医用物理学重点(1)

医用物理学重点(1)
医用物理学重点(1)

第一章

物体的弹性

★1. σ=F

S

,把垂直作用在物体某截面上的内力F 与该截面面积S 的比值,定义为物体在此截面处所受的正应力,用σ表示正

应力。(P5)

★2.ε=

???

,物体在外力作用下单位长度所发生的改变量,即比值Δ?/ ?,称为正应变。(P5)

★3.杨氏模量:E =

σε

=

F ? ?S ? ??

,E 表示弹性模量。(P8)

★4.肌肉包括骨骼肌、心肌和平滑肌。骨骼肌可以随意收缩,称为随意肌。(P14)

第二章

流体的运动

★1.流体具有三大特性:流动性、粘滞性、可压缩性。(P22)

★2. 只考虑流体的运动性而忽略流体的可压缩性和粘滞性,引入一个理想模型,称为理想流体。(P23) ★3.流体粒子通过空间各点的流速不随时间而变化,则这种流动称为稳定流动。(P23)

★4.为了形象地描述流体的运动情况,在流体通过的空间中画一些假想的曲线,称为流线。(P23) ★5.在流体中取一截面S ,则通过截面周边上各点的流线围城的管状区域称为流管。(P23)

★6.S 1v 1=S 2v 2积小处流速大。(P24)

★7.伯努利方程:12ρν2+ρgh +p =恒量,1

2ρν2是单位体积流体的动能、ρgh 是单位体积的重力势能。(P26) ★8.血液是非牛顿粘滞性流体,而血清是牛顿粘滞性流体。(P34)

★例题:水以压强为4x105Pa ,流速为4m/s 从内径为20mm 的管子流到比它高5m 的细管子中,细管的内径为10mm ,求

细管的流速和高处压强。(P26)

解:由连续方程S 1v 1=S 2v 2得:ν?=

S?S?

ν?=

d?2d?2

ν?

已知d 1=2.0x10-2m ,d 2=1.0x10-2m ,v 1=4m/s ,则

ν?=(2.0×10?2)2

(1.0×10?2)2×4=16m/s

在伯努利方程12

ρν?2+ρgh?+p?=12

ρν?2+ρgh?+p?中

∵P 1=4×105

Pa ,h 1-h 2=5m

∴P 2=4×105+1

2×103×42﹣1

2×103×162-103×10×5=2.3×105Pa

第三章 液体的表面性质

★1.f=αL ,张力f 作用在表面任意分界线的两侧,其方向沿着液体表面,并且与分界线垂直;其大小与分界线的长度L 成正比.

α称为表面张力系数。因为液膜具有上下两个表面,所以F=2αL.(P42)

★2.f1= Σ?f? = Σα??sinφ = 2πrαsinφ,其中sinφ=r/R,f1=2πr2α

R ,Ps=f?

πr2

=2α

R

,所以弯曲的液面的附

加压强与张力表面系数成正比,与曲率半径成反比。(P45)

★3.在一水平干净的玻璃板上放一滴水,水滴不但不缩成球形,反而在玻璃板上展延成薄层,这种现象称为润湿现象或浸润现象。将一滴水银放在干净的玻璃板上,它将缩成球形,且可以在板上任意滚动,而不附着在板上,这种现象称为不润湿现象或不浸润现象。(P46)

★4.当液体分子间的相互作用力(称为内聚力)小于液体与固体分子间的相互作用力(称为附着力)时,合力指向固体内部,表现为液体润湿固体;当内聚力大于附着力时,其合力指向液体内部,而表现成液体不润湿固体现象。(P47)

★5.对于溶液,其表面张力系数通常都与纯溶剂的表面张力系数有差别,有的溶质使溶液的表面张力系数减小,有的溶质则使其增大,前者称为表面活性物质,后者称为表面非活性物质。(P49)

★6.当液体在细管中流动时,如果管中出现气泡,由于产生了附加压强液体的流动就会受到比没有气泡存在时更大的阻碍。气泡多了就可能堵塞管子,使液体不能流动,这种现象称为气体栓塞。(P51)

第四章振动波动超声波

★1.x=Acos(ωt+φ),称为简谐振动的表达式或运动方程式。也称位移公式。(P55)

★2.ν=1

T =ω

或ω=2πν(P56)

★3.若相位差φ??φ?=2kπ,k=0,±1,±2,…,则cos(φ??φ?)=1,合成振幅最大A max=A1+A2. 若相位差φ??φ?=(2k+1)π,k=0,±1,±2,…,则cos(φ??φ?)=-1,合成振幅最小

A min=|A1?A2|。(P59)

★4.波长、波速、周期和频率之间的相互关系:λ=cT=c

ν

。(P61)

★5.波的另一种表达方式:y=Acos2π(νt?x

λ

)。(P62)

★6.各种超声波:(P74)

(1)A型超声波诊断仪:A型超声波诊断仪是将回声以波的形式显示出来,为幅度调制型。它以纵坐标代表回波的强弱,横坐标代表回波传播的时间(距离)。回波强,则幅度高;回波弱,则幅度低。原理:A型超声波诊断仪通过测量回声脉冲之间的距离可以算出组织界面的深度和不同组织界面的距离,从回波的振幅可以了解媒介的性质。它只能用于定为,不能显示体内被探查物体的具体形状。

(2)B型超声波诊断仪:B型超声波诊断仪是将回波信号以光点的形式显示出来,为辉度调制型。其基本原理与A型超声波诊断仪大致相同,只是将探头制成直线移动形式,每一回波在示波器上产生一个光点,光点的位置与产生回波的反射界面的位置相对应。原理:回波信号对应于显示屏上自上而下分布的光点群,信号愈强,光点愈亮。光点之间的距离代表各个界面的距离。当探头沿被探查体表面移动时,可通过电子学的方法使得这条竖直光点群与探头同步移动,这样就在显示屏上显示出相应部位的截面的二维超声波图像,且具有连续显示运动脏器的功能。

(3)M型超声波诊断仪:M型超声波诊断仪的基本原理:是将反射界面的运动情况转换成脉冲回声光点的位移与时间的关系曲线.它既有A超的特点,即探头固定不动,又有B超的特点,即辉度显示回波,为辉度调制型。因M超所显示的图像适用于观察心脏的运动情况,故常称为超声心动图。

(4)D型超声波诊断仪:D型超声波诊断法就是利用多普勒效应获得血细胞等运动物体的多普勒频移信息,通过电子技术和计算机处理,计算出血流的速度,或显示血流的多普勒频谱和彩色多普勒血流图像,并根据这些信息进行心血管疾病的诊断。彩色多普勒血流显像仪是一种多功能诊断仪,可以完成B超、M超等仪器所进行的各种检查。

★例题:已知波的表达式为y=0.05cosπ(0.2x-100t)m,求振幅、周期、波长和波速。(P63)

解:将已知波的表达式改写为y=0.05cos2(50t-x

10

将其与波动表达式的一般形式y=Acos2π(νt?x

λ

)进行比较

得:振幅A=0.05m,周期T=1

ν=1

50

=0.02s,波长λ=10m,波速c=λν=10×50=500m/s

第五章静电场与生物电现象

★1.电场强度简称场强,E=F

q ,E=k q

r2

e。(P80)

★2.电荷q0从a运动到b的过程中,电场力所作的功只取决于运动电荷的始末位置,而与路径无关。静电场的这一特性叫静电场的保守性。(P82)

★3.设场源点电荷到空间任意一场点a的距离为r,选无穷远处电势为零,V a=k q

r

。(P83)

★4.心肌兴奋时,由于存在心电向量,因此人体表面的各点均具有一定的电位。并且随着心电向量的变化而变化。(P93)

第六章直流电

★1.直流电对机体的作用:人体内许多元素以离子态存在于水中形成电解质溶液(即人体的体液),使人体能够导电。人体组织的导电性与水的含量有关,含水量多导电性强,反之则差。导电性有因人而异的个体差别,即便是同一人在不同的年龄、季节、身体状况等因素影响下,也会有不同。总之,人体是一个复杂的导体。(P112)

2.穴位离子导入:穴位离子导入法,全程穴位药物离子导入法。它是采用药物离子导入仪,通过直流电的作用,将某种药物的离子导入人体的穴位内,从而达到治疗目的的一种方法。穴位离子导入疗法与一般口服药物及针剂注射等方法相比较,优点如下:①通过直流电使药物直接导入浅表治疗部位,并在局部保持较高的浓度,这种做法疗效高;②导入的药物只是具有治疗作用的药物离子,能充分发挥药理作用;③药物在皮肤内形成离子堆积,并逐渐进入深部,所以在体内作用的时间长;④离子透入疗法不会损伤皮肤,不会引起疼痛,不刺激胃肠道,易于被病人接受;⑤离子透入疗法具有直流电和药物的综合治疗作用。(P113)

3.人体皮肤及学位的电现象:人体皮肤的电现象就是指皮肤各点的阻抗和电位的不同。常用来研究经络与穴位之间的关系。人体皮肤可以导电,但皮肤对电流有阻抗,因为人体各部分的点阻系数各不相同,而且心理上的反应会引起皮肤瞬间性电位变动和阻抗变化。在对人体的经络、穴位导电情况的研究中发现确实有阻抗低而导电量较高的点存在。通过测定认为经穴导电量高,非经穴导电量低;气血壮者导电量高,气血弱者导电量低。(P115)

第七章电磁现象

★1.电磁感应强度B,B=F

qv

。(P120)

★2.当运动电荷的速度V与磁感应强度B的方向夹角为θ时,F=Bqvsinθ,两者夹角为90度时,F=Bqv。(P121)

3.磁场对生物的影响:①地磁场对生物的影响②恒定磁场对生物的影响③极弱磁场对生物的影响④交变磁场对生物的影响。(P131)

★4.磁疗:磁场作用到人体后,可以使血管扩张,血流加快,改善血液循环,可以把组织细胞需要的营养物质、氧送到全身各

处的组织细胞,又可以把组织细胞的代谢废物带走。可以治疗高血压、动脉硬化、降低血脂、缓解疼痛、消肿消炎、改善睡眠等,磁场对糖尿病和结石病也有一定的治疗作用。(P133)

第九章 几何光学与医用光学仪器

★1.n?

u +n?ν=

n?-n?R

。(P155)

★2.f 1=

n?

n?-n?R ,f 2=

n?n?-n?

R 。(P156)

3.折射:n?

f?=

n?f?

=

n?-n?R

=Φ

★4.两种核磁共振:扫场法、扫频法。

★例题:设空气(n 1=1.0)与玻璃(n 2=1.5)的分界面为一半径为4.0cm 的凸球面,物体放在球面顶点前10cm 处的主光轴

上。求:(P156)

(1)凸球面的两个焦距; (2)像距; (3)折射面的焦度。 解:(1)根据公式f 1=

n?n?-n?

R 得:第一焦距为f 1=

1.0×4.0

1.5-1.0

=8.0cm

根据公式f 2=

n?n?-n?R 得:第二焦距为f 2=

1.5×4.01.5-1.0

=12cm

(2)根据公式n?u

+n?ν

=n?-n?R

得:像距为

v =

n 2uR n 2u -n 1u -n 1R

=

1.5×10×4.0

1.5×10-1.0×1.0-1.0×4.0

=60cm

(3)根据公式n?-n?R

=Φ得:折射面的焦度为 Φ=n?-n?R

=

1.5-1.01.5-4.0×10?2

=12.5D

医用物理学公式大全

经过我一上午奋战终于完成了这个属于医 学院的物理复习大纲 基本概念 理想液体 稳定流动 层流与湍流 流量 流阻 粘度 二、基本定律及定理 1 *连续性方程 2 211v s v s Q sv == 2 *柏努利方程 2 2 2212112 2 121 2 1gh v p gh v p E gh v p ρρρρρρ++=++=++ 3 *泊肃叶定律 l P P r Q R P Q ηπ8)(214-= ?= 4 牛顿粘滞定律 dx dv s F η= 三、重要结果及结论 小孔流速问题 h g v ?= 2 测速、测流量问题 (皮托管,汾丘里管) 实际流体的能量损耗 )2 1()21( 2222121112gh v p gh v p E ρρρρ++-++ =? 雷诺数及判据 η ρvr =Re 四、注意的问题 空气中有大气压 Pa P 5 010013.1?= 水的密度 3kg/m 1000=ρ 空吸与虹吸现象

振动和波 基本概念 振动 简谐振动 谐振动的矢量表示 振幅 初相位 圆频率 周期 波速 波长 频率 v u λ= 振动的合成(同方向、同频率) 相位差 同相 反相 波动 波动方程的物理意义 波的叠加原理 基本规律及重要公式 *简谐振动方程 )cos(?ω+=t A x 2 2 0)( x v tg v x A ω?ω - =+= 谐振动能量 2222 1 21A m kA E ω== *简谐波的波动方程 ])(cos[?ω+-=u x t A y 波的强度公式 222 1 ωρuA I = 球面波 21 2211221)(,r r I I r r A A == 惠更斯原理 *波的干涉 )(21212r r -- -=?λ π ??? 干涉加强 2 112122)(2A A A k r r +==---=?π λ π ??? 干涉减弱 2 11212)12()(2A A A k r r -=+=---=?π λ π ??? 三、注意的问题 1、已知初始条件及振动系统性质,求振动方程 (求?=?) 2、已知振动方程,求波动方程 (确定时间上是落后还是超前 ?u x μ ) 3、两振动、波动叠加时,相位差的计算

《医用物理学》试题及答案

医用物理学试题A 卷 姓名: 年级: 专业: 一、填空题(每小题2分,共20分) 1、水在截面不同的水平管内做稳定流动,出口处的截面积为管最细处的3倍。若出口处的流速为2m/s ,则最细处的压强 。 2、一沿X 轴作简谐振动的物体,振幅为2cm ,频率为2Hz ,在时间t=0时,振动物体在正向最大位移处,则振动方程的表达式为 。 3、在温度为T 的平衡状态下,物体分子每个自由度的平均动能都相等,都等于__________。 4、中空的肥皂泡,其附加压强为: 。 5、透镜的焦距越短,它对光线的会聚或发散的本领越强,通常用焦距的倒数来表示透镜的会聚或发散的本领,称为透镜的 。 : 6、基尔霍夫第一定理的内容是 。 7、电流的周围空间存在着磁场,为了求任意形状的电流分布所产生的磁场,可以把电流分割成无穷小段dl ,每一小段中的电流强度为I ,我们称Idl 为 。 8、劳埃镜实验得出一个重要结论,那就是当光从光疏媒质射向光密媒质时,会在界面上发生 。 9、多普勒效应是指由于声源与接收器间存在相互运动而造成的接收器接收到的声波 与声源不同的现象。 10、单球面成像规律是_________________________________。 1、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量。当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是( )

A 、 022 1v v +=kt , B 、 022 1 v v +-=kt , C 、 02121v v +=kt , D 、 0 2121v v + -=kt 2、水平自来水管粗处的直径是细处的两倍。如果水在粗处的流速是2m/s ,则水在细处的流速为 ! A 、2m/s B 、1m/s C 、4m/s D 、8m/s 3、已知波动方程为y=Acos (Bt -Cx ) 其中A 、B 、C 为正值常数,则: A 、波速为C / B ; B 、周期为1/B ; C 、波长为C / 2π; D 、圆频率为B 4、两个同方向同频率的简谐振动: cm t x )cos(0.23 21π π+ =,cm t x )cos(0.8341π π-=,则合振动振幅为( )。 A 、2.0cm B 、7.0cm C 、10.0cm D 、14.0cm 5、刚性氧气分子的自由度为 A 、1 B 、3 C 、5 D 、6 6、根据高斯定理。下列说法中正确的是: A 、高斯面内不包围电荷,则面上各点的E 处处为零; , B 、高斯面上各点的E 与面内电荷有关,与面外电荷无关; C 、过高斯面的E 通量,仅与面内电荷有关; D 、穿过高斯面的 E 通量为零,则面上各点的E 必为零。 7、光在传播过程中偏离直线传播的现象称之为 A 、杨氏双缝 B 、干涉 C 、衍射 D 、偏振 8、在相同的时间内,一束波长为λ(真空)的单色光在空气和在玻璃中 A 、传播的路程相等,走过的光程相等; B 、传播的路程相等,走过的光程不等; C 、传播的路程不等,走过的光程相等; D 、传播的路程不等,走过的光程不等。 9、远视眼应佩带的眼镜为 A 、凸透镜 B 、凹透镜 C 、单球面镜 D 、平面镜 10、下列不属于X 射线诊断技术的是: ' A 透视 B X-CT C X 线摄影 D 多普勒血流仪

医用物理学复习资料(知识点精心整理).docx

3 *泊肃叶定律 4牛顿粘滞定律 三、重要结果及结论 1小孔流速问题 2测速、测流量问题 帀 4 (片一〈) 8 ?7/ v = J2 g'h (皮托管,汾丘里管) AE 12 =(p )+2妙:+pg 曾) 一(°2 +2 妙;+Pg 〃2) 4雷诺数及判据 四、注意的问题 空气中有大气压 水的密度 空吸与虹吸现象 流体的流动 —、基本概念 1理想液体 2 稳定流动 3 层流与湍流流量 二、基本定律及定理 1 *连续性方程 流阻粘度 2 *柏努利方程 sv = Q S" = p + ypv 2 + pgh = E P\ + Pghi = Pi 讶 +Pg 〃2 NP F = sr/ dv dx Re 二业 P 。= 1.013 x 10 5 Pa p - 1000 kg/m 3 实际流体的能量损耗

振动和波、基本概念

v n tg(p =——- COX Q 波的强度公式 球面波 惠更斯原理 三、注意的问题 已知初始条件及振动系统性质,求振动方程 (求°二?) 己知振动方程,求波动方程(确定时间上是落后还是超前 两振动、波动叠加时,相位差的计算 声波 一、基本概念 1 2 3 4 5 6 7 振动 振幅 波速 振动的合成(同方向、同频率) 相位差同相反相 波动波动方程的物理意义 简谐振动 谐振动的矢量表示 初相位圆频率周期 波长频率 u = Av 波的叠加原理 二、基本规律及重要公式 *简谐振动方程 x = A cos( cot 七 cp) 谐振动能量 £=>2 *简谐波的波动力程 y = A cos| 1 =—m 2 co (r ------- ) + cp u *波的T ?涉 2 = 02 -0 -乎(卩 干涉加强 2兀 \(p =(p 2-(p { ----------- (r 2 -人) 2k7T 干涉减弱 \(p =(p 2-(p } -乎(G - 人) (2? + 1)龙 1、 +-?) u

医用物理学重点(1)

第一章 物体的弹性 ★1. σ=F S ,把垂直作用在物体某截面上的内力F 与该截面面积S 的比值,定义为物体在此截面处所受的正应力,用σ表示正 应力。(P5) ★2.ε= ??? ,物体在外力作用下单位长度所发生的改变量,即比值Δ?/ ?,称为正应变。(P5) ★3.杨氏模量:E = σε = F ? ?S ? ?? ,E 表示弹性模量。(P8) ★4.肌肉包括骨骼肌、心肌和平滑肌。骨骼肌可以随意收缩,称为随意肌。(P14) 第二章 流体的运动 ★1.流体具有三大特性:流动性、粘滞性、可压缩性。(P22) ★2. 只考虑流体的运动性而忽略流体的可压缩性和粘滞性,引入一个理想模型,称为理想流体。(P23) ★3.流体粒子通过空间各点的流速不随时间而变化,则这种流动称为稳定流动。(P23) ★4.为了形象地描述流体的运动情况,在流体通过的空间中画一些假想的曲线,称为流线。(P23) ★5.在流体中取一截面S ,则通过截面周边上各点的流线围城的管状区域称为流管。(P23) ★6.S 1v 1=S 2v 2积小处流速大。(P24) ★7.伯努利方程:12ρν2+ρgh +p =恒量,1 2ρν2是单位体积流体的动能、ρgh 是单位体积的重力势能。(P26) ★8.血液是非牛顿粘滞性流体,而血清是牛顿粘滞性流体。(P34) ★例题:水以压强为4x105Pa ,流速为4m/s 从内径为20mm 的管子流到比它高5m 的细管子中,细管的内径为10mm ,求 细管的流速和高处压强。(P26) 解:由连续方程S 1v 1=S 2v 2得:ν?= S?S? ν?= d?2d?2 ν? 已知d 1=2.0x10-2m ,d 2=1.0x10-2m ,v 1=4m/s ,则 ν?=(2.0×10?2)2 (1.0×10?2)2×4=16m/s 在伯努利方程12 ρν?2+ρgh?+p?=12 ρν?2+ρgh?+p?中 ∵P 1=4×105 Pa ,h 1-h 2=5m ∴P 2=4×105+1 2×103×42﹣1 2×103×162-103×10×5=2.3×105Pa 第三章 液体的表面性质 ★1.f=αL ,张力f 作用在表面任意分界线的两侧,其方向沿着液体表面,并且与分界线垂直;其大小与分界线的长度L 成正比. α称为表面张力系数。因为液膜具有上下两个表面,所以F=2αL.(P42)

医用物理学复习资料知识讲解

医用物理学复习资料

流体的流动 一、 基本概念 1 理想液体 2 稳定流动 3 层流与湍流 流量 流阻 粘度 二、基本定律及定理 1 *连续性方程 2 211v s v s Q sv == 2 *柏努利方程 2 2 2212112 2 121 2 1gh v p gh v p E gh v p ρρρρρρ++=++=++ 3 *泊肃叶定律 l P P r Q R P Q ηπ8)(214-= ?= 4 牛顿粘滞定律 dx dv s F η= 三、重要结果及结论 1 小孔流速问题 h g v ?= 2 2 测速、测流量问题 (皮托管,汾丘里管) 3 实际流体的能量损耗 )2 1()21( 2222121112gh v p gh v p E ρρρρ++-++ =? 4 雷诺数及判据 η ρvr = Re

四、注意的问题 空气中有大气压 Pa P 5010013.1?= 水的密度 3 kg/m 1000=ρ 空吸与虹吸现象

振动和波 一、 基本规律及重要公式 1 *波的干涉 )(21212r r -- -=?λ π ??? 干涉加强 2 112122)(2A A A k r r +==---=?π λ π ??? 干涉减弱 2 11212)12()(2A A A k r r -=+=---=?π λ π ??? 声波 一、基本概念 1 声速u 2 振动速度 声压 声特性阻抗 Z p v A v u Z m m m = ==,,ωρ 3 *声强 声强级 响度 响度级 ) (lg 102210 222 2dB I I L Z p Z p uA I e m == ==ωρ 4 *听阈 痛阈 听阈区域 二、重要公式 1 声波方程 ]2 )(cos[)](cos[πωωρω+- =- =u y t u A p u y t A x 2 *多普勒效应公式 0v V u V u v s o ±= 正负号的确定 : 0远离来确定时,根据相互靠近还是、当≠s o V V 三、注意的问题

医用物理学讲课教案

《医用物理学》教学大纲 一、课程名称:医用物理学 二、基本信息: 课程编号:11030003 课程性质:必修 英文名称:Medical Physics 课程类别:学科基础 教学总学时:48 学分:3.5 先修课程:人体解剖学、教育学 适用专业:护理类专业 开课教学系:护理系 开课教研室:电气电工教研室 学生对象:本科二年级学生 三、课程制定依据 本标准依据国家人力资源和社会保障部,对护理队伍建设领域所对应的工作岗护理人才要求的技能标准和《国家中长期教育改革和发展纲要(2010--2020年)》、《国务院关于当前护理教育的若干意见》而制定。 四、课程简介

医学物理学是高等医学教育中的一门专业基础课程。它的任务和目的是:使学生比较系统地掌握医学科学所需要的物理学基础理论、基本知识、基本技能,培养学生辩证唯物主义世界观和观察问题、分析问题、解决问题的能力,为学生学习后续课程以及将来从事医疗卫生、科学研究工作打下必要的物理基础。教学内容是以高中毕业为起点,以学习医学科学所需要的物理“三基”内容为主,对物理学与医学联系密切相关的内容应作比较广泛和深入的讨论,但主要是针对这些医学问题中的物理学原理,不应过多地涉及具体的医学内容。对于那些为了保持物理学体系所必须保留而又与中学重复的内容,要求学生掌握,但不作讲授。对于全新的或是根据专业需要应加强的内容,即是教师讲授和要求学生掌握的内容,也应做到少而精,既保证教学质量又不使学生负担过重。 五、课程目标 (一)基本理论与基本知识 1. 掌握物体弹性的基本理论、流体的运动规律、液体的表面张力、毛细现象、气体栓塞。 2. 掌握机械振动的基本规律、机械波的传播规律。 3. 掌握光的干涉、光的衍射、球面成像规律、视力矫正方法。 (二)基本技能

医用物理学几何光学习题解答

医用物理学几何光学习题 解答 Revised by Jack on December 14,2020

第十一章 几何光学 一、内容概要 【基本内容】 1. 单球面折射公式 r n n p n p n 1221'-=+ (1)近轴条件 (2)符号规定:凡是实物、实像的距离,p 、'p 均取正值;凡是虚物、虚像的距离, p 、'p 均取负值;若是入射光线对着凸球面,则r 取正值,反之,若是入射光线对着凹球面,则r 取负值. 2. 单球面折射焦距 r n n n f 1211-= r n n n f 1222-= 3.折射面的焦度 r n n Φ12-=或2211f n f n Φ== 4. 单球面折射成像的高斯公式(近轴) 1' 21=+p f p f 5.共轴系统成像规则 采用逐次成像法,先求出物体通过第一折射面后所成的像I 1,以I 1作为第二折射面的物,求出通过第二折射面后所成的像I 2,再以I 2作为第三折射面的物,求出通过第三折射面所成的像I 3,依次类推,直到求出最后一个折射面所成的像为止. 6. 薄透镜成像 (1)成像公式 )11('112 100r r n n n p p --=+ (2)焦距公式 12100)]11([ ---=r r n n n f (3)空气中 121)]11)( 1[(---=r r n f (4)高斯公式 f p p 1'11=+ 7. 薄透镜组合 2 1111f f f += 或 21ΦΦΦ+=

8. 厚透镜成像 采用三对基点作图 9. 透镜的像差 远轴光线通过球面折射时不能与近轴光线成像于同一位置,而产生像差,这种像差称为球面像差. 物点发出的不同波长的光经透镜折射后不能成像于一点的现象,称为色像差. 10. 简约眼 生理学上常常把眼睛进一步简化为一个单球面折射系统,称为简约眼. 11. 能分辨的最小视角 视力1= 最小视角以分为单位.例如医学视力表,最小视角分别为10分,2分,1分时,其视力分别是,,.标准对数视力表,规定 θlg 5-=L ,式中视角θ以分为单位.例如视角θ分别为10分,2分,1分时,视力L 分别为,,. 12.近视眼和远视眼 当眼睛不调节时,平行入射的光线,经折射后会聚于视网膜的前面,而在视网膜上成模糊的像,这种眼称为近视眼,而成像在视网膜后,这样的眼称为远视眼. 11. 放大镜的角放大率 f y f y a 2525//== 12. 显微镜的放大率 (1)理论放大率 2 '2'2525f y y y f y M ?=?= 其中y y /'为物镜的线放大率(m ),2/25f 为目镜的角放大率(a ) ()实际放大率2 1212525f f s f f s M =?= 式中s 为显微镜与目镜之间的距离;f 1为物镜的焦距;f 2为目镜的焦距。 13.显微镜的分辨本领-瑞利判据 显微镜的分辨本领β λsin 61.0n Z = 提高分辨本领方法 (1)增加孔径数 (2) 短波照射法

医用物理学期末复习重点知识随笔

物理书/医物宋老师课件、课堂笔记/(考点 要求)知识随笔 一、名词解释要求 相干条件、叠加(p30):两列波1、震动方向相同2、频率相同3、相位差恒定 波的叠加(p29):【几列波在同一介质中传播时,在相遇区域内,任一质点的位移为各列波单独传播时在这点引起的分位移的矢量之和。】在相遇后,各列波会保持自 己原有的特性(频率、波长、振动振幅等)不变,继续往前传播,不受其他 波的影响。 气体栓塞(p74):当液体在细管中流动时,如果管中有气泡,将阻碍液体的流动,气泡多时可发生阻塞现象。 电泳、电渗(p117):在直流电的作用下,分散质和分散剂分别向相反的极性移动,分散剂的移动称为电泳;分散剂的移动成为电渗。 光的干涉(p30):有两列波振动方向相同、频率相同、相位差恒定,于空间相遇时,则空间内某些位置的合震动始终加强,而另一些位置的合震动始终减弱现象。 听觉域(p36):由听阈曲线、痛域曲线、20Hz线和20 000Hz线所围成范围。

总外周阻力(p56):血液在血管中流动的的流阻在生理学中称为外周阻力,从主动脉至腔静脉的流阻,即体循环的总流阻,称为总外周阻力。 收缩压、舒张压(p59):当左心室收缩时,血液进入主动脉,主动脉的血压达到最大值,我们称为收缩压。当心脏舒张时,主动脉血液逐渐流入分支的血管,血压下降达到最小值称为舒张压。 空间心电向量环(p101):将瞬时心电向量相继平移,使向量尾集中在一点上,对向量头的坐标按时间、空间的顺序加以描记成空间心电向量环。 (瞬时心电向量:在一块心肌中,如果一端的的心肌细胞受刺激发生除极,则该处细胞膜就形成跨膜动作电位,同时形成局部环形电流,这种局部环形电流刺激邻近静息膜,使之因除极而兴奋变成除极膜,从而使跨膜动作电位和跨膜局部电流沿着细胞膜向外扩展,这种扩展在横向和纵向均能传递,使兴奋以除极波的形式向前传播。所谓瞬时心电向量,是指当除极波在某一瞬时传播到某一处时,除极波面上所有正在正在除极的心肌细胞极化向量的和。 极化(p98):当神经或肌肉处于静息状态时,膜外带正电,膜内带负电,这种状态称为极化。除极(p99):随着刺激强度的增大,细胞膜去极化的程度也不断的扩展当刺激强度达到阈值或阈值以上时受刺激的细胞膜对Na+的通透会突然增大。由于膜外Na+的浓度远高于膜内,膜内的电位又低于膜外,于是大量Na+在浓度梯度和电场的双重影响下由细胞膜外涌入细胞膜内。这一过程的直接结果是使细胞膜内电位迅速升高,当膜内、外Na+的浓度差和电位差的作用相互平衡时,细胞膜的极化发生倒转,结果细胞膜内带正电,细胞膜外带负电,这一过程叫除极。) 平面心电向量环(p102):空间心电向量环在xy(横面)、yx(额面)、zx(侧面)三个平面上的投影所形成的曲线称其为平面心电向量环。 Χ射线的硬度(p239):Χ射线的硬度是指Χ射线的贯穿本领,它只决定于Χ射线的波长(即单个光子的能量),而与光子数目无关。 (对于一定的吸收物质,Χ射线被吸收愈少则贯穿的量愈多,Χ射线就愈硬,或者说硬度愈大。Χ射线管的管电压愈高,则轰击靶面的电子动能愈大,发射光子的能量也愈大,而光子能量愈大愈不易被物资吸收,即管电压愈高产生的Χ射线愈硬。同样,由于单个Χ光子的能量不易被测出,所以,在医学上通常用管电压的千伏数(kV)来表示Χ射线的硬度,称为千伏率,并通过调节电压来控制Χ射线的硬度) 基尔霍夫定律(p111、p112):基尔霍夫第一定律:(也称为节点电流定律。它是用来确定电路任一节点处电流之间关系的定律,是根据电流的连续性原理得到的。)【对于任一节点而言,在任一时刻,流入节点的电流之和等于流出该节点的电流之和。】(若规定流入节点的电流为正,流出节点的电流为负,则汇于任一节点处电流的代数和等于零。) 基尔霍夫第二定律:(又称为回路电压定律,它是用来确定回路中各段电压之间关系的定律。)(在一个闭合回路中,从任一点出发,绕回路一周,回到该点时电势变化为零。)根据这个原理可得出基尔霍夫第二定律,即【沿闭合回路一周,电势降落的代数和为零】 (先假设一个绕行方向,顺时针方向或逆时针方向,再确定各段的电势降落。 根据确定的方向,电子原件的一端到另一端,是高电势到低电势,取正[电势降落],是低

医用物理学公式-大全

医用物理学公式大全 一、基本定律及定理 1连续性方程 2 211v s v s Q sv == 2 伯努利方程 2 2 2212112 2121 2 1gh v p gh v p E gh v p ρρρρρρ++=++=++ 3 泊肃叶定律 l P P r Q R P Q ηπ8)(214-= ?= 4 牛顿粘滞定律 dx dv s F η= 三、重要结果及结论 1 小孔流速问题 h g v ?= 2 2 测速、测流量问题 3 实际流体的能量损耗 )2 1()21( 22 22121112gh v p gh v p E ρρρρ++-++ =? 4 雷诺数及判据 η ρvr = Re (3000)

振动和波 一、 基本规律及重要公式 1 简谐振动方程 )cos(?ω+=t A x 2 2 0)( x v tg v x A ω?ω -=+= 2 谐振动能量 2222 1 21A m kA E ω== 3 简谐波的波动方程 ])(cos[?ω+-=u x t A y 4 波的强度公式 222 1 ωρuA I = 球面波 21 2211221)(,r r I I r r A A == 5 惠更斯原理 6 波的干涉 )(21212r r -- -=? λ π ??? 干涉加强 2 112122)(2A A A k r r +==---=?π λ π ??? 干涉减弱 2 11212)12()(2A A A k r r -=+=---=?π λ π ???

声波 一、基本概念 1 声速 u 2 振动速度 声压 声特性阻抗 Z p v A v u Z m m m = ==,,ωρ 3 声强 声强级 响度 响度级 ) (lg 102210 222 2dB I I L Z p Z p uA I e m == ==ωρ 二、重要公式 1 声波方程 ]2 )(cos[)](cos[πωωρω+- =- =u y t u A p u y t A x 2 多普勒效应公式 0v V u V u v s o ±= 正负号的确定 : 0远离来确定时,根据相互靠近还是、当≠s o V V 三、注意的问题 1 两非相干的声波叠加时,声强可简单相加,而声强级不能简单相加 2 标准声强 2120/ 10m w I -=

医用物理学公式汇总

1.连续性方程(equation of continuity ):在定常流动中,同一流管的任一截面处的流体密度、流速和该截面面积的乘积为一常量。 ρ1S 1υ1 =ρ2S 2υ2 或 ρS υ=常量 对于不可压缩流体,即ρ1 =ρ2 S 1υ1 = S 2υ2 或 S υ=常量 体积流量(S υ)简称流量(Q ) 2.伯努利方程:只适用于理想流体的定常流动 3. 雷诺数 由雷诺数判断流动类型 R e <1000时,流体作层流; R e >2000时,流体作湍流; 1000

医用物理学作业答案

医用物理学作业答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 第三章 流体的运动 3-5水的粗细不均匀的水平管中作稳定流动,已知在截面S 1处的压强为110Pa ,流速为0.2m/s ,在截面S 2处的压强为5Pa ,求S 2处的流速(内摩擦不计)。 解:根据液体的连续性方程,在水平管中适合的方程: =+21121ρυP 22221ρυ+P 代入数据得: 22323100.12152.0100.121110υ????=???+ 得 )/(5.02s m =υ 答:S 2处的流速为0.5m/s 。 3-6水在截面不同的水平管中作稳定流动,出口处的截面积为最细处的3倍,若出口处的流速为2m/s ,问最细处的压强为多少若在此最细处开个小孔,水会不会流出来 解:将水视为理想液体,并作稳定流动。设管的最细处的压强为P 1,流速为 v 1,高度为h 1,截面积为S 1;而上述各物理量在出口处分别用P 2、v 2、h 2和S 2表 示。对最细处和出口处应用柏努利方程得: =++121121gh P ρρυ222221gh P ρρυ++ 由于在水平管中,h 1=h 2 =+21121ρυP 22221ρυ+P 从题知:S 2=3S 1 根据液体的连续性方程: S 1υ1 = S 2υ2

3 ∴ 212112213/3/υυυ===S S S S V 又 Pa P P 50210013.1?== ∴ 2 22201)3(2 121υρρυ-+=P P =2204ρυ-P =235210410013.1??-? Pa 510085.0?= 显然最细处的压强为Pa 510085.0?小于大气压,若在此最细处开个小孔,水不会流 出来。 3-7在水管的某一点,水的流速为2 cm/s ,其压强高出大气压104 Pa,沿水管到另一点高度比第一点降低了1m ,如果在第2点处水管的横截面积是第一点处的二分之一,试求第二点处的压强高出大气压强多少? 解:已知:s m s cm /102/221-?==υ, a p p p 40110+=, m h 11=, 2/1/12=s s , 02=h , x p p +=02 水可看作不可压缩的流体,根据连续性方程有:2211v s v s =,故2 112s v s v = =21v 又根据伯努利方程可得:

《医学物理学》理论教学大纲(临床医学等)

《医学物理学》理论教学大纲 (供五年制本科临床医学、口腔医学等专业使用) Ⅰ前言 医学物理学是高等医学教育中的一门专业基础课程。它的任务和目的是:使学生比较系统地掌握医学科学所需要的物理学基础理论、基本知识、基本技能,培养学生辩证唯物主义世界观和观察问题、分析问题、解决问题的能力,为学生学习后续课程以及将来从事医疗卫生、科学研究工作打下必要的物理基础。教学容是以高中毕业为起点,以学习医学科学所需要的物理“三基”容为主,对物理学与医学联系密切相关的容应作比较广泛和深入的讨论,但主要是针对这些医学问题中的物理学原理,不应过多地涉及具体的医学容。对于那些为了保持物理学体系所必须保留而又与中学重复的容,要求学生掌握,但不作讲授。对于全新的或是根据专业需要应加强的容,即是教师讲授和要求学生掌握的容,也应做到少而精,既保证教学质量又不使学生负担过重。 在教学法上要充分调动和发挥学生学习的积极性和主动性。为了巩固所学的知识,应布置适当数量的习题作业,并介绍一些课外参考书,以扩展学生的眼界和思路。 本大纲适用于五年制本科临床医学、急救医学、麻醉学、医学美容、妇产科学、口腔医学、五官科学、医学影像学、医学检验专业(方向)使用。现将大纲使用中有关问题说明如下: 一为了使教师和学生更好地掌握教材,大纲中每一章节均由教学目的、教学要求和教学容三部分组成。教学目的注明教学目标,教学要求分掌握、熟悉和了解三个级别,教学容与教学要求级别对应,并统一标示(核心容即知识点以下划实线,重点容以下划虚线,一般容不标示)便于学生重点学习。 二教师在保证大纲核心容的前提下,可根据不同教学手段,讲授重点容和介绍一般容。 三医学物理学总教学参考学时为60学时,理论与实验学时之比为2.75∶1。即理论课44学时实验课为16学时。 四教材:<<医学物理学>>,人民卫生,胡新珉,6版,2004年。 Ⅱ正文 绪论 一教学目的 通过对物理学研究对象的了解,弄清楚物理学与生命科学的关系。搞清楚医学生为什么要学习物理学。 二教学要求 (一)了解物理学的研究对象; (二)了解物理学与生命科学的关系。 三教学容 (一)物理学的研究对象;

医用物理学大一期中复习提纲

医用物理前半学期知识点总结 整理:临五四班物理小组 第一章:流体力学 流体:具有流动性的物体(气体和液体) 流体力学:研究流体运动及与其中的物体之间相互作用规律 应用:血液的动力学,与血液流动相关的现象,如粘度,血压等 学习要求: 掌握: 液体连续性原理,柏努利方程泊肃叶公式 熟悉: 粘滞系数、牛顿粘滞系数 了解: 血循环系统的血液的速度和血压变化、血压测量、雷诺数 第一节 理想液体的流动(Flow of ideal liquid) 流体的性质:流体是一种可以流动的物质,流体包括空气的液体 ? 能承受很大的压力 ? 能适应任何形状的容器 ? 无法承受拉力 理想液体:绝对不可压缩、无粘滞性的液体。 稳定流动:每一定点的液体的速度不随时间而变的流动。 (实际和理想液体均可有稳定流动) 流线的切线方向,该点液体流动方向. 流管:由一系列流线组成的周围封闭,二端开口的管状物 液流连续原理: (Q 流量,同一流管的流量为恒量 横截面大的,流速小) Q v S v S ==2211

适用范围: 不可压缩液体的稳定流动 同一流管中任意二个垂直于流管的截面 实际和理想液体均可适用 理想液体在同一垂直于流管截面处各点流速相同。而实际液体是不同的,由该截面的平均流速来代替液流连续原理的流速。 思考:水笼头流出的水为什么会变得越来越细? 伯努利方程: 适用范围; ? 同一流管 ? 理想液体 讨论:由于理想液体在运动时,没有与运动方向平行的切向力作用, 所以任一点的压强只与位置有关,与方位无关。 同一高度处,流速越大,压强就越小。 例:求 PA 、 PC 及等粗细管中的流速。 答案: 例:如图所示,大容器底部接一根粗细不均的竖直细管BC ,B 处横 B B B A A A P gh v P gh v ++=++ρρρρ2 22 12140gh P P A ρ-=) (430h h g P P c +-=ρ

医用物理学公式总结-精品推荐

三 流体的流动 一、基本概念 1 理想液体 2 稳定流动 3 层流与湍流 流量 流阻 粘度 二、基本定律及定理 1 连续性方程 2 211v s v s Q sv == 2 伯努利方程 2 2 2212112 2 121 2 1gh v p gh v p E gh v p ρρρρρρ++=++=++ 3 牛顿粘滞定律 dx dv s F η = 4 泊肃叶定律 l P P r Q R P Q ηπ8)(214-= ?= 三、重要结果及结论 1 小孔流速问题 h g v ?= 2 2 测速、测流量问题 (皮托管,汾丘里管) 3 空吸与虹吸现象 4 实际流体的能量损耗 )2 1()21( 2222121112gh v p gh v p E ρρρρ++-++ =? 四 振动 一、基本概念 1 振动 简谐振动 简谐振动的矢量图示法 2 振幅 初相位 相位 圆频率 周期

3 振动能量 4 振动的合成(同方向同频率;垂直方向同频率) 5 相位差 同相 反相 二、基本规律及重要公式 1 简谐振动方程 )cos(?ω+=t A x 2 2 0)( x v tg v x A ω?ω -=+= 2 简谐振动能量 2222 1 21A m kA E ω== 三、注意的问题 1 已知初始条件及振动系统性质,求振动方程 (求?=?) 2 两振动叠加时,相位差的计算 五 波 一、基本概念 1 波速 波长 频率 v u λ= 2 波动 简谐波的波动方程及其物理意义cos[()] cos() x y A t u y A t kx ωφωφ=- +=-+ 3 波的叠加原理 4 声速u 5 振动速度 声压 声特性阻抗 Z p v A v u Z m m m = == ,,ωρ 6 声强 声强级 响度 响度级 ) (lg 102210 222 2dB I I L Z p Z p uA I e m == ==ωρ

医用物理学练习题 答案

1.《医用物理学》教学要求骨骼肌、平滑肌的收缩、张 应力、正应力、杨氏模量、 2.理想流体、连续性方程、伯努利方程 3.黏性液体的流动状态 4.收尾速度、斯托克斯定律 5.附加压强 6.表面张力系数、表面活性物质 7.毛细现象 8.热力学第一定律 9.热力学第一定律在等值过程中的应用(等压、等温) 10.热力学第二定律 11.电动势、稳恒电流 12.一段含源电路的欧姆定律 13.基尔霍夫定律应用 14.复杂电路:电桥电路 15.简谐振动的初相位

16.平面简谐波的能量、特征量(波长、频率、周期等) 17.光程、相干光 18.惠更斯原理 19.双缝干涉 20.单缝衍射 21.光的偏振 22.X射线的产生条件 23.X射线的衰减 24.标识X射线的产生原理 25.X射线的短波极限 26.放射性活度 27.放射性原子核衰变方式 28.半衰期、衰变常数、平均寿命 29.辐射防护 医用物理学练习题 练习一

1-1.物体受张应力的作用而发生断裂时,该张应力称为( D ) A .范性 B .延展性 C .抗压强度 D .抗张强度 1-2平滑肌在某些适宜的刺激下就会发生( A ) A .自发的节律性收缩 B .等宽收缩 C .不自主收缩 D .等级收缩 1-3.骨骼肌主动收缩所产生的张力和被动伸长所产生的张力的关系是( C ) A .不等于 B .小于 C .大于 D .近似等于 1-4.头骨的抗压强度为×108Pa ,如果质量为1kg 的重物,竖直砸到人的头上,设 重物与头骨的作用时间为1×10-3s ,作用面积为0.4cm 2,问重物离头顶至少多高下 落才会砸破人的头骨? 解: 头骨的抗压强度N 108.6104.0107.1348?=???==-S F σ 根据机械能守恒可得 22 1v m mgh = 因此有 g h 22 v = 根据动量定理有v m t F =? 求v 代入上式得 1-5.说明正应力、正应变和杨氏模量的定义以及它们之间的关系。 答:垂直作用在物体某截面上的内力F 与该截面面积S 的比值,称为物体在此截 面处所受的正应力。物体在正应力作用下,长度改变量△l 和物体的原长度l 0之

gaozhi 医用物理学知识点

机械波机械振动在弹性介质中的传播就形成了机械波。机械波是振动状态(相位)的传播,波动过程是一种能量的传播过程。机械波产生的条件:波源和弹性介质。机械波分为横波和纵波。 机械波的几何描述波面:在波的传播介质中作出振动相位相同的各点的轨迹,这种轨迹称为波面;波前:最前面的波面。波线:表示波的传播方向带有箭头的线。 描述波的物理量波速u:单位时间内振动状态(振动的相位)传播的距离。波长λ:波线上两个相差为2π的点之间的距离。周期T:波线上某一点通过一个完整波所需的时间;频率ν:单位时间内波线上某一点通过完整波的数目。 惠更斯原理介质中波前上的每一点都可看作是发射子波的波源,在其后的任一时刻,这些子波的包迹就是该时刻的新波前。 波的叠加原理几列波同时在同一介质中传播时,无论相遇与否,都保持各自原有的特性(频率、波长、振动方向等),并按照各自原有的方向继续前进,各波独立传播互不影响;在相遇处,任一质点的位移是各列波单独存在时在该点引起的振动位移的矢量和。 波的干涉波的相干条件:两波源振动方向相同、频率相同、初相相等或相差恒定。两相干声波频率在20-20000Hz 的机械振动在弹性介质中传播,且能引起人的听觉声压介质中有声波传播时某点的压强和无声波传播时该点的压强(静压强)之差p,p=(P-P0)。反映声波的强弱 声阻抗声波在介质中传播的阻力,它是用来表征介质传播声波能力特性的一个物理量。平面声波的声阻抗为Z=ρu 响度声音的强弱叫做响度,响度是人主观感觉到的声音强弱,即声音的响亮程度 多普勒效应由于波源或者观察者的运动,造成观测频率与波源频率不同的现象,称为

多普勒效应νν?±= s v u v u 0'式中,观测者向波源运动时,v0前取正号,离开时取负号;波源向着观测者运动时,vs 前取负号,离开时取正号。 理想流体绝对不可压缩、完全没有黏性的流体。 定常流动流场中各点的流速不随时间变化,即.)..(z y x υυ=。 连续性方程 流体做定常流动时,同一流管中任一截面处的流体密度ρ、流速v 和该截面面积S 的乘积为一常量。即:常量=S ρυ。S ρυ称为质量流量,因此连续性方程又称为质量流量守恒定律。 如果研究的是不可压缩流体,则有:常量=S υ。S υ称为体积流量,此时连续性方程称为体积流量守恒定律。 伯努利方程理想流体在流管中作稳定流动时,单位体积的动能、单位体积的重力势能以及该点的压强之和为一常量。伯努利方程的应用空吸作用; 层流流体的分层流动状态。 湍流在垂直于流层的方向有分速度,因而各流体层将混淆起来,并有可能形成旋涡,整个流动显得杂乱而不稳定。 表面张力液体的表面如紧张的弹性薄膜,有收缩成表面积最小的趋势。 比例系数α叫做液体的表面张力系数。它表示单位长度直线两旁的液面的相互拉力,是作用在单位长度分界线上的表面张力,单位1 -?m N 。不同的液体表面张力系数α不同。同一种液体的α值随温度的升高而减小。 表面能增加液体单位表面积所做的功。从能量角度看,表面张力系数的大小等于增加单位表面积时所增加的表面自由能。 1. 液面是凸的,液面内的压强比液面外的压强大,p ?取正值;反之,如果液面是凹的,液面内的压强小于液面外的压强,p ?取负值。 毛细现象 1. 内聚力小于附着力,表现液体润湿固体。当θ为锐角时,液体润湿固体,θ越小,液体越容易润湿固体;θ=0时,液体完全润湿固体; 2. 内聚力大于附着力,则表现液体不润湿固体。θ为钝角时,液体不润湿固体,θ越大,

关于医用物理学公式大全

经过我一上午奋战终于完成了这个属于医学院的 物理复习大纲 一、 基本概念 1 理想液体 2 稳定流动 3 层流与湍流 流量 流阻 粘度 二、基本定律及定理 1 *连续性方程 2 211v s v s Q sv == 2 *柏努利方程 2 2 2212112 2 121 2 1gh v p gh v p E gh v p ρρρρρρ++=++=++ 3 *泊肃叶定律 l P P r Q R P Q ηπ8)(214-= ?= 4 牛顿粘滞定律 dx dv s F η=

三、重要结果及结论 1 小孔流速问题 h g v ?=2 2 测速、测流量问题 (皮托管,汾丘里管) 3 实际流体的能量损耗 )2 1()21( 2222121112gh v p gh v p E ρρρρ++-++ =? 4 雷诺数及判据 η ρvr = Re 四、注意的问题 空气中有大气压 Pa P 5010013.1?= 水的密度 3 kg/m 1000=ρ 空吸与虹吸现象

振动和波 一、 基本概念 1 振动 简谐振动 谐振动的矢量表示 2 振幅 初相位 圆频率 周期 3 波速 波长 频率 v u λ= 4 振动的合成(同方向、同频率) 5 相位差 同相 反相 6 波动 波动方程的物理意义 7 波的叠加原理 二、 基本规律及重要公式 1 *简谐振动方程 )cos( ?ω+=t A x 2 谐振动能量 2222 1 21A m kA E ω==

3 *简谐波的波动方程 ])(cos[?ω+- =u x t A y 4 波的强度公式 222 1 ωρuA I = 球面波 21 2211221)(,r r I I r r A A == 5 惠更斯原理 6 *波的干涉 )(21212r r -- -=?λ π ??? 干涉加强 2 112122)(2A A A k r r +==---=?π λ π ??? 干涉减弱 2 11212)12()(2A A A k r r -=+=---=?π λ π ??? 三、注意的问题 1、已知初始条件及振动系统性质,求振动方程 (求?=?) 2、已知振动方程,求波动方程 (确定时间上是落后还是超前 ?u x μ ) 3、两振动、波动叠加时,相位差的计算

医用物理学课后习题参考答案

医用物理学课后习题参考答案 第一章 1-1 ① 1rad/s ② 6.42m/s 1-2 ① 3.14rad/s - ② 31250(3.9310)rad π? 1-3 3g =2l β 1-4 1W=g 2 m l 1-5 ① 22k E 10.8(1.0710)J π=? ② -2M=-4.2410N m ?? ③ 22W 10.8(1.0710)J π=-? 1-6 ① 26.28rad/s ② 314rad ③ 394J ④ 6.28N 1-7 ① ω ② 1g 2 m l 1-8 ① =21rad/s ω ② 10.5m/s 1-9 ① =20rad/s ω ② 36J ③ 23.6kg m /s ? 1-10 ① 211=2ωω ②1=-2 k k1E E ? 1-11 =6rad/s ω 1-12 12F =398F 239N N = 1-13 ① 51.0210N ? ② 1.9% 1-14 ① 42210/N m ? ② 52410/N m ? 1-15 ① -65m(510)m μ? ② -31.2510J ? 第三章 3-1 -33V=5.0310m ? 3-2 ① 12m/s ② 51.2610a P ? 3-3 ① 9.9m/s ② 3 6.0m

3-4 ①-221.510;3.0/m m s ? ② 42.7510a P ? ③粗处的压强大于 51.2910a P ?时,细处小于P 0时有空吸作用。 3-5 主动脉内Re 为762~3558,Re <1000为层流,Re >1500为湍流, 1000< Re <1500为过渡流。 3-6 71.210J ? 3-7 0.77m/s 3-8 ①3=5.610a P P ?? ②173=1.3810a P s m β-???③-143Q=4.0610/m s ? 3-9 0.34m/s 3-10 431.5210/J m ? 第四章 4-1 -23S=810cos(4t )m 2 ππ?+ 或-2-2S=810cos(4t-)m=810sin 4t 2π ππ?? 4-2 ① ?π?= ② 12t=1s S 0, S 0==当时, 4-3 ① S=0.1cos(t-)m 3π π ②5t (0.833)6 s s ?= 4-4 ①-2S=810cos(2t-)m 2π π? ② -2=-1610s in(2t-)m/s 2v π ππ?; 2-22a=-3210cos(2t-)m/s 2π ππ?③k E =0.126J 0.13J;F=0≈. 4-5 ①max =20(62.8)m/s v π ②242max a =4000 3.9410m/s π=? ③22321E=m A =1.9710J=200J 2 ωπ? 4-6 ①2A 5.010,=4,T=0.25,=1.25m Hz s m νλ-=? ② -2S=5.010cos8(t-)0.5 x m π?

相关文档
最新文档