酶固定化方法及载体特性

合集下载

酶的固定化技术

酶的固定化技术

摘要:酶的固定化技术是用固体材料将酶束缚或限制于一定区域内,酶仍能进行其特有的催化反应、并可回收及重复利用的一类技术。

酶的固定化技术已经成为酶应用领域中的一个主要研究方向。

经固定化的酶与游离酶相比具有稳定性高、回收方便、易于控制、可反复使用、成本低廉等优点,在生物工业、医学及临床诊断、化学分析、环境保护、能源开发以及基础研究等方面发挥了重要作用。

因此酶的固定化技术研究已成为十分引人注目的领域。

本文简要介绍了固定化酶技术的概念、制备方法(包括传统固定化技术、传统固定化技术的改进方法、新型固定化技术) 及其在化学化工、食品行业、临床医药、生物传感器和环境科学等领域中的应用现状与存在的问题,并对固定化酶技术的应用前景进行了展望。

关键词:固定化酶;制备;应用;磁性载体;定向固定固定化酶的研究始于1910年,正式研究于20世纪60年代,70年代已在全世界普遍开展。

酶的固定化(Immobilization of enzymes)是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应、并可回收及重复利用的一类技术。

与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶的不足之处,呈现贮存稳定性高、分离回收容易、可多次重复使用、操作连续可控、工艺简便等一系列优点。

固定化酶不仅在化学、生物学及生物工程、医学及生命科学等学科领域的研究异常活跃,得到迅速发展和广泛的应用,而且因为具有节省资源与能源、减少或防治污染的生态环境效应而符合可持续发展的战略要求。

固定化酶的制备方法有物理法和化学法两大类。

物理方法包括物理吸附法、包埋法等。

物理法固定酶的优点在于酶不参加化学反应,整体结构保持不变,酶的催化活性得到很好保留。

但是,由于包埋物或半透膜具有一定的空间或立体阻碍作用,因此对一些反应不适用。

化学法是将酶通过化学键连接到天然的或合成的高分子载体上,使用偶联剂通过酶表面的基团将酶交联起来,而形成相对分子量更大、不溶性的固定化酶的方法。

酶及细胞固定化技术

酶及细胞固定化技术

酶及细胞固定化技术酶作为生物体内的催化剂,具有高效性和高特异性的特点。

但在工业生产中,酶稳定性差、易流失,造成成本过高,限制其广泛应用。

因此将酶采用固定化技术,使酶在发挥其高效、专一性同时,还能增强酶的贮存稳定性,提高了生产效率,节约了成本。

本文对酶和细胞的固定化技术进行综述。

【关键词】酶细胞固定化载体应用酶及细胞固定化技术是生物技术的重要组成部分。

20世纪60年代出现了固定化酶技术,60年代末固定化酶技术用于工业生产,70年代出现了固定化细胞技术,80年代又发展了固定化增殖细胞技术以及包括辅助因子在内的固定化多酶反应体系技术。

工程技术日益成熟,成为近代工业生产中不可缺少的组成部分。

所谓固定化技术,是指利用化学或物理手段将游离的酶或细胞(微生物),定位于限定的空间区域并使其保持活性和可反复使用的一种基本技术,包括固定化酶技术和固定化细胞技术。

固定化细胞的制备方法是多种多样的,任何一种限制细胞自由流动的技术,都可以用于制备固定化细胞。

一般来说,固定化技术大致可以分成吸附法、共价结合法、交联法和包埋法等4大类,其中以包埋法使用最为普遍。

一、固定化技术分类1.吸附法很多细胞都有吸附到固体物质表面的能力,这种吸附能力可以是天生具有的,也可以是经过处理诱导产生的,依靠这种吸附能力,人们发展起许多廉价而又有效的固定化方法。

吸附法可分为物理吸附法和离子吸附法,前者是使用具有高度吸附能力的硅胶、活性炭、多孔玻璃、石英砂和纤维素等吸附剂将细胞吸附到表面上使之固定化,是一种最古老的方法,操作简单、反应条件温和、载体可以反复利用,但结合不牢固,细胞易脱落。

后者根据细胞在解离状态下可因静电引力(即离子键合作用)而固着于带有相异电荷的离子交换剂上,如DEAE-纤维素、DEAE-Sephadex、CM-纤维素等。

2.共價结合法共价结合法是细胞表面上功能团和固相支持物表面的反应基团之间形成化学共价键连接,从而成为固定化细胞。

固定化酶的方法

固定化酶的方法

固定化酶的方法
固定化酶是将酶固定在载体上,形成固定化酶,具有高效、稳定、重复使用等优点。

下面是一种常用的固定化酶方法。

材料:
- 酶
- 载体(如聚丙烯脂、硅胶、玻璃等)
- 活性剂(如戊二醛、双醛、聚乙二醇等)
- 缓冲液(如PBS缓冲液)
- 洗涤液(如去离子水或PBS缓冲液)
步骤:
1. 制备载体:将载体清洗干净并消毒,然后在室温下干燥或烘干。

2. 固定化酶:将制备好的载体浸泡在含有活性剂的缓冲液中,搅拌均匀。

然后加入适量的酶,搅拌均匀并放置一段时间(根据不同的活性剂和载体类型,时间不同)。

最后用洗涤液洗净固定化酶。

3. 检测固定化酶活性:采用适当的方法检测固定化酶的活性,如比色法、荧光法等。

4. 贮存固定化酶:将固定化酶保存在干燥、阴凉、密闭的容器中,避免受潮和受热。

注意事项:
1. 活性剂的选择应根据酶的特性和载体的特点进行选择。

2. 固定化酶活性与载体、活性剂、酶的比例等因素有关,需要进行优化实验。

3. 贮存时要避免温度过高或过低,否则会影响固定化酶的稳定性和活性。

以上是一种常用的固定化酶方法,具体操作时应根据实验要求和条件进行调整。

固定化酶的方法和应用

固定化酶的方法和应用

固定化酶是将酶固定在载体上,形成固定化酶催化系统的过程。

通过固定化,可使酶的活性和稳定性得到提高,并能够重复使用。

常用的固定化酶方法包括吸附法、共价连接法、包埋法和交联法等。

1. 吸附法:利用载体表面与酶相互吸附的原理将酶固定在载体表面。

常用的载体包括硅胶、纤维素、聚丙烯酰胺凝胶等。

2. 共价连接法:通过将酶分子与载体分子之间的化学键共价连接,在载体表面上固定酶。

常用的共价连接剂包括辛二酸二酐、戊二酸二酐等。

3. 包埋法:将酶包裹在聚合物中,在聚合物内部形成微观环境,保护酶免受外界环境的影响。

常用的包埋材料包括明胶、蛋白质和聚乙烯醇等。

4. 交联法:将酶和载体分子之间形成交联结构,将酶牢固地固定在载体表面上。

常用的交联剂包括戊二醛、葡萄糖等。

固定化酶在生物技术、食品工业、医药工业等领域有着广泛的应用。

其中,利用固定化酶在生物技术领域中最为突出。

例如,固定化酶可以应用于产生大量纯度高的特定酶,用于DNA重组、制备抗体和识别特定分子等。

此外,在医药工业中也广泛使用固定化酶,如利用固定化酶制备药物、检测生物标志物等方面。

在食品工业中,固定化酶可用于生产乳制品、果汁、啤酒等食品中。

总之,固定化酶是一种重要的生物技术手段,具有广泛应用前景,可推动生物技术、食品工业、医药工业等领域的发展。

固定化酶方法

固定化酶方法

固定化酶方法固定化酶技术是一种将酶固定在载体上使其具有更好稳定性和重复性的技术,也被称为酶固定化技术。

这种技术已经广泛应用于许多领域,比如制药、食品工业、环境科学等等。

固定化酶技术具有许多优点,如升高反应效率,增加反应速度,降低成本等。

实际上,固定化酶技术主要分为物理固定化方法和化学固定化方法两种。

物理固定化方法是基于酶与载体的物理吸附作用进行的,目前常用的载体有玻璃、硅胶、氧化铝等。

物理固定化酶过程易于操作,不需要特殊合成或化学反应,但缺点是固定酶效果可能不稳定,在重复反应中会出现活性的波动。

化学固定化方法通常依赖于特定的化学反应,比如交联反应、胆碱化等等,其中最常见的固定化方法是交联方法。

交联反应可以使酶和载体之间形成化学键,从而实现酶的固定化。

但需要注意的是,化学固定化方法可能会对酶的活性造成影响,导致固定化后酶的活性有所降低。

当然,不同的酶有不同的理想固定化方法,因此可以根据具体需求选择合适的方法。

在确定固定化酶的方法后,下一步是在合适的载体上固定酶。

常用的载体有硅胶、高分子材料、金属氧化物、碳材料等。

硅胶比较容易制备,成本较低,不过硅胶的稳定性和操作适用广度可能不如其他材料。

高分子材料如聚醚酮、聚酰亚胺等对大多数酶具有较好的稳定性和活性保持能力。

而金属氧化物和碳材料则具有出色的化学和物理稳定性,但同时也比较昂贵。

固定化酶的方法选择后,就可以进行实验。

首先需要对酶进行预处理,清洗、去溶剂或悬浮剂等处理,以保证酶在固定化过程中的活性。

然后将酶溶液滴到载体上,等待载体干燥,可以在常规温度下进行干燥。

接下来,可以进行酶的特性分析,比如酶的活性、稳定性、寿命等等。

总之,固定化酶技术是一种广泛应用于不同领域的方法,具有许多优点。

选择合适的载体和固定化方法可以大大提高酶的稳定性和活性,但需要了解不同的载体和固定化方法对酶活性的影响,选择最适合的固定化方法。

固定化酶和固定化细胞的制作方法

固定化酶和固定化细胞的制作方法

固定化酶的制作方法固定化酶的方法主要有吸附法、包埋法、共价结合法、共价交联法、结晶法(一)、吸附法吸附法是通过载体表面和酶分子表面间的次级键相互作用而达到固定目的的方法。

只需将酶液与具有活泼表面的吸附剂接触,再经洗涤除去未吸附的酶便能制得固定化酶。

是最简单的固定化技术,在经济上也最具有吸引力.物理吸附法(physical adsorption)是通过氢键、疏水键等作用力将酶吸附于不溶性载体的方法。

常用的载体有:高岭土、皂土、硅胶、氧化铝、磷酸钙胶、微空玻璃等无机吸附剂,纤维素、胶原以及火棉胶等有机吸附剂。

离子结合法(ion binding)是指在适宜的pH和离子强度条件下,利用酶的侧链解离基团和离子交换基间的相互作用而达到酶固定化的方法(离子键)。

最常用的交换剂有CM-纤维素、DEAE-纤维素、DEAE-葡聚糖凝胶等;其他离子交换剂还有各种合成的树脂如Amberlite XE-97、Dowe X-50等。

离子交换剂的吸附容量一般大于物理吸附剂。

影响酶蛋白在载体上吸附程度的因素:1. pH:影响载体和酶的电荷变化,从而影响酶吸附。

2. 离子强度:多方面的影响,一般认为盐阻止吸附。

3. 蛋白质浓度:若吸附剂的量固定,随蛋白质浓度增加,吸附量也增加,直至饱和。

4. 温度:蛋白质往往是随温度上升而减少吸附。

5. 吸附速度:蛋白质在固体载体上的吸附速度要比小分子慢得多。

6. 载体:对于非多孔性载体,则颗粒越小吸附力越强。

多孔性载体,要考虑吸附对象的大小和总吸附面积的大小。

吸附法的优点:操作简单,可供选择的载体类型多,吸附过程可同时达到纯化和固定化的目的,所得到的固定化酶使用失活后可以重新活化和再生。

吸附法的缺点:酶和载体的结合力不强,会导致催化活力的丧失和沾污反应产物;经验性强。

(二)、包埋法包埋法是将酶物理包埋在高聚物网格内的固定化方法。

(如将聚合物的单体和酶溶液混合后,再借助聚合促进剂的作用进行聚合,将酶包埋于聚合物中以达到固定化的目的)。

酶的固定化技术及其应用

酶的固定化技术及其应用

酶的固定化技术及其应用酶是一种特殊的蛋白质,与许多生物化学反应密切相关,具有高效、高选择性、温和、环保等特点。

在工业、医学、食品、环保等领域都有广泛应用。

然而,如何提高酶的稳定性、重复使用性和机械强度是困扰工业应用的难题之一。

为了解决这个问题,固定化技术应运而生。

酶的固定化技术就是将酶固定到材料(如载体)上,使其成为固定化酶,从而提高酶的使用效率和经济效益。

一、酶的固定化技术酶的固定化技术包括物理固定化和化学固定化。

物理固定化是通过物理方法将酶与材料(如基础材料、载体)相结合,如吸附、包埋、凝胶包埋、膜过滤和微胶囊化等。

其中,吸附是最简单的一种物理固定化方法,即利用酶与基础材料之间的亲和力和静电作用等力学相互作用,将酶吸附到基础材料表面。

包埋是将酶载入一些多孔性材料(如明胶、珍珠岩等)中,使其均匀分布并且不受外界干扰。

凝胶包埋是在酶和载体之间形成一层凝胶层,使其达到一定程度的稳定性和机械强度。

膜过滤是将酶与载体固定在一起形成一层膜,具有高稳定性和机械强度。

微胶囊化是将酶包裹在微小的液滴或固体颗粒中,使其与空气或水隔绝,从而达到保护酶和提高酶效率的目的。

化学固定化是通过化学反应将酶与载体(如聚合物)之间共价键结合,如酯键结合、缩合反应、复杂化等。

其中最常用的是酯键结合,通过酶与载体表面上的羟基基团或羧酸基团形成酯键,从而将酶与载体结合到一起。

二、酶的固定化技术的应用酶的固定化技术在工业生产、医学诊断、食品加工、环境保护等领域都有着广泛的应用。

在工业领域,酶的固定化技术可以解决酶的稳定性和重复使用性问题,使酶的使用效率和经济效益大大提高。

在制药工业中,高浓度酶的固定化技术可以减少酶的挥发和失活,提高酶的活性和体积双重物质利用率。

在纺织、皮革等行业中,酶的固定化技术可以大大提高酶的反复使用率,减少酶的污染和纤维断裂。

在食品加工领域,制备、酵素提取等就是酶的固定化技术的广泛应用。

例如,乳品加工中常用的乳清酶解和芝士、酸奶等的制造就是利用酶的固定化技术。

酶的固定化方法

酶的固定化方法

酶的固定化方法1. 基本介绍酶的固定化技术是将活性酶分子吸附到不溶性载体上的技术,这些载体包括有机支架,金属合金,无机型号,复合支架,生物大分子和石墨。

与溶液型酶相比,固定化酶具有良好的耐热性,耐久性和稳定性。

可以在恒定的温度和pH值下多次重复使用,这使得固定化酶可以广泛应用于生物工程,食品技术和保健产品的制备中。

2. 固定化酶的优势(1)保持酶活性。

固定化酶能够有效地防止反应补充的游离酶的出现,充分保持其最初的功能和活性,极大地提高了反应中酶的活性和稳定性;(2)提高回收率。

固定化酶具有彼此独立的结构,可以在反应中迅速回收,特别是对于产物特性复杂的反应;(3)可扩展性强。

固定化酶可以根据应用环境的不同和操作条件的可控性,调整载体的参数;(4)可以重复使用。

固定化酶可以多次使用,可以充分利用其过程效率,减少反应次数,降低成本,提高产物纯度;(5)灵活性好,操作更加简单。

当需要调节反应中的酶功效时,可以通过简单的调节载体参数来控制。

3. 固定化酶的技术原理固定化酶主要是通过生物相容性,物理锁定,化学结合和选择性结合四种技术原理。

(1)生物相容性原理。

根据酶的物理化学性质,通过将酶与具有吸附效果的固定化载体搅拌至溶解,使酶外部改变,从而结合到固定体上,形成固定化酶。

(2)物理锁定原理。

通过将因子与特定形状的载体结合,物理力把酶和载体牢牢地结合在一起,形成固定化酶。

(3)化学结合原理。

通过改变因子的外部,形成含有非共价或共价结合的表面带正或负电荷,从而使酶能够结合至具有与之相匹配的电荷的固定体上,形成固定化酶。

(4)选择性结合原理。

通过给载体表面施加疏水或疏水性物质,形成选择性的活性基团,使载体具有低特异性,从而将酶与相应特异性表面结合,形成固定化酶。

4、固定化酶的方法固定化酶有多种固定化方法,如电冻定,脂质包覆,杂化,冻胶,结合支架和表面修饰等。

(1)电冻定:电冻定是一种通过电泳技术将酶通过载体电泳固定在离心管内壁上的一种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

酶固定化一般方法及载体特性
酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,在制药、食品、环保、酿造、能源等领域都得到了广泛的应用。

但在实际应用中,酶也存在许多不足,如大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活,不够稳定;与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用,这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产;并且分离纯化困难,也会导致生产成本的提高等。

固定化酶(immobilized enzyme)这个术语是在1971 年酶工程会议上被推荐使用的。

随着固定化技术的发展,出现固定化菌体。

1973年,日本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨酸酶,由反丁烯二酸连续生产L-天门冬氨酸。

固定化酶技术为这些问题的解决提供了有效的手段,从而成为酶工程领域中最为活跃的研究方向之一。

1酶固定化的传统方法
关键在于选择适当的固定化方法和必要的载体以及稳定性研究、改进,酶载体推荐创科催化酶载体树脂。

1.1 吸附法
吸附法是利用物理吸附法,将酶固定在纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等载体上的固定方式。

显著特点是:工艺简便及条件温和,包括无机、有机高分子材料,吸附过程可同时达到纯化和固定化;酶失活后可重新活化,载体也可再生。

但要求载体的比表面积要求较大,有活泼的表面。

1.2包埋法
包埋固定化法是把酶固定聚合物材料的格子结构或微囊结构等多空载体中,而底物仍能渗入格子或微囊内与酶相接触。

这个方法比较简便,酶分子仅仅是被包埋起来,生物活性被破坏的程度低,但此法对大分子底物不适用。

1)网格型
将酶或包埋在凝胶细微网格中,制成一定形状的固定化酶,称为网格型包埋法。

也称为凝胶包埋法。

2)微囊型
把酶包埋在由高分子聚合物制成的小球内,制成固定化酶。

由于形成的酶小球直径一般只有几微米至几百微米,所以也称为微囊化法。

1.3结合法
酶蛋白分子上与不溶性固相支持物表面上通过离子键结合而使酶固定的方法,叫离子键结合法。

其间形成化学共价键结合的固定化方法叫共价键结合法。

共价键结合法结合力牢固,使用过程中不易发生酶的脱落,稳定性能好。

该法的缺点是载体的活化或固定化操作比较复杂,反应条件也比较强烈,所以往往需要严格控制条件才能获得活力较高的固定化酶。

1.4交联法
交联法是用多功能试剂进行酶蛋白之间的交联,使酶分子和多功能试剂之间形成共价键,得到三向的交联网架结构,除了酶分子之间发生交联外,还存在着一定的分子内交联。

多功能试剂制备固定化酶方法可分为:( 1) 单独与酶作用;( 2) 酶吸附在载体表面上再经受交联;( 3) 多功能团试剂与载体反应得到有功能团的载体,再连接酶。

交联剂的种类很多,最常用的是戊二醛,其他的还有异氰酸衍生物、双偶氮二联苯胺、N,N-乙烯马来酰亚胺等。

交联法的优点是酶与载体结合牢固,稳定性较高;缺点是有的方法固定化操作较复杂,进行化学修饰时易造成酶失活。

2固定化载体的要求
固定化酶载体应具备以下要求大体上有:
1)在酶催化反应过程的惰性:载体应不与底物、产物及介质发生反应。

2)有良好的渗透性:制备成柱子后,能使底物和产物能快速通过减少吸附。

3)有生物亲和性和相容性,有利于酶活力发挥和稳定。

4)有较高酶负载量,载体表面能提供多个活性位点利于酶分子偶联。

其中共价键合和物理吸附类酶载体树脂主要有创科催化的环氧功能基树脂、阴离子和阳离子交换树脂和大孔吸附树脂。

相关文档
最新文档