料分成分子数接近的两股流,按塔顶与塔底各占50%的分谓比例安排;根据气液平衡常数的大小进行排序,把轻组分逐个脱除,即采取顺序流程;最难分离的组分或对回收率要求高的组分放在最后。

实验验证简单精憎流程釆用热集成技术比无热集成的可节约操作费用50% ,可见塔系热集成技术对于分离过程能耗的影响往往比单个塔的优化更显著。

多效精馆在工业发达国家,多效精係已成为一种规范性节能系统,广泛应用于工业生产中。

多效精憾是一种充分利用能量品位的有利措施。

通过扩展工艺流程来节减精憎操作能耗的,它是以多塔代替单塔,各塔的能位级别不同,能位较高的塔排出的能量用于较低的塔,从而达到节能的訂的。

即多效精懈将前级塔顶冷凝器与次级塔底再沸器合二为一,将前级塔顶蒸汽冷凝所放出的热量用作次级塔液的汽化,操作压力逐效降低,前面较高压力塔的塔顶蒸汽作为后面较低压力的塔底再沸器的加热介质,在其中冷凝。

换言之除圧力最低塔外, 其余塔顶蒸气的冷凝潜热均被精憎系统自身回收利用,减少了传热的不可逆性, 减少了公用工程消耗,从而降低能耗。

由于多效精谓随效数增加,加热蒸气用量减少产生的节能效果开始不断下降,且受到第一级加热蒸气压力及末级冷却介质种类的限制,操作愈发困难,,所以工业上一般都采用双效精憎。

多效精憎的节能效果,除受效数影响外,还受到分离物系的性质、易挥发组分的含量、工艺流程等因素影响,其节能效果已为实践所证实,双效精懈操作所需热量与单效精憎比可减少30%〜40%o热泵精馅热泵技术是用圧缩式冷冻机将塔顶蒸汽直接加压升温,或将与塔顶蒸汽进行热变换的介质加压升温,使塔顶蒸汽(或其介质)作为高位热源,在再沸器进行热交换,来作为塔釜的加热热源。

热泵实质上是一种单效精镭,把冷凝器的热“泵送”到再沸器里去,使精懈能耗减少的制冷系统。

因回收的潜热用于过程本身,乂省去了塔顶冷凝器冷却水和塔釜加热蒸气,热泵系统中压缩消耗的能量,是唯一山系统外提供的,相当于只有再沸器直接加热消耗能量的20% — 40%,故可使精镭的能耗明显减少。

节能效果一般由供热系数COP来衡量,它表示加入lkJ的压缩功可提供给再沸器多少kJ的热量,其值越大,效果越好。

相关文档
最新文档