二次函数章末测试(一)及详细解析

合集下载

九年级下册 二次函数 测试题及详细解析 XXX版

九年级下册 二次函数 测试题及详细解析 XXX版

九年级下册二次函数测试题及详细解析XXX版九年级下册第二章《二次函数》单元测试考试时间:90分钟姓名:___________班级:___________座号:___________一、选择题(每题3分,共30分)1.下列函数中,是二次函数的是()A、y=x-1B、y=2x^2+3xC、y=-x^2+y^2D、y=x+1/x2.抛物线y=-(x-2)^2-3的顶点坐标是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)3.抛物线y=-x^2向右平移1个单位,再向上平移2个单位,得到新的图象的二次函数表达式是()A。

y=-(x-1)^2+2B。

y=-(x+1)^2+2C。

y=-(x-1)^2-2D。

y=-(x+1)^2-24.把二次函数y=-1/2x^2+x+3用配方法化成y=a(x-h)^2+k的形式()A、y=-1/2(x-2)^2+3B、y=(x-2)^2+4C、y=-2(x-1)^2+2D、y=(x+2)(x-2)+35.已知A(2,y1),B(2,y2),C(-2,y3)是二次函数y=3(x-1)+k图象上三点,则y1、y2、y3的大小关系为()A。

y1>y2>y3B。

y2>y1>y3C。

y3>y2>y1D。

y2>y3>y16.二次函数y=x^2-4x-5的图象的对称轴是()A。

直线x=-2B。

直线x=2C。

直线x=-1D。

直线x=17.二次函数y=kx^2-6x+3的图象与x轴有交点,则k的取值范围是()A。

k<3B。

k<3且k≠0C。

k≤3D。

k≤3且k≠08.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm),则y与x(≤x≤8)之间的函数关系可用图象表示为()9.二次函数y=ax^2+bx+c的图象如下图所示,则反比例函数y=a/x与一次函数y=bx+c在同一坐标系中的大致图象是()二、填空题(每题4分,共20分)1.抛物线y=2x^2-4x+3的对称轴方程是x=______。

人教版初中九年级数学上册第二十二章《二次函数》阶段测试(含答案解析)(1)

人教版初中九年级数学上册第二十二章《二次函数》阶段测试(含答案解析)(1)

一、选择题1.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③B解析:B 【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③. 【详解】由图象知,抛物线与x 轴有两个交点, 方程ax 2+bx+c=0有两个不相等的实数根, ∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <, 抛物线与y 轴交于正半轴0c >, 对称轴直线为1x =-, ∴102ba-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >, ∴420a b c -+>,故③正确. 故选:B . 【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键2.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600), ∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键. 3.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y < D .当5x >时,12y y >D解析:D 【分析】当y 1=y 2,即(x ﹣2)(x ﹣m )=3x,把x =1代入得,(1﹣2)(1﹣m )=3,则m =4,画出函数图象即可求解. 【详解】解:当y 1=y 2, 即(x ﹣2)(x ﹣m )=3x, 把x =1代入得,(1﹣2)(1﹣m )=3, ∴m =4,∴y 1=(x ﹣2)(x ﹣4), 抛物线的对称轴为:x =3,如下图:设点A 、B 的横坐标分别为1,5,则点A 、B 关于抛物线的对称轴对称,从图象看在点B 处,即x =5时,y 1>y 2, 故选:D . 【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.4.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<B解析:B 【分析】把三点横坐标代入函数解析式,求出函数值,再进行比较大小即可. 【详解】解:当x=-1时,y=-2a-a-4=-3a-4; 当x=1时,y=-2a+a-4=-a-4; 当x=2时,y=-8a+2a-4=-6a-4; ∵a >0∴-6a-4<-3a-4<-a-4 ∴312y y y << 故选B 【点睛】本题考查抛物线上点的坐标特征,解答本题的关键是明确题意,可以判断y 1,y 2,y 3的大小.5.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键. 6.表格对应值:x 1 2 3 4 2ax bx c ++0.5-512.522判断关于x 的方程2ax bx c ++=的一个解x 的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<B解析:B 【分析】利用x =1和x =2所对应的函数值可判断抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x 轴的交点问题可判断关于x 的方程ax 2+bx +c =0(a≠0)的一个解x 的范围. 【详解】解:∵x =2时,y =5,即ax 2+bx +c >0; x =1时,y =-0.5,即ax 2+bx +c <0,∴抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间, ∴关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是1<x <2. 故选:B . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程. 7.抛物线()2512y x =--+的顶点坐标为( ) A .()1,2- B .()1,2C .()1,2-D .()2,1B解析:B 【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标. 【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2). 故选:B . 【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法.8.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+ B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+C解析:C 【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可. 【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y=(x-2)2+2. 故选:C . 【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.9.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<- B .2a 1-<< C .1a 0-<< D .2a 4<<C解析:C 【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9,0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C . 【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.10.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<C解析:C 【分析】由二次函数的开口方向,对称轴0x >,以及二次函数与y 的交点在x 轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可. 【详解】A 、观察图象,二次函数的开口向下,∴0a <, 与y 轴的交点在x 轴上方,∴0c >, 又∵对称轴为2bx a=-,在x 轴的正半轴上, 故02bx a=->,即0b >. ∴0abc <,故选项A 不正确;B 、观察图象,抛物线对称轴为直线12122x -+== ∴在对称轴右侧,当1x =时,函数值0y a b c =++>,故选项B 不正确;C 、观察图象,当2x =时,函数值420y a b c =++=,故选项C 正确;D 、∵二次函数与x 轴有两个交点,∴240b ac =->,故D 不正确.故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.二、填空题11.有一个二次函数的图象,三位同学分别说了它的一些特点: 甲:与x 轴只有一个交点; 乙:对称轴是直线x =4;丙:与y 轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为_____.y =(x ﹣4)2或y =﹣(x ﹣4)2【分析】根据甲乙所说的特点可知判断抛物线的顶点坐标为(40)再根据丙所说的特点可得到抛物线与y 轴的交点坐标为(03)或(0﹣3)然后利用待定系数法求出抛物线解析式解析:y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 【分析】根据甲、乙所说的特点可知判断抛物线的顶点坐标为(4,0),再根据丙所说的特点可得到抛物线与y 轴的交点坐标为(0,3)或(0,﹣3),然后利用待定系数法求出抛物线解析式即可. 【详解】解:∵抛物线与x 轴只有一个交点且对称轴是直线x =4, ∴抛物线的顶点坐标为(4,0), ∵抛物线与y 轴的交点到原点的距离为3.∴抛物线与y 轴的交点坐标为(0,3)或(0,﹣3), 设抛物线的解析式为y =a (x ﹣4)2, 把(0,3)代入得3=a (0﹣4)2,解得a =316,此时抛物线的解析式为y =316(x ﹣4)2;把(0,﹣3)代入得﹣3=a (0﹣4)2,解得a =﹣316,此时抛物线的解析式为y =﹣316(x ﹣4)2;综上,满足上述全部特点的二次函数的解析式为y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 故答案为y =316(x ﹣4)2或y =﹣316(x ﹣4)2. 【点睛】本题主要考查了二次函数的性质以及运用待定系数法确定函数解析式,灵活运用二次函数的性质成为解答本题的关键.12.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()33C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】根据二次函数图象的对称性可知,33()C y 中,|33||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.13.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6 【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案. 【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x , ∴y=-x 2+6x=-(x-3)2+9, ∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米), 故答案为:6. 【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题. 14.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.2013【分析】分别过B1B2B3作y 轴的垂线垂足分别为ABC 设A0A1=aA1A2=bA2A3=c 则AB1=aBB2=bCB3=c 再根据所求正三角形的边长分别表示B1B2B3的纵坐标逐步代入抛物线解析:2013【分析】分别过B 1,B 2,B 3作y 轴的垂线,垂足分别为A 、B 、C ,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=32a ,BB 2=32b ,CB 3=32c ,再根据所求正三角形的边长,分别表示B 1,B 2,B 3的纵坐标,逐步代入抛物线y=23x 2中,求a 、b 、c 的值,得出规律. 【详解】分别过1B ,2B ,3B 作y 轴的垂线,垂足分别为A 、B 、C , 设01A A a =,12A A b =,23A A c =,由勾股定理则22101032AB A B AA a =-=,232BB b =,332CB c =, 1111312233AA AB a a ==⨯=,则13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 2211312233BA BB b b ==⨯=,则23,22b B b a ⎛⎫+ ⎪ ⎪⎝⎭, 3331233CA c ===,则33,2c B a b ⎫++⎪⎪⎝⎭, 在正011A B A △中,13,2a B ⎫⎪⎪⎝⎭, 代入223y x =中,得223234a a =⨯,解得1a =,即011A A =,在正122A B A △中,23,12b B ⎫+⎪⎪⎝⎭,代入223y x =中,得2231234b b +=⨯,解得2b =,即122A A =,在正233A B A △中,33,322c B c ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2233234c c ⎛⎫+=⨯ ⎪⎝⎭,解得3c =,即233A A =,…,依此类推由此可得201220132013A B A △的边长2013=.故答案为:2013.【点睛】本题考查了二次函数的综合运用.勾股定理应用,掌握探究规律题的解题方法,关键是根据正三角形的性质用边长表示抛物线上点的坐标,利用抛物线解析式求正三角形的边长,得到规律.15.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)【分析】抛物线开口向下且对称轴为直线x=-1根据二次函数的图象性质:在对称轴的左侧y 随x 的增大而增大判断即可【详解】解:∵二次函数的解析式为y=-x2-2x+c=-(x+1)2+1+c ∴该抛物线开口解析:>【分析】抛物线开口向下,且对称轴为直线x=-1,根据二次函数的图象性质:在对称轴的左侧,y 随x 的增大而增大判断即可.【详解】解:∵二次函数的解析式为y=-x 2-2x+c=-(x+1)2+1+c ,∴该抛物线开口向下,且对称轴为直线:x=-1.∵点A (-2,y 1),B (-3,y 2)在二次函数y=-x 2-2x+c 的图象上,且-3<-2<-1, ∴y 1>y 2.故答案为>.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.16.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式.【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4∴y=2(x+1)2-1.故答案为:y=2(x+1)2-1.【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键.17.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.不能【分析】根据题意将x=2代入求出相应的y 值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y 值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x 2+3.25,得 y=-18×22+3.25=2.75, ∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.18.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y 轴上此二次函数的对称轴为y 轴即解得二次函数的解析式为其顶点坐标为故答案解析:()0,2【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴,从而求出m 的值,再根据二次函数的解析式即可得出答案.【详解】二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 19.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.20.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c 2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83=42a b c ⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a <0,则该函数图像开口向下. 故答案为:下.【点睛】 本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.三、解答题21.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 解析:223y x x =--+【分析】将点3,0,2,5代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩, 则二次函数的解析式为223y x x =--+.【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.22.已知二次函数2y ax =与22y x c =-+.(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a =______;若抛物线2y ax =沿y 轴向下平移2个单位就能与22y x c =-+的图象完全重合,则c =______. (3)二次函数22y x c =-+中x 、y 的几组对应值如下表:解析:(1)见解析;(2)2±,2-;(3)p m n <<【分析】(1)二次函数的二次项系数、一次项系数和常数项的变化会影响开口大小,开口方向,对称轴和顶点坐标,根据二次函数的性质即可得出图像的具体影响.(2)由于函数图像形状相同,可以得到2a =±;根据二次函数平移规律上加下减可求得函数22y ax =-,再由题意就可得到c =-2. (3)将表中数值代入二次函数即可分别得到m 、n 、p 含未知数c 的代数式,比较大小即可.【详解】(1)二次函数2y ax =的图像随着a 的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数22y x c =-+的图像随着c 的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变.(只要学生答对变与不变各一个点就给满分).(2)由于函数2y ax =与函数22y x c =-+的形状相同,所以2a =-,即2a =±.抛物线2y ax =沿y 轴向下平移两个单位,即得到抛物线22y ax =-.因为该抛物线与22y x c =-+的图像完全重合所以2c =-故答案为2±;2-(3)表中数值代入二次函数22y x c =-+可得; 8m c =-+,2n c =-+,50p c =-+因为50c -+<8c -+<2c -+所以p m n <<.故答案为p m n <<【点睛】本题考查二次函数的性质,二次函数图像与几何变换,二次函数上点的坐标特征.特别注意(2)2a =时两个函数图像形状相同.23.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式;(2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少?解析:(1)函数关系式为y =-1000x +36000;(2)函数关系式为w =-1000x 2+56000x -720000;(3)当销售单价为28元时,最大利润是64000元.【分析】(1)抓住关键的已知条件:当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,由此可得到y 与x 之间的函数解析式. (2)利用根据每天的利润=每一件的利润×销售量,列出w 与x 之间的函数解析式. (3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质,可得结果.【详解】(1)解:由题意得y =(30-x )×1×1000+6000=-1000x +36000.∴每天的销售量y (瓶)与销售单价x (元)之间的函数关系式为y =-1000x +36000. (2)解:由题意得w =(x -20)(-1000x +36000)=-1000x 2+56000x -720000.∴每天的利润w (元)与销售单价x (元)之间的函数关系式为w =-1000x 2+56000x -720000. (3)解:w =-1000x 2+56000x -720000=-1000(x -28)2+64000.∵a =-1000<0∴当x =28时,w 有最大值为64000.答:当销售单价为28元时,最大利润是64000元.【点睛】本题考查一次函数和二次函数的实际应用-销售问题;二次函数顶点式的转化也是本题求最值问题的关键.24.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值;(2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴. 解析:(1)94a =;(2)2x = 【分析】 (1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点,0∴∆=,即940a -=, ∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=, ∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.25.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.解析:(1)2y x 2x 3=-++;(2)①23922S t t =-+;②92P 坐标315,24⎛⎫ ⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可;(2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标.【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴,抛物线的表达式为2y x 2x 3=-++;(2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限,∴PH=223t t -++,OH=t ,BH=3﹣t ,∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形 =22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0); ②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t= 32时,S 有最大值,最大值为278, ∵OB=3,OC=3,∴2232OB OC +=∵当t=32时,223t t -++=23315()23224-+⨯+= ∴点P 到直线BC 27292832⨯=,此时,点P 的坐标为(32,154). 【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.26.已知抛物线的顶点为()1,4-,且过点()2,5-.(1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).解析:(1)()214y x =--或223y x x =--; (2)1x <-或3x > 【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.27.已知关于x 的方程222(1)2()10a x a b x b +-+++=.(1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.解析:(1)12;(2)27y -≤< 【分析】 (1)把2b =、2x =代入方程可得()()22212222210a a +⋅-+⋅++=,然后解a 关于的方程即可得解;(2)根据根的判别式的意义可得()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦,整理得()210ab -≤,利用非负数的性质得到1ab =,则函数242y a a ab =++为:()222y a =+-,再由51a -<<-可求得函数的取值范围.【详解】解:(1)∵若2b =,且2x =是此方程的根∴()()22212222210a a +⋅-+⋅++= ∴2102a ⎛⎫-= ⎪⎝⎭ ∴1212a a ==∴a 的值为12. (2)∵方程222(1)2()10a x a b x b +-+++=有实数根∴()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦ ∴()210ab -≤ ∴10ab -=∴1ab =∴函数242y a a ab =++为:()224222y a a a =++=+-∵51a -<<-∴可画出函数图象,如图:∴函数242y a a ab =++的取值范围是:27y -≤<.【点睛】本题考查了含参数的一元二次方程、一元二次方程的根的判别式、由自变量取值范围求函数取值范围等,熟练掌握相关知识点是解题的关键.28.某滑雪场在滑道上设置了几个固定的计时点.一名滑雪者从山坡滑下,测得了滑行距离s (单位:m )与滑行时间t (单位:s )的若干数据,如下表所示:位置1 位置2 位置3 位置4 位置5 位置6 位置7 滑行时间/s t 0 1.07 1.40 2.08 2.46 2.79 3.36 滑行距离/m s51015202535为观察s 与t 之间的关系,建立坐标系,以t 为横坐标,s 为纵坐标,描出表中数据对应的点(如图).可以看出,其中绝大部分的点都近似位于某条抛物线上.于是,我们可以用二次函数()20s at bt c t =++≥来近似地表示s 与t 的关系.(1)有一个计时点的计时装置出现了故障,这个计时点的位置编号可能是_________; (2)当0t =时,0s =,所以c =________;(3)当此滑雪者滑行距离为30m 时,用时约为________s (结果保留一位小数). 解析:(1)3;(2)0;(3)3.1 【分析】(1)由图像及表格可直接进行解答; (2)把t=0代入求解即可;(3)从表格选两个点代入函数解析式求解即可. 【详解】解:(1)由表格及图像可得:出现故障的位置编号可能是位置3; 故答案为3;(2)把t=0,s=0代入()20s at bt c t =++≥得:c=0;故答案为0;(3)由(2)可得:把t=1.07,s=5和t=2.08,s=15代入()20s at bt t =+≥得:221.07 1.0752.08 2.0815a b a b ⎧+=⎨+=⎩,解得: 2.511.98a b ≈⎧⎨≈⎩, ∴二次函数的解析式为:()22.51 1.980s t t t =+≥,把s=30代入解析式得:()230 2.51 1.980t t t =+≥,解得:123.1, 3.9t t ≈≈-(不符合题意,舍去), ∴当此滑雪者滑行距离为30m 时,用时约为3.1s ; 故答案为3.1. 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.。

数学九年级上册 二次函数章末练习卷(Word版 含解析)

数学九年级上册  二次函数章末练习卷(Word版 含解析)

数学九年级上册二次函数章末练习卷(Word版含解析)一、初三数学二次函数易错题压轴题(难)1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF的最大值为24;(3)M点坐标为可以为(2,3),(552+,3),(552-,3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3). ∵y =x 2﹣4x+3与y 轴相交于点C , ∴点C 的坐标为(0,3). 又∵点B 的坐标为B (3,0), ∴OB =OC∴△COB 为等腰直角三角形. 又∵PF//y 轴,PE//x 轴, ∴△PEF 为等腰直角三角形. ∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b , 又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣x+3. ∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p . ∴EF 2p 22. ∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E , BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3), ∵C 、D 两点的坐标为(0,3)和(4,3), ∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°, ∴△CNE ∽△NBF . ∴CE NE =NFBF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m mm-+=2343m m m --+-,化简得:m 2﹣5m+5=0. 解得:m 1=552+,m 2=552-.∴M 点坐标为(55+,3)或(55-,3)②如图3所示:当∠CBN =90°时,过B 作BG ⊥CD , ∵∠NBF =∠CBG ,∠NFB =∠BGC =90°, ∴△BFN ∽△CGB . ∵△BFN 为等腰直角三角形, ∴BF =FN ,∴0﹣(m 2﹣4m+3)=3﹣m . ∴化简得,m 2﹣5m+6=0. 解得,m =2或m =3(舍去) ∴M 点坐标为,(2,3).综上所述,满足题意的M 点坐标为可以为(2,3),(52+,3),(52-,3).【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.2.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围.【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+4,(当a =2时取等号)∴0<﹣b≤b <0,即b的取值范围是﹣4≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -. (1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】 【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案. (2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠. 【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->, ∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C , ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒, ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为31). 点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=,121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=,∴直线PM 的解析式为21124x y x x +=-.()222111221111224224·42x x x x x x x +-+-==-,∴点'N 在直线PM 上,PA ∴平分MPN ∠. 【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a 、b 满足的关系式;(2)①利用等边三角形的性质找出点C 的坐标;②利用一次函数图象上点的坐标特征找出点'N 在直线PM 上.4.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0ky x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围. 【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥;【解析】 【分析】(1)①直接利用待定系数法,即可求出函数的表达式; ②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,kx),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52ba -≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1), ①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,kx),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<, ∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n , 设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n ny x --=+,设点P 为(x ,k x),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--; ∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩, ∴不等式组的解集为:2n >; 当204n -<时,有 ∴20410524n n n -⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n ≤<, ∴综合上述,n 的取值范围为:109n ≥. 【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.5.如图,抛物线y =ax 2+bx +2经过点A(−1,0),B(4,0),交y 轴于点C ;(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使S △ABC =23S △ABD ?若存在,请求出点D 坐标;若不存在,请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.【答案】(1)213222y x x =-++(2)存在,D (1,3)或(2,3)或(5,3-)(3)10【解析】【分析】 (1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D 到x 轴的距离,即可求得D 点的纵坐标,代入抛物线解析式可求得D 点坐标;(3)由条件可证得BC ⊥AC ,设直线AC 和BE 交于点F ,过F 作FM ⊥x 轴于点M ,则可得BF=BC ,利用平行线分线段成比例可求得F 点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE 和抛物线解析式可求得E 点坐标,则可求得BE 的长.【详解】解:(1)∵抛物线y=ax 2+bx+2经过点A (-1,0),B (4,0),∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为:213222y x x =-++; (2)由题意可知C (0,2),A (-1,0),B (4,0),∴AB=5,OC=2,∴S △ABC =12AB•OC=12×5×2=5, ∵S △ABC =23S △ABD , ∴S △ABD =315522⨯=, 设D (x ,y ), ∴11155222AB y y •=⨯•=, 解得:3y =;当3y =时,2132322y x x =-++=, 解得:1x =或2x =,∴点D 的坐标为:(1,3)或(2,3);当3y =-时,2132322y x x =-++=-, 解得:5x =或2x =-(舍去),∴点D 的坐标为:(5,-3);综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3);(3)∵AO=1,OC=2,OB=4,AB=5,∴22125AC =+=,222425BC =+=,∴222AC BC AB +=,∴△ABC 为直角三角形,即BC ⊥AC ,如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,由题意可知∠FBC=45°,∴∠CFB=45°,∴25CF BC ==∴AO AC OM CF =,即1525OM = 解得:2OM =, ∴OC AC FM AF =,即2535FM = 解得:6FM =,∴点F 为(2,6),且B 为(4,0),设直线BE 解析式为y=kx+m ,则2640k m k m +=⎧⎨+=⎩,解得312k m =-⎧⎨=⎩,∴直线BE解析式为:312y x =-+;联立直线BE 和抛物线解析式可得:231213222y x y x x =-+⎧⎪⎨=-++⎪⎩, 解得:40x y =⎧⎨=⎩或53x y =⎧⎨=-⎩, ∴点E 坐标为:(5,3)-, ∴22(54)(3)10BE =-+-=.【点睛】 本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.6.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.【答案】(1)y =﹣x 2+3x +4;(2)存在.P (﹣34,1916).(3)1539(,)24M -- 21139(,)24M - 3521(,)24M 【解析】【分析】(1)将A,B,C 三点代入y =ax 2+bx+4求出a,b,c 值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539(,)24M -- 21139(,)24M - 3521(,)24M .【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.7.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+或423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.8.在平面直角坐标系中,二次函数y=ax 2+bx+2的图象与x 轴交于A(﹣3,0),B(1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)求直线AC 的函数解析式;(3)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;【答案】(1)y=﹣23x 2﹣43x+2;(2)223y x =+;(3)存在,(35,22-) 【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C 点坐标,设直线AC 的函数解析式y=kx+b ,最后用待定系数法求解即可;(3)连接PO ,作PM⊥x 轴于M ,PN⊥y 轴于N ,然后求出△ACP 面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax 2+bx+2过点A (﹣3,0),B (1,0), ∴093202a b a b =-+⎧⎨=++⎩ 解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴二次函数的关系解析式为y=﹣23x 2﹣43x+2; (2)∵当x=0时,y=2,∴C (0,2)设直线AC 的解析式为y kx b =+,把A 、C 两点代入得 0=32k b b -+⎧⎨=⎩ 解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的函数解析式为223y x =+; (3)存在.如图: 连接PO ,作PM⊥x 轴于M ,PN⊥y 轴于N设点P 坐标为(m ,n ),则n=224233m m --+),PN=-m ,AO=3 当x=0时,y=22400233-⨯-⨯+=2,∴点C 的坐标为(0,2),OC=2 ∵PAC PAO PCO ACO S S S S =+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0 ∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯- ∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.9.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 的坐标为(13,93132-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】 解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H , 由点A、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′22223213CO OQ +=+= 此时a 13P 139313-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t =或98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点, ∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=, ∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D , ∴2222125MD MN ND =+=+=.设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴4OF =,∴(4F ,由(I )知,PE =,PF =在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(455(2)t t +-=+-∴t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。

二次函数单元测试题及答案详解

二次函数单元测试题及答案详解

二次函数单元测试题一、选择题1、二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为()2、如图为抛物线的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.a+b=-1 B.a-b=-1 C.b<2a D.ac<03、已知函数的图象与x轴有交点,则k的取值范围是()A. B. C.且 D.且4、抛物线C1:y=x2+1与抛物线C2关于轴对称,则抛物线C2的解析式为A. y=-x2B. y=-x2+1C. y=x2-1D. y=-x2-15、将抛物线y=2x2向左平移3个单位,再向上平移1个单位得到的抛物线,其解析式是A. y=2(x+3)2+1B. y=2(x-3)2-1C.y=2(x+3)2-1D. y=2(x-3)2+16、根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图象与x 轴…………………………………………………【】X ……-1 0 1 2 ……Y ……-9 -3 -1 -3 ……A.只有一个交点B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点7、如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5C.x<﹣1且x>5 D.x<﹣1或x>58、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个9、二次函数的图象如图,若一元二次方程有实数根,则的最大值为()A.B.3 C.D.910、如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是11、如图,已知□ABCD中,AB=4,AD=2,E是AB边上的一动点(与点A、B不重合),设AE=,DE的延长线交CB的延长线于点F,设BF=,则下列图象能正确反映与的函数关系的是12、若二次函数(为常数)的图象如下,则的值为()A. B. C.或 D.13、如图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D (F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与 x之间函数关系的图象是()14、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④其中正确的有( )A.1个 B.2个 C.3个 D.4个15、抛物线的部分图像如图所示,若y>0,则的取值范围是( )A. B. C. D.二、填空题16、已知二次函数x+2的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为.17、已知二次函数y=ax2+bx+c(a≠0)的图像如图所示,(1)给出三个结论:①b2-4ac>0;②c>0;③b>0,其中正确结论的序号是: .(2)给出三个结论:①9a+3b+c<0;②2c>3b;③8a+c>0,其中正确结论的序号是: .18、如图7,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面_____________.19、已知直线(p>0)与x轴、y轴分别交于点A和点B,过B点的抛物线的顶点为C,如果△ABC恰为等边三角形,则b的值为.20、已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a<0;②a+b+c>0;③->0.其中正确的结论有。

九年级上册数学 二次函数章末练习卷(Word版 含解析)

九年级上册数学  二次函数章末练习卷(Word版 含解析)

九年级上册数学二次函数章末练习卷(Word版含解析)一、初三数学二次函数易错题压轴题(难)1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当1236 25SS=时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y=﹣34x2+94x+3,直线AB解析式为y=﹣34x+3;(2)P(2,3 2);(3410【解析】【分析】(1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;(2)根据题意由△PNM∽△ANE,推出65PNAN=,以此列出方程求解即可解决问题;(3)根据题意在y轴上取一点M使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B的最小值.【详解】解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),则有330 nm m n⎧⎨⎩++==,解得433mn⎧⎪⎨⎪-⎩==,∴抛物线239344y x x=-++,令y=0,得到239344x x-++=0,解得:x=4或﹣1,∴A(4,0),B(0,3),设直线AB解析式为y=kx+b,则340bk b+⎧⎨⎩==,解得334kb⎧-⎪⎨⎪⎩==,∴直线AB解析式为y=34-x+3.(2)如图1中,设P(m,239344m m-++),则E(m,0),∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵△PMN的面积为S1,△AEN的面积为S2,123625SS=,∴65PNAN=,∵NE∥OB,∴AN AEAB OA=,∴AN=54545454(4﹣m),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m m m -+=-, 解得m =2或4(舍弃),∴m =2,∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB ,∴OE OB OM OE '='', ∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′, ∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时), 最小值=AM ′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.2.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m = 【解析】【分析】(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得;(3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH HK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案. 【详解】 解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++ 8220.8220.4a b c a b c c ⎧-+=⎪⎪++=⎨⎪=⎪⎩解得1204a b c ⎧=-⎪⎪=⎨⎪=⎪⎩2142y x ∴=-+; ()2如图21:42C y x =-+.关于(),0F m 对称的抛物线为()21:242C y x m '=-- 当C '过点()0,4D 时有()2140242m =-- 解得:2m =当C '过点()2,0B 时有()21022242m =- 解得:22m =222m ∴<<;()3四边形'PMP N 可以为正方形由题意设(),P n n ,P 是抛物线C 第一象限上的点2142n n ∴-+= 解得:122,2n n ==-(舍去)即()2,2P如图作HK OF ⊥,PH HK ⊥于H ,MK HK ⊥于K四边形PMP N '为正方形易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得 ()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.3.如图,在平面直角坐标系x O y 中,抛物线y = ax 2+ bx + c 经过A 、B 、C 三点,已知点A (-3,0),B (0,3),C (1,0).(1)求此抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;(3)在直线x = -2上是否存在点M ,使得∠MAC = 2∠MCA ,若存在,求出M 点坐标.若不存在,说明理由. 【答案】(1)y=-x 2-2x+3;(2)点(-32,154),△PDE 的周长最大;(3)点M (-2,3)或(-2,-3).【解析】【分析】(1)将A 、B 、C 三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB 是等腰直角三角形,故只需使得PD 越大,则△PDE 的周长越大.联立直线AB 与抛物线的解析式可得交点P 坐标;(3)作点A 关于直线x=-2的对称点D ,利用∠MAC = 2∠MCA 可推导得MD=CD ,进而求得ME 的长度,从而得出M 坐标【详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (-3,0),B (0,3),C (1,0),∴93030a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x 2-2x+3;(2)∵A (-3,0),B (0,3),∴OA=OB=3,∴△AOB 是等腰直角三角形,∴∠BAO=45°,∵PF ⊥x 轴,∴∠AEF=90°-45°=45°,又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长, 此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC .∴MA=MD ,∠MAC=∠MDA=2∠MCA ,∴∠CMD=∠DCM∴MD=CD=2 , ∴ME=3∴点M (-2,3)或(-2,-3).【点睛】 本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析4.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0k y x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥; 【解析】【分析】(1)①直接利用待定系数法,即可求出函数的表达式;②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,k x ),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52b a-≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1),①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,k x ),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<, ∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n ,设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n n y x --=+, 设点P 为(x ,k x ),由点P 在线段AB 上则221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--; ∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩, ∴不等式组的解集为:2n >; 当204n -<时,有 ∴20410524n n n -⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n ≤<, ∴综合上述,n 的取值范围为:109n ≥. 【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.5.在平面直角坐标系中,点(),p tq 与(),q tp ()0t ≠称为一对泛对称点.(1)若点()1,2,()3,a 是一对泛对称点,求a 的值;(2)若P ,Q 是第一象限的一对泛对称点,过点P 作PA x ⊥轴于点A ,过点Q 作QB y ⊥轴于点B ,线段PA ,QB 交于点C ,连接AB ,PQ ,判断直线AB 与PQ 的位置关系,并说明理由;(3)抛物线2y ax bx c =++()0a <交y 轴于点D ,过点D 作x 轴的平行线交此抛物线于点M(不与点D 重合),过点M 的直线y ax m =+与此抛物线交于另一点N .对于任意满足条件的实数b ,是否都存在M ,N 是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M M M x y ,(),N N N x y 探究当M y >N y 时M x 的取值范围;若不是,请说明理由. 【答案】(1)23;(2)AB ∥PQ ,见解析;(3)对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M(x M ,y M ),N(x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0 【解析】 【分析】(1)利用泛对称点得定义求出t 的值,即可求出a.(2)设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),根据题干条件得到A (p,0),B (0,tp ),C (p,tp )的坐标,利用二元一次方程组证出k 1=k 2,所以AB ∥PQ.(3)由二次函数与x 轴交点的特征,得到D 点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案. 【详解】(1)解:因为点(1,2),(3,a )是一对泛对称点, 设3t =2 解得t =23所以a =t×1=23(2)解:设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),其中0<p <q ,t >0. 因为PA ⊥x 轴于点A ,QB ⊥y 轴于点B ,线段PA ,QB 交于点C ,所以点A ,B ,C 的坐标分别为:A (p,0),B (0,tp ),C (p,tp ) 设直线AB ,PQ 的解析式分别为:y =k 1x +b 1,y =k 2x +b 2,其中k 1k 2≠0. 分别将点A (p,0),B (0,tp )代入y =k 1x +b 1,得111pk b tp b tp +=⎧⎨=⎩. 解得11k tb tp =-⎧⎨=⎩ 分别将点P (p,tq ),Q (q,tp )代入y =k 2x +b 2,得2222pk b tp qk b tp +=⎧⎨+=⎩. 解得22k tb tp tp =-⎧⎨=+⎩ 所以k 1=k 2. 所以AB ∥PQ(3)解:因为抛物线y =ax 2+bx +c (a <0)交y 轴于点D , 所以点D 的坐标为(0,c ). 因为DM ∥x 轴,所以点M 的坐标为(x M ,c ),又因为点M 在抛物线y =ax 2+bx +c (a <0)上. 可得ax M 2+bx M +c =c ,即x M (ax M +b )=0. 解得x M =0或x M =-b a. 因为点M 不与点D 重合,即x M ≠0,也即b≠0, 所以点M 的坐标为(-ba,c ) 因为直线y =ax +m 经过点M ,将点M (-b a ,c )代入直线y =ax +m 可得,a·(-b a)+m =c. 化简得m =b +c所以直线解析式为:y =ax +b +c.因为抛物线y =ax 2+bx +c 与直线y =ax +b +c 交于另一点N , 由ax 2+bx +c =ax +b +c ,可得ax 2+(b -a )x -b =0. 因为△=(b -a )2+4ab =(a +b )2, 解得x 1=-ba,x 2=1. 即x M =-b a ,x N =1,且-ba ≠1,也即a +b≠0. 所以点N 的坐标为(1,a +b +c ) 要使M (-ba,c )与N (1,a +b +c )是一对泛对称点, 则需c =t ×1且a +b +c =t ×(-b a). 也即a +b +c =(-ba)·c 也即(a +b )·a =-(a +b )·c. 因为a +b≠0,所以当a =-c 时,M ,N 是一对泛对称点.因此对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形. 此时点M 的坐标为(-ba,-a ),点N 的坐标为(1,b ).所以M ,N 两点都在函数y =bx(b≠0)的图象上. 因为a <0,所以当b >0时,点M ,N 都在第一象限,此时 y 随x 的增大而减小,所以当y M >y N 时,0<x M <1;当b <0时,点M 在第二象限,点N 在第四象限,满足y M >y N ,此时x M <0.综上,对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M (x M ,y M ),N (x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0. 【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.6.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩.(1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩,∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩,①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=,解得:m=2 当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32,解得:或m=2.综上所述:m=2-或m=2+或m=2- ②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-;(3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.7.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或(舍去0和),故x=3,则x2﹣2x﹣3=2﹣,故点P(3,2﹣).综上,点P的坐标为:(2,﹣3)或(3,2﹣).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.8.定义:函数l与l'的图象关于y轴对称,点(),0P t是x轴上一点,将函数l'的图象位于直线x t=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,3171t-<≤,3175t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F的解析式,然后分14t-=-、点(),1t t-落在223()y x x x t=--≥上和点(),1t t-落在()223y x x x t=--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x=+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4; a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点; b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1t =2t =c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =1t <≤5t <<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-1t <≤5t <<时,直线1y t =-与图象F 有两个公共点. 【点睛】本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.9.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1, ∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322=,解得BP=32过点P作PE⊥x轴于E,则BE=PE=32×22=3,∴OE=1+3=4,∴点P的坐标为(-4,-3);综合上述,当52,33P⎛⎫--⎪⎝⎭或(4,3)--时,以点P,A,B为顶点的三角形与ABC∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.10.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C 的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4,可得分别为,点P的坐标为(,7)或(,-3)(3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键。

部编数学九年级上册专题22.11二次函数章末题型过关卷(人教版)(解析版)含答案

部编数学九年级上册专题22.11二次函数章末题型过关卷(人教版)(解析版)含答案

第22章二次函数章末题型过关卷【人教版】参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2022秋•长汀县校级月考)在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是( )A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大D.当x≥2时,y的值随x值的增大而增大【分析】根据二次函数的性质,可以判断各个选项中的说法是否正确.【解答】解:二次函数y=(x﹣2)2+1,a=1>0,∴该函数的图象开口向上,对称轴为直线x=2,顶点为(2,1),当x=2时,y有最小值1,当x≥2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小;故选项A、B、D的说法正确,C的说法错误;故选:C.2.(3分)(2022•黑龙江)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点( )A.(2,4)B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)【分析】先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.【解答】解:∵二次函数y=ax2的对称轴为y轴,∴若图象经过点P(﹣2,4),则该图象必经过点(2,4).故选:A.3.(3分)(2022•浦东新区二模)已知抛物线y=﹣(x+1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<﹣1,那么下列结论一定成立的是( )A.y1<y2<0B.0<y1<y2C.0<y2<y1D.y2<y1<0【分析】根据二次函数的性质得到抛物线y=﹣(x+1)2的开口向下,有最大值为0,对称轴为直线x=﹣1,则在对称轴左侧,y随x的增大而增大,所以x1<x2<﹣1时,y1<y2<0.【解答】解:∵y=﹣(x+1)2,∴a=﹣1<0,有最大值为0,∴抛物线开口向下,∵抛物线y=﹣(x+1)2对称轴为直线x=﹣1,而x1<x2<﹣1,∴y1<y2<0.故选:A.4.(3分)(2022秋•环翠区期中)已知a>0,在同一平面直角坐标系中,函数y=ax与y=﹣ax2的图象有可能是( )A.B.C.D.【分析】根据二次函数的性质、正比例函数的性质对各个选项中的图象进行判断即可.【解答】解:A、根据正比例函数图象y随x的增大而增大,则a>0,二次函数图象开口向上,则﹣a>0,则a<0,故选项错误;B、根据正比例函数图象y随x的增大而减小,则a<0,与已知矛盾,故选项错误;C、根据正比例函数图象y随x的增大而减小,则a<0,二次函数图象开口向下,则﹣a<0,则a>0,故选项错误;D、根据正比例函数图象y随x的增大而增大,则a>0,二次函数图象开口向上,则﹣a<0,则a>0,故选项正确.故选:D.5.(3分)(2022•铜仁市)已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a(x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是( )A.5B.﹣1C.5或1D.﹣5或﹣1【分析】先利用二次函数的性质得到两抛物线的对称轴,然后利用A点或B点向右平移得到点(4,0)得到m的值.【解答】解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.6.(3分)(2022•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )B.b≥1或b≤﹣1C.b≥2D.1≤b≤2A.b≥54【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线的顶点在x轴上或上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,当抛物线的顶点在x轴上或上方时,则b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥5;4当抛物线的顶点在x轴的下方时,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=2(b﹣2)>0,b2﹣1>0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1≥0,③由①得b<5,由②得b>2,4∴此种情况不存在,,∴b≥54故选:A.7.(3分)(2022•北京一模)某汽车刹车后行驶的距离y(单位:m)与行驶的时间t(单位:s)之间近似满足函数关系y=at2+bt(a<0).如图记录了y与t的两组数据,根据上述函数模型和数据,可推断出该汽车刹车后到停下来所用的时间为( )A.2.25s B.1.25s C.0.75s D.0.25s【分析】直接利用待定系数法求出二次函数解析式,进而得出对称轴即可得出答案.【解答】解:将(0.5,6),(1,9)代入y=at2+bt(a<0)得:6=14a+12b9=a+b,解得:a=−6 b=15,故抛物线解析式为:y=﹣6t2+15t,当t=−b2a =−15−12=54=1.25(秒),此时y取到最大值,故此时汽车停下,则该汽车刹车后到停下来所用的时间为1.25秒.故选:B.8.(3分)(2022秋•南召县期中)根据下面表格中的对应值:x 3.23 3.24 3.25 3.26 ax2+bx+c﹣0.06﹣0.020.030.09判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( )A.3.22<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26【分析】根据表中数据得到x=3.24时,ax2+bx+c=﹣0.02;x=3.25时,ax2+bx+c=0.03,则x取2.24到2.25之间的某一个数时,使ax2+bx+c=0,于是可判断关于x的方程ax2+bx+c=0(a≠0)的一个解x 的范围是3.24<x<3.25.【解答】解:∵x=3.24时,ax2+bx+c=﹣0.02;x=3.25时,ax2+bx+c=0.03,∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.25.故选:C.9.(3分)(2022•洪山区校级自主招生)已知函数y =x 2+x ﹣1在m ≤x ≤1上的最大值是1,最小值是−54,则m 的取值范围是( )A .m ≥﹣2B .0≤m ≤12C .﹣2≤m ≤−12D .m ≤−12【分析】先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是−54,得出m ≤−12;再求得当x =1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m 的下限.【解答】解:解法一:∵函数y =x 2+x ﹣1的对称轴为直线x =−12,∴当x =−12时,y 有最小值,此时y =14−12−1=−54,∵函数y =x 2+x ﹣1在m ≤x ≤1上的最小值是−54,∴m ≤−12;∵当x =1时,y =1+1﹣1=1,对称轴为直线x =−12,∴当x =−12−[1﹣(−12)]=﹣2时,y =1,∵函数y =x 2+x ﹣1在m ≤x ≤1上的最大值是1,且m ≤−12;∴﹣2≤m ≤−12.解法二:画出函数图象,如图所示:y =x 2+x ﹣1=(x +12)2−54,∴当x =1时,y =1;当x =−12,y =−54,当x =﹣2,y =1,∵函数y =x 2+x ﹣1在m ≤x ≤1上的最大值是1,最小值是−54,∴﹣2≤m ≤−12.故选:C .10.(3分)(2022秋•江阴市期末)已知二次函数y =ax 2+bx +c (a ≠0)图象如图所示,对称轴为过点(−12,0)且平行于y 轴的直线,则下列结论中正确的是( )A .abc >0B .a +b =0C .2b +c >0D .4a +c <2b【分析】根据题意和函数图象,可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:由图象可得,a >0,b >0,c <0,故abc <0,故选项A 错误;∵对称轴为直线x =−12,∴−b2a =−12,得a =b ,a ﹣b =0,故选项B 错误;∵当x =1时,y =a +b +c <0,∴2b +c <0,故选项C 错误;∵对称轴为直线x =−12,当x =1时,y <0,∴x =﹣2时的函数值与x =1时的函数值相等,∴x =﹣2时,y =4a ﹣2b +c <0,∴4a +c <2b ,故选项D正确;故选:D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2022•兴安盟)若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是 m<﹣9 .【分析】根据抛物线y=﹣x2﹣6x+m与x轴没有交点,可知当y=0时,0=﹣x2﹣6x+m,Δ<0,从而可以求得m的取值范围.【解答】解:∵抛物线y=﹣x2﹣6x+m与x轴没有交点,∴当y=0时,0=﹣x2﹣6x+m,∴△=(﹣6)2﹣4×(﹣1)×m<0,解得,m<﹣9故答案为:m<﹣9.12.(3分)(2022•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c= 0 .【分析】根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0),由此求出a+b+c 的值.【解答】解:∵抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,∴y=ax2+bx+c与x轴的另一交点为(1,0),∴a+b+c=0.故答案为:0.13.(3分)(2022秋•汉阳区校级月考)如图,函数y=ax2+c与y=mx+n的图象交于A(﹣1,p),B (3,q)两点,则关于x的不等式ax2﹣mx+c>n的解集是 x<﹣1或x>3 .【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>3时,直线y=mx+n在抛物线y=ax2+c的下方,∴关于x的不等式ax2﹣mx+c>n的解集是x<﹣1或x>3.故答案为:x<﹣1或x>3.14.(3分)(2022•大连)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是 (﹣2,0) .【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:令x=0,得到x=c,∴C(0,c),∵D(m,c),得函数图象的对称轴是直线x=m2,设A点坐标为(x,0),由A、B关于对称轴x=m2,得m2,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).15.(3分)(2022•滕州市校级模拟)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有 ③④ .【分析】首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴x=−b,结合图象与x轴的交点可得对称轴为直线x=1,结合对称轴公式可判断出①的正误;根2a据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出②的正误;利用a﹣b+c=0,求出a﹣2b+4c<0,即可判断出③的正误;利用当x=4时,y>0,则16a+4b+c>0,由①知,b=﹣2a,得出8a+c>0,即可判断出④的正误.【解答】解:根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,对称轴:x=−b>0,2a①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是直线x=1,=1,∴−b2a∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故③正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④正确;综上所述,正确的结论是:③④,故答案为:③④16.(3分)(2022秋•任城区校级期中)已知抛物线y =x 2﹣2x 的顶点为点A ,抛物线与x 轴的两个交点中右侧交点为点B ,若点M 为坐标轴上一点,且MA =MB ,则点M 的坐标是 (1,0)或(0,1) .【分析】先将抛物线顶点A 的坐标求出来,作AC ⊥x 轴于点C ,取AB 中点E ,作直线EC 交y 轴于点C ,直线与CE 与坐标轴交点坐标即为所求.【解答】解:把x =0代入y =x 2﹣2x 得x 2﹣2x =0,解得x =0或x =2,∴点B 坐标为(2,0),∵y =x 2﹣2x =(x ﹣1)2﹣1,∴点A 坐标为(1,﹣1),连接AB ,作AC ⊥x 轴于点C ,取AB 中点E ,作直线EC 交y 轴于点C ,则点C 坐标为(1,0),点E 坐标为(122,−102)即(32,−12),∴AC =BC =1,点C 满足题意,直线CE 为线段AB 的垂直平分线,设直线CE 解析式为y =kx +b ,把(1,0),(32,−12)代入解析式得:0=k +b−12=32k +b ,解得k =−1b =1,∴y =﹣x +1,∴点D 坐标为(0,1),∴点M 的坐标为(1,0)或(0,1),故答案为:(1,0)或(0,1).三.解答题(共7小题,满分52分)17.(6分)(2022秋•翔安区校级月考)抛物线y=a(x﹣2)2经过点(1,﹣1)(1)确定a的值;(2)求出该抛物线与坐标轴的交点坐标.【分析】(1)根据二次函数图象上点的坐标特征,直接把(1,﹣1)代入y=a(x﹣2)2可求出a=﹣1;(2)根据坐标轴上点的坐标特征,分别计算出自变量为0时的函数值和函数值为0时对应的自变量的值,即可得到该抛物线与坐标轴的交点坐标.【解答】解:(1)把(1,﹣1)代入y=a(x﹣2)2得a•(1﹣2)2=﹣1解得a=﹣1(2)抛物线解析式为y=﹣(x﹣2)2,当y=0时,﹣(x﹣2)2=0,解得x=2,所以抛物线与x轴交点坐标为(2,0);当x=0时,y=﹣(x﹣2)2=﹣4,所以抛物线与y轴交点坐标为(0,﹣4).18.(6分)(2022•包河区校级模拟)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB【分析】(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.(2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB的面积减去三角形MCE的面积减去三角形OBC的面积求得.【解答】解:(1)依题意:a−b +c =0a +b +c =8c =5,解得a =−1b =4c =5∴抛物线的解析式为y =﹣x 2+4x +5(2)令y =0,得(x ﹣5)(x +1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y =﹣x 2+4x +5=﹣(x ﹣2)2+9,得M (2,9)作ME ⊥y 轴于点E ,可得S △MCB =S 梯形MEOB ﹣S △MCE ﹣S △OBC =12(2+5)×9−12×4×2−12×5×5=15.19.(8分)(2022•牧野区校级三模)已知抛物线y =ax 2+bx +c 的顶点为(3,2),且过点(0,11).(Ⅰ)求抛物线的解析式;(Ⅱ)将抛物线先向左平移2个单位长度,再向下平移m (m >0)个单位长度后得到新抛物线.①若新抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),且OB =3OA ,求m 的值;②若P (x 1,y 1),Q (x 2,y 2)是新抛物线上的两点,当n ≤x 1≤n +1,x 2≥4时,均有y 1≤y 2,求n 的取值范围.【分析】(1)设抛物线解析式为顶点式y =a (x ﹣3)2+2,把点(0,11)代入求值即可;(2)①利用抛物线解析式求得点A 、B 的坐标,根据抛物线的对称性质和方程思想求得m 的值即可;②根据抛物线的对称性质知:当x =4和x =﹣2时,函数值相等.结合图象,得n ≥﹣2且n +1≤4.解该不等式组得到:﹣2≤n ≤3.【解答】解:(1)∵顶点为(3,2),∴y =ax 2+bx +c =y =a (x ﹣3)2+2(a ≠0).又∵抛物线过点(0,11),∴a (0﹣3)2+2=11,∴a =1.∴y =(x ﹣3)2+2;(2)由平移的性质知,平移后的抛物线的表达式为y =(x ﹣3+2)2+2﹣m =x 2﹣2x +3﹣m ,①分情况讨论:若点A ,B 均在x 轴正半轴上,设A (x ,0),则B (3x ,0),由对称性可知:12(x +3x )=1,解得x =12,故点A 的坐标为(12,0),将点A 的坐标代入y =x 2﹣2x +3﹣m 得:0=14−1+3﹣m ,解得m =94若点A 在x 轴负半轴上,点B 在x 轴正半轴上,设A (x ,0),则B (﹣3x ,0),由对称性可知:12(x ﹣3x )=1,解得x =﹣1,故点A 的坐标为(﹣1,0),同理可得m =6,综上:m =94或m =6;②∵新抛物线开口向上,对称轴为直线x =1,∴当x =4和x =﹣2时,函数值相等.又∵当n ≤x 1≤n +1,x 2≥4时,均有y 1≤y 2,∴结合图象,得n ≥−2n +1≤4,∴﹣2≤n ≤3.20.(8分)(2022•舟山一模)路桥区某水产养殖户利用温棚养殖技术养殖南美白虾,与传统养殖相比,可延迟养殖周期,并从原来的每年养殖两季提高至每年三季.已知每千克白虾的养殖成本为8元,在某上市周期的70天里,销售单价p (元/千克)与时间第t (天)之间的函数关系如下:p =+20,(1≤t ≤40,t 为整数)12t +50,(40<t ≤70,t 为整数),日销售量y (千克)与时间第t (天)之间的函数关系如图所示.(1)求日销售量y 与时间t 的函数关系式;(2)求第几天的日销售利润最大?最大利润是多少元?(3)在实际销售的前40天中,该养殖户决定每销售1千克白虾,就捐赠m (m <8)元给公益事业.在这前40天中,已知每天扣除捐赠后的日销售利润随时间t 的增大而增大,求m 的取值范围.【分析】(1)根据函数图象,利用待定系数法求解可得;(2)设日销售利润为w 元,分1≤t ≤40和41≤t ≤80两种情况,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)依据(2)中相等关系列出函数解析式,确定其对称轴,由1≤t ≤40且销售利润随时间t 的增大而增大,结合二次函数的性质可得答案.【解答】解:(1)设所求解析式为y =kx +b (k ≠0),将(1,198)、(70,60)代入,得:k +b =19870k +b =60,解得:k =−2b =200,∴y =﹣2t +200(1≤t ≤70,t 为整数),∴日销售量y 与时间t 的函数关系式y =﹣2t +200;(2)设日销售利润为w元,则w=(p﹣8)y,①在1≤t≤40时,t+20﹣8)(﹣2t+200)w=(14=−1(t﹣26)2+2738,2∵−1<0,2∴当t=26时,w max=2738;②当40<t≤70时,t+50﹣8)(﹣2t+200)w=(−12=(t﹣92)2﹣64,∵1>0,∴当t<92时,w随t的增大而减小,∴当t=41时,w最大,最大值=(41﹣92)2﹣64=2537,∵2738>2537,∴第26天利润最大,最大利润为2738元;(3)设日销售利润为w元,根据题意,得:t+20﹣8﹣m)(﹣2t+200)w=(14=−1t2+(26+2m)t+2400﹣200m,2∴函数图象对称轴为直线t=2m+26,∵−1<0,w随t的增大而增大,且1≤t≤40,t为整数,2∴2m+26>39.5,解得:m>6.75,又∵m<8,∴7≤m<8.21.(8分)(2022•兰州)如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD ﹣DC ﹣CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?【分析】(1)根据所建坐标系易求M 、P 的坐标;(2)可设解析式为顶点式,把O 点(或M 点)坐标代入求待定系数求出解析式;(3)总长由三部分组成,根据它们之间的关系可设A 点坐标为(m ,0),用含m 的式子表示三段的长,再求其和的表达式,运用函数性质求解.【解答】解:(1)M (12,0),P (6,6).(2)设抛物线解析式为:y =a (x ﹣6)2+6 (3分)∵抛物线y =a (x ﹣6)2+6经过点(0,0)∴0=a (0﹣6)2+6,即a =−16(4分)∴抛物线解析式为:y =−16(x ﹣6)2+6,即y =−16x 2+2x .(3)设A (m ,0),则B (12﹣m ,0),C (12﹣m ,−16m 2+2m )D (m ,−16m 2+2m ).∴“支撑架”总长AD +DC +CB =(−16m 2+2m )+(12﹣2m )+(−16m 2+2m )=−13m 2+2m +12=−13(m ﹣3)2+15.∵此二次函数的图象开口向下.∴当m =3米时,AD +DC +CB 有最大值为15米.22.(8分)(2022•顺义区期末)某班数学兴趣小组对函数y =x 2﹣2|x |的图象和性质进行了探究,探究过程如下,请完成下面各小题.(1)自变量x的取值范围是全体实数,x与y的几组对应值如下表:x…﹣3−52﹣2﹣1012523…y (35)4m﹣10﹣10543…其中,m= 0 ;(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)利用表格与图象指出,当x取何值时,函数值y随x的增大而增大;(4)进一步探究函数图象.①求方程x2﹣2|x|=2的实数根的个数;②关于x的方程x2﹣2|x|=a有4个实数根时,求a的取值范围.【分析】(1)根据函数的对称性,即可求解;(2)描点即可画出函数图象;(3)任意指出函数的两条性质即可,如函数的最小值为﹣1;x>1时,y随x的增大而增大,答案不唯一;(4)①设y=x2﹣2|x|,从图象看y=2与y=x2﹣2|x|有两个交点,即可求解;②当y=a与y=x2﹣2|x|有4个交点时,a在x轴的下方,即可求解.【解答】解:(1)根据函数的对称性,m=0,故答案为:0;(2)描点画出如下函数图象:(3)函数的最小值为﹣1;x >1时,y 随x 的增大而增大(答案不唯一);(4)①设y =x 2﹣2|x |,从图象看y =2与y =x 2﹣2|x |有2个交点;②y =a 与y =x 2﹣2|x |有4个交点时,a 在x 轴的下方,故﹣1<a <0.23.(8分)(2022•南岗区校级开学)如图,平面直角坐标系中,O 为坐标原点,抛物线y =−316ax 2+58ax +3a (a ≠0)与x 轴交于A 和点B (A 在左,B 在右),与y 轴的正半轴交于点C ,且OB =OC .(1)求抛物线的解析式;(2)若D 为OB 中点,E 为CO 中点,动点F 在y 轴的负半轴上,G 在线段FD 的延长线上,连接GE 、ED ,若D 恰为FG 中点,且S △GDE =272,求点F 的坐标;(3)在(2)的条件下,动点P 在线段OB 上,动点Q 在OC 的延长线上,且BP =CQ .连接PQ 与BC 交于点M ,连接GM 并延长,GM 的延长线交抛物线于点N ,连接QN 、GP 和GB ,若角满足∠QPG ﹣∠NQP =∠NQO ﹣∠PGB 时,求NP 的长.【分析】(1)令y =0可求得点A 、B 的坐标,将x =0代入抛物线的解析式得求得点C (0,3a ),然后根据OB =0C 可求得a 的值,从而得到抛物线的解析式;(2)连接GB .首先依据SAS 证明△ODF ≌△GDB ,从而得到BG =OF ,接下来依据S △GED =272,可求得EF 的长,从而得到BG 的长,故此可得到点G 的坐标;(3)过点P 作PT ∥y 轴,交BC 与点T ,过点N 作NR ⊥y 轴,垂足为R .先证明TP =PB =CQ ,然后依据ASA 证明△PTM ≌△QCM ,于是可得到PM =QM ,然后再证明△NMQ ≌△GMP ,于是得到NQ =GP ,然后再△QNR ≌△GPB ,从而可求得NR =OR ,设N (t ,−38t 2+54t +6),由NR =OR 列出关于t 的方程,从而可求得NR 的值,最后在Rt △NHP 中,依据勾股定理可求得PN 的值.【解答】解:(1)将y =0代入得:y =−316ax 2+58ax +3a ,∵a ≠0,∴−316x 2+58x +3=0.解得:x 1=−83,x 2=6.∴A (−83,0)、B (6,0).∴OB =6.∵将x =0代入抛物线的解析式得:y =3a ,∴C (0,3a ).∴OC =3a .∵OB =0C ,∴3a =6.解得:a =2,∴抛物线的解析式为y =−38x 2+54x +6;(2)如图1所示:连接GB .∵E 、D 分别是OC 、0B 的中点,∴OE =3,OD =BD .在△ODF 和△GDB 中,OD =BD∠ODF =∠BDG DF =DG,∴△ODF ≌△GDB ,∴BG =OF ,∠GBD =∠FOD =90°,∵S △EDG =S △EFG ﹣S △EFD ,∴12EF •OB −12EF •OD =272,即3EF −32EF =272,解得:EF =9;∴OF =EF ﹣OE =9﹣3=6,∴F (0,﹣6);(3)如图2所示:过点P 作PT ∥y 轴,交BC 与点T ,过点N 作NR ⊥y 轴,垂足为R ,NH ⊥x 轴于H ,∵TP ∥OQ ,∴∠MPT =∠MQC ,∠PTM =∠QCM ,∵OB =0C =6,∴∠OCB =∠OBC =45°,∴∠PBT =∠PTB =45°,∴PT =PB =CQ ,在△PTM 和△QCM 中,∠MPT =∠MQC PT =CQ ∠PTM =∠QCM,∴△PTM ≌△QCM ,∴PM =QM ,∵GB ⊥x 轴,∴BG ∥y 轴∥PT ,∴∠BGP =∠TPG .∵∠QPG ﹣∠NQO =∠NQP ﹣∠PGB ,∴∠QPT +∠TPG ﹣∠NQO =∠NQO +∠OQP ﹣∠PCB ,∵∠QPT =∠OQP ,∠TPG =∠PGB ,∴2∠TPG =2∠NQO ,∴∠TPG =∠NQO ,∴∠NQP =∠GPQ ,在△NMQ 和△GMP 中,∠NQP =∠GPQ ∠NMQ =∠GMP MQ =MP,∴△NMQ ≌△GMP ,∴NQ =GP ,在Rt △QNR 和Rt △GPB 中,∠BGP =∠NQO ∠QRN =∠GBP =90°NQ =GP,∴△QNR ≌△GPB ,∴QM =BG =6,NR =PB =CQ .设N (t ,−38t 2+54t +6).∵QO =QC +CO =QR +RO ,∴QC =RO ,∴NR =RO ,∴﹣t =−38t 2+54t +6,解得:t 1=﹣2,t 2=8(舍去).∴N (﹣2,2),∴NH =2,OH =NR =2.∴PH=OB=6,∴PN==∴线段NP的长为。

【期末复习提升卷】浙教版2022-2023学年九上数学第1章 二次函数 测试卷1(解析版)

【期末复习提升卷】浙教版2022-2023学年九上数学第1章 二次函数 测试卷1(解析版)

浙教版2022-2023学年九上数学第1章二次函数测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是()A.x>−54B.x≥−54且k≠0C.x≥−54D.x>−54且k≠0【答案】B【解析】∵二次函数y=kx2﹣5x﹣5的图象与x轴有交点,∴Δ=b2﹣4ac=25+20k≥0,k≠0,解得:k≥﹣54,且k≠0.故答案为:B.2.若抛物线C1与抛物线C2关于原点成中心对称,其中C1的解析式为y=2x2−4x+1,则C2的解析式为()A.y=−2x2−4x−1B.y=−2x2+4x+1C.y=2x2+4x+3D.y=2x2−4x−1【答案】A【解析】∵抛物线C1与抛物线C2关于原点成中心对称,C1的解析式为y=2x2−4x+1,∴C2解析式为:−y=2(−x)2−4(−x)+1,整理得:y=−2x2−4x−1,故答案为:A.3.已知A(m,2020),B(m+n,2020)是抛物线y=−(x−ℎ)2+2036上两点,则正数n=()A.2B.4C.8D.16【答案】C【解析】∵A(m,2020),(m+n,2020)是抛物线y=−(x−ℎ)2+2036上两点,∴2020=−(x−ℎ)2+2036,∴(x−ℎ)2=16,∴x-h=±4,∴x1=h+4, x2=h-4,∴m=h-4, m+n=h+4,∴n=h+4-(h-4)=8.故答案为:C.4.在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.【答案】D【解析】A、一次函数图象经过第二、三、四象限,∴a<0,∴抛物线开口向下,直线x=−12a>0,抛物线的对称轴在y轴的右侧,故A不符合题意;B、一次函数图象经过第二、三、四象限,∴a<0,∴抛物线开口向下,故B不符合题意;C、∵一次函数图象经过第一、二、三象限,∴a>0,∴抛物线开口向上,直线x=−12a<0,抛物线的对称轴在y轴的左侧,故C不符合题意;D、一次函数图象经过第二、三、四象限,∴a<0,∴抛物线开口向下,直线x=−12a>0,抛物线的对称轴在y轴的右侧,故D符合题意;故答案为:D.5.如图是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=-0.01(x-20)2+4,桥拱与桥墩AC的交点C恰好位于水面,且AC⊥x轴,若OA=5米,则桥面离水面的高度AC为()A.5米B.4米C.2.25米D.1.25米【答案】C【解析】∵OA=5,CA⊥x轴,∴点A的坐标为(-5,0)当x=-5时y=-0.01(-5-20)2+4=-2.25,∴点C(-5,-2.25),∴AC=|-2.25|=2.25米.故答案为:C.6.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m,n(m<n)是关于x的方程1﹣(x﹣p)(x﹣q)=0的两个根,且p<q,则p,q,m,n的大小关系是()A.m<p<q<n B.p<m<n<q C.m<p<n<q D.p<m<q<n【答案】A【解析】由题意可知,二次函数y=(x-p)(x-q)的开口向上,与x轴的两个交点坐标为(p,0),(q,0);∵若m,n(m<n)是关于x的方程1﹣(x﹣p)(x﹣q)=0的两个根,∴(x﹣p)(x﹣q)=1,∴二次函数y=(x-p)(x-q)的图象与直线y=1时交点坐标为(m,1)和(n,1),∵m<n,p<q,∴m<p<q<n.故答案为:A7.定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x﹣m)2﹣m与正方形OABC有交点时m的最大值和最小值之差为()A.5B.7+√172C.4D.7−√172【答案】B【解析】如图,由题意可得,互异二次函数y=(x−m)2−m的顶点(m,−m)在直线y=−x上运动,在正方形OABC 中,点A (0,2),点C (2,0), ∴B (2,2),从图象可以看出,当函数图象从左上向右下运动时,若抛物线与正方形有交点,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,∴只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值. 当互异二次函数y =(x−m )2−m 经过点A (0,2)时,m =2或m =−1;当互异二次函数y =(x−m )2−m 经过点B (2,2)时,m =5−√172或m =5+√172.∴互异二次函数y =(x−m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是5+√172,−1,∴m 的最大值和最小值之差为5+√172−(−1)=7+√172故答案为:B.8.如图,△ABC 和△DEF 都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将△ABC 在直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )A .B .C .D .【答案】A【解析】当0<x≤2时,过点G 作GH ⊥EC 于点H ,∴∠EHG=90°,∵△ABC 和△DEF 是等边三角形,∴∠GCE=∠GEC=60°∴∠EGC=180°-60°-60°=60°,∴△GEC 是等边三角形, ∵点C 移动的距离为x , ∴EG=EC=x ,∴EH=12EC=12x ,在Rt △EGH 中GH =√EG 2−EH 2=√x 2−(12x)2=√32x∴y =S △ECG =12EC ·GH =√34x 2;函数图象是抛物线的一部分顶点在原点,开口向上; 当2<x≤4时,过点M 作MN ⊥BF 于点N ,BF=4-x ,同理可证△BMF 是等边三角形, BF=BM ,EN=12BF=12(4-x ),∴NM =√BM 2−BN 2=√(4−x )2−14(4−x )2=√32(4−x )2∴y =S △BMF =12BF ·MN =√34(4−x )2,函数图象为抛物线的一部分,且开口向上 符合题意的图象为A. 故答案为:A9.已知x=m 是一元二次方程x 2+2x+n-3=0的一个根,则m+n 的最大值等于( ) A .134 B .4 C .−154D .−134【答案】A【解析】由题意得:此方程的根的判别式 Δ=4−4(n −3)≥0 , 解得 n ≤4 ,∵x =m 是一元二次方程 x 2+2x +n −3=0 的一个根,∴m 2+2m +n −3=0 ,即 n =−m 2−2m +3=−(m +1)2+4 , ∴ 对于任意实数m , n ≤4 均成立,令 y =m +n =m +(−m 2−2m +3)=−m 2−m +3 ,整理得: y =−(m +12)2+134,由二次函数的性质可知,当 m =−12时,y 取得最大值,最大值为 134 ,即 m +n 的最大值等于 134,故答案为:A.10.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列结论:①2a +b =0;②若m 为任意实数,则a +b ≥am 2+bm ;③a −b +c >0;④3a +c <0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2.其中正确的个数为( )A .2B .3C .4D .5【答案】C【解析】∵ 抛物线开口向下, ∴a <0 ,∵抛物线对称轴为直线x=−b2a=1,∴b=−2a>0,即2a+b=0,所以①正确;∵抛物线对称轴为直线x=1,∴函数的最大值为y= a+b+c,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以②正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(-1,0)的右侧,∴当x=−1时,y<0,即a−b+c<0,所以③错误;∵b=−2a,a−b+c<0,∴a+2a+c<0,即3a+c<0,所以④正确;∵ax12+bx1=ax22+bx2,∴ax12+bx1−ax22−bx2=0,∴a(x1+x2)(x1−x2)+b(x1−x2)=0,∴(x1−x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=−ba,∵b=−2a,∴x1+x2=2,所以⑤正确.综上所述,正确的有①②④⑤共4个.故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足S△ABP1=S△ABP2=S△ABP3=m,则m的值为.【答案】2【解析】对于y=2x2−8x+6,令y=0,则2x2−8x+6=0,解得:x1=1,x2=3,∴A(1,0),B(3,0)(假设A在B左侧)∴AB=2.根据若其图象上有且只有P1,P2,P3三点满足S△ABP1=S△ABP2=S△ABP3=m,可知P1,P2,P3中必有一点在抛物线顶点上,如图,设点P2在抛物线顶点,∵y=2x2−8x+6=2(x−2)2−2,∴P2(2,-2).∴S△ABP2=m=12AB⋅|yP2|=12×2×2=2.故答案为:2.12.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x−6)2+ℎ.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.若球能越过球网,又不出边界,则h的取值范围为.【答案】ℎ≥83【解析】∵球从O 点正上方2m 的A 处发出, ∴点A (0,2), ∴a (0-6)2+h=2解之:a =2−ℎ36,∴y =2−ℎ36(x −6)2+ℎ,∵已知球网与O 点的水平距离为9m ,高度为2.43m ,∴y =2−ℎ36(9−6)2+ℎ>2.43,解之:ℎ>24375∵球场的边界距O 点的水平距离为18m .若球能越过球网,又不出边界, ∴2−ℎ36(18−6)2+ℎ≤0 解之:ℎ≥83;∴h 的取值范围为ℎ≥83.故答案为:ℎ≥8313.已知抛物线y =a (x ﹣1)(x+2a)与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是 .【答案】2或43或1±√52【解析】 解:对于抛物线解析式y =a (x −1)(x +2a),令y =0,则a (x −1)(x +2a)=0,∴x 1=1,x 2=−2a ,∴A (1,0),B (−2a,0),令x =0,则y =-2, ∴C (0,-2),∴AC =√12+22=√5,若AB =AC =√5时,△ABC 为等腰三角形,此时|1+2a|=√5,解得a =1±√52,若BC =AC =√5时,△ABC 为等腰三角形,此时√(2a)2+22=√5,解得a =2或a =-2(舍去),当AB =BC 时,△ABC 为等腰三角形,此时 |1+2a |=√(2a)2+22,解得a =43,综上,a 的值为2或43或1±√52.故答案为:2或43或1±√52.14.已知抛物线y=x2−2bx+2b2−4c(其中b,c为常数)经过不同两点A(1−b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为.【答案】3【解析】∵抛物线解析式为y=x2−2bx+2b2−4c,∴对称轴为直线x=−−2b2=b,∵抛物线经过不同两点A(1−b,m),B(2b+c,m),∴A、B两点关于直线x=b对称,∴1−b+2b+c2=b,∴c=b−1,∵该二次函数的图象与x轴有公共点,∴△=(−2b)2−4(2b2−4c)=−4b2+16c≥0,∴−4b2+16(b−1)≥0,即-4(b-2)2≥0,∴b=2,∴c=b-1=1,∴b+c=3,故答案为:315.如图,抛物线y=13x2+83x−3与x轴交于点A和点B两点,与y轴交于点C,D点为拋物线上第三象限内一动点,当∠ACD+2∠ABC=180∘时,点D的坐标为 .【答案】(−7,−16 3)【解析】如图当y=0时,13x2+83x−3=0,解之:x=−9或1,∴A(−9,0),B(1,0),∴AB=10,当x=0时,y=3,∴C(0,−3),∵AC2=92+32=90,BC2=12+32=10,AB2=100,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∴2∠BAC+2∠ABC=180°,∵∠ACD+2∠ABC=180°∴2∠BAC=∠ACD,作AE ⊥x 轴,交CD 的延长线与E ,作∠ACD 的平分线,交AE 于F ,则∠ACF =∠BAC , ∴CF ∥AB , ∴CF ⊥AE ,∴AF =EF =BC =3, ∴E (−9,−6),设直线CD 的解析式为y =kx−3, 把E 的坐标代入得,−6=−9k−3, ∴k =13,∴直线CD 的解析式为y =13x−3,∴{y =13x −3y =13x 2+83x −3解之:{x 1=0y 1=3,{x 2=−7y 2=−163∴点D (−7,−163).故答案为:(−7,−163).16.如图,在平面直角坐标系 xOy 中,已知 A 是抛物线 y =2x 2+bx 上一点,顶点 B 的横坐标是1,当△AOB 是直角三角形时,点 A 的坐标为 .【答案】(94,98) 或 (54,−158) 或 (32,−32)【解析】∵顶点 B 的横坐标是1,−b 4=1解之:b=-4∴抛物线的解析式为:y=2x 2-4x=-2(x-1)2+2, ∴点B (1,2)设点A (m ,2m 2-4m ),∴OA 2=m 2+(2m 2-4m )2,OB 2=22+1=5,AB 2=(m-1)2+(2m 2-4m+2)2 当AB 2+OB 2=OA 2时∴(m-1)2+(2m 2-4m+2)2+5=m 2+(2m 2-4m )2, 整理得:4m 2-9m+5=0解之:m 1=54,m 2=1(舍去),∴2m 2-4m=2×2516−4×54=−158∴点A (54,−158);当∠OAB=90°时,过点A 作AN ⊥x 轴于点N ,过点B 作EM ⊥y 轴于点E ,交NA 的延长线于点M ,∴∠ONA=∠AMB=90°, ∴∠BAM+∠ABM=90°,∠NAO+∠BAM=90°, ∴∠ABM=∠NAO , ∴△NAO ∽△ABM , ∴ON AN =AM BM设ON=a ,NA=c ,∴AM=2-c ,BM=a-1,点A (a ,-c ) ∴-c=2a 2-4a , ∴a c =2−c a−1 ∴a 2-a=2c-c 2,解之:a =32,c =−32∴点A (32,−32);当OB 2+OA 2=AB 2时,5+m 2+(2m 2-4m )2=(m-1)2+(2m 2-4m+2)2, 整理得:4m 2-9m=0 解之:m 1=94,m 2=0当m=94时,2m 2-4m=2×8116−4×94=98∴点A (94,98) .∴点A (94,98)或(32,−32)或(54,−158).故答案为:(94,98)或((32,−32)或(54,−158).三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,已知在平面直角坐标系中,O 为坐标原点,二次函数y =x 2+bx +c 的图象与x 轴的负半轴相交于点A ,与x 轴的正半轴相交于点B ,与y 轴相交于点C ,点C 的坐标为(0,-3),且BO =CO .(1)求这个二次函数的解析式;(2)设这个二次函数的顶点为M ,求AM 的长. 【答案】(1)解:∵C(0,-3), ∴OC=3, ∴OB=3,∴B(3,0),∴{9+3b +c =0c =−3,{b =−2c =−3,∴y =x 2−2x −3(2)解:∵y =x 2−2x −3=(x −1)2−4, ∴M(1,-4),∵y=0时,x 2−2x −3=0, ∴x 1=3(舍去),x 2=−1, ∴A(-1,0),∴AM =√(1+1)2+(−4)2=2√5.18.如图,正比例函数y 1=x 与二次函数y 2=x 2-bx 的图象相交于O (0,0),A (4,4)两点.(1)求b 的值;(2)当 y 1< y 2 时,直接写出 x 的取值范围. 【答案】(1)解:将点A (4,4)代入 y 2=x 2−bx 得,16−4b =4 4b =12解得 b =3 .(2)x <0 或 x >4 【解析】(2)由图象可知,当x <0 或 x >4 时, y 1<y 2 . 19.已知函数y 1=x +1和y 2=x 2+3x +c (c 为常数). (1)若两个函数图象只有一个公共点,求c 的值;(2)点A 在函数y 1的图象上,点B 在函数y 2的图象上,A ,B 两点的横坐标都为m.若A ,B 两点的距离为3,直接写出满足条件的m 值的个数及其对应的c 的取值范围. 【答案】(1)解:根据题意,若两个函数图象只有一个公共点, 则方程x 2+3x +c =x +1有两个相等的实数根, ∴△=b 2-4ac =22-4(c -1)=0, ∴c =2;(2)解:由题意,A (m ,m+1),B (m ,m 2+3m +c ) ∴AB=|m 2+3m +c -m -1|=|m 2+2m +c -1|=3,①当m 2+2m +c -1>0时,m 2+2m +c -1=3,即m 2+2m +c -4=0, △=22-4(c -4)=20-4c ,令△=20-4c=0,解得:c=5,∴当c <5时,△>0,方程有两个不相等的实数根,即m 有2个; 当c=5时,△=0,方程有两个相等的实数根,即m 有1个; 当c >5时,△<0,方程无实数根,即m 有0个;②当m 2+2m +c -1<0时,m 2+2m +c -1=-3,即m 2+2m +c+2=0, △=22-4(c+2)=-4c -4,令△=-4c -4=0,解得:c=-1,∴当c <-1时,△>0,方程有两个不相等的实数根,即m 有2个; 当c=-1时,△=0,方程有两个相等的实数根,即m 有1个; 当c >-1时,△<0,方程无实数根,即m 有0个; 综上,当c >5时,m 有0个; 当c =5时,m 有1个;当-1<c <5时,m 有2个; 当c =-1时,m 有3个; 当c <-1时,m 有4个.20.如图,在等腰三角形ABC 中,∠BAC =120°,AB =AC =2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE =30°.(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.【答案】(1)证明:∵△ABC 是等腰三角形,且∠BAC =120°,∴∠ABD =∠ACB =30°,∴∠ABD =∠ADE =30°,∵∠ADC =∠ADE+∠EDC =∠ABD+∠DAB ,∴∠EDC =∠DAB ,∴△ABD ∽△DCE ;(2)解:如图1,∵AB =AC =2,∠BAC =120°,过A 作AF ⊥BC 于F ,∴∠AFB =90°,∵AB =2,∠ABF =30°,∴AF = 12 AB =1, ∴BF = √3 ,∴BC =2BF =2 √3 ,则DC =2 √3 ﹣x ,EC =2﹣y .∵△ABD ∽△DCE ,∴AB BD =DC CE , ∴2x =2√3−x 2−y, 化简得:y = 12x 2−√3 x+2(0<x <2 √3 ); (3)解:当AD =DE 时,如图2,由(1)可知:此时△ABD ≌△DCE ,则AB =CD ,即2=2 √3 ﹣x ,将x =2 √3 ﹣2,代入y = 12x 2−√3 x+2.解得:y =4﹣2 √3 ,即AE =4﹣2 √3 , 当AE =ED 时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=12EC,即y=12(2﹣y),解得:y=23,即AE=23,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2 √3或23.21.已知抛物线y=x2+bx+c(b,c为常数)的顶点为P(2,−1).(1)求该抛物线的解析式;(2)点A(t,y1),B(t+1,y2)在该抛物线上,当t>2时,比较y1与y2的大小;(3)Q(m,n)为该抛物线上一点,当2m+n取得最小值时,求点Q的坐标.【答案】(1)解:∵抛物线的顶点为P (2 , −1 ),∴{−b2=2 , 4+2b+c=−1 . 解得b=−4,c=3.∴抛物线的解析式为y=x2−4 x+3.(2)解:∵抛物线的开口向上,对称轴为直线x=2.∴当x≥2时,函数值y随自变量x的增大而增大.∵t > 2,∴t+1 > t > 2.∴y1 < y2.(3)解:∵点Q (m , n )在该抛物线上,∴n=m2−4m+3.∴2m+n=2m+ (m2−4m+3 )=m2−2m+3= (m−1 )2+2.∴当m=1时,2m+n取得最小值2.此时n= 1−4+3=0.∴点Q的坐标为 (1 , 0 ).22.如图,在平面直角坐标系中,抛物线的对称轴是直线x=1,且与x轴交于A,B两点,与y 轴交于点C(0,−3),OB=OC.(1)求抛物线的解析式.(2)在抛物线上是否存在点Q,使得△BCQ是以BC为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(3)设抛物线上的一点P的横坐标为m,且在直线BC的下方,求使△BCP的面积为最大整数时点P的坐标.【答案】(1)解:∵C(0,−3),OB=OC,∴OB=OC=3,∴B(3,0),设抛物线的解析式为y=ax2+bx+c,则有:{−b2a=19a+3b+c=0c=−3,解得:{a=1b=−2c=−3,∴抛物线解析式为y=x2−2x−3;(2)解:存在点Q,使得△BCQ是以BC为直角边的直角三角形,理由如下:①当∠BCQ=90°时,如图所示:过点Q作QH⊥y轴于点H,∵OB=OC,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠OCB=45°,∵∠BCQ=90°,∴∠HCQ=45°,∴△HCQ是等腰直角三角形,∴HC=HQ,设点Q(t,t2−2t−3),则有HQ=t,CH=−3−t2+2t+3=−t2+2t,∴t=−t2+2t,解得:t1=1,t2=0(不符合题意,舍去),∴点Q(1,−4);②当∠CBQ=90°时,如图所示:过点B作x轴的垂线,然后过点Q、C分别作QE⊥BE于点E,CF⊥BE于点F,∴CF=BF=3,∴△BFC是等腰直角三角形,∴∠CBF=45°,∵∠CBQ=90°,∴∠EBQ=45°,∴△QEB是等腰直角三角形,∴EQ=EB,设点Q(t,t2−2t−3),则有EQ=3−t,EB=t2−2t−3,∴3−t=t2−2t−3,解得:t1=−2,t2=3(不符合题意,舍去),∴点Q(−2,5);综上所述:当△BCQ是以BC为直角边的直角三角形时,点Q(1,−4)或Q(−2,5);(3)解:由(1)可知:B(3,0),C(0,−3),设直线BC的解析式为y=kx+b,则有:{3k+b=0b=−3,解得:{k=1b=−3,∴直线BC的解析式为y=x−3,过点P 作PM ⊥x 轴,交BC 于点M ,如图所示:∴P(m ,m 2−2m −3) ,∴M(m ,m −3) ,∴PM =m −3−m 2+2m +3=−m 2+3m ,∴S △BCP =S △CPM +S △BPM =12PM ⋅(x B −x C )=32(−m 2+3m)=−32(m −32)2+278 , ∵−32<0 ,开口向下, ∴S △BCP ≤278 , ∴△BCP 的面积为最大整数时的值为3,∴−32m 2+92m =3 , 解得: m 1=1,m 2=2 ,∴点 P(1,−4) 或 P(2,−3) .23.在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 的开口向上,且经过点A (0,32). (1)求c 的值;(2)若此抛物线经过点B (2,﹣12),且与x 轴相交于点E (x 1,0),F (x 2,0). ①求b 的值(用含a 的代数式表示);②当EF 2的值最小时,求抛物线的解析式;(3)若a =12,当0≤x≤1,抛物线上的点到x 轴距离的最大值为3时,求b 的值. 【答案】(1)解:∵抛物线y =ax 2+bx +c 的开口向上,且经过点A(0,32), ∴c =32, (2)解:①∵c =32, ∵抛物线经过点B(2,−12), ∴−12=4a +2b +32, ∴b =−2a −1,故答案为:−2a −1;②由①可得抛物线解析式为y =ax 2−(2a +1)x +32, 令y =0可得ax 2−(2a +1)x +32=0, ∵△=(2a +1)2−4a ×32=4a 2−2a +1=4(a −14)2+34>0, ∴方程有两个不相等的实数根,设为x 1、x 2,∴x 1+x 2=2a+1a ,x 1x 2=32a ,∴EF 2=(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=4a 2−2a+1a 2=(1a −1)2+3, ∴当a =1时,EF 2有最小值.∴抛物线解析式为y =x 2−3x +32; (3)解:当a =12时,抛物线解析式为y =12x 2+bx +32, ∴抛物线对称轴为x =−b ,∴只有当x =0、x =1或x =−b 时,抛物线上的点才有可能离x 轴最远, 当x =0时,y =32,当x =1时,y =12+b +32=2+b ,当x =−b 时,y =12(−b)2+b(−b)+32=−12b 2+32, ①当|2+b|=3时,b =1或b =−5,且顶点不在范围内,满足条件; ②当|−12b 2+32|=3时,b =±3,对称轴为直线x =±3,不在范围内,故不符合题意, 综上可知:b 的值为1或-5.24.如图,在平面直角坐标系xOy 中,抛物线y =x 2+bx +c 与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点C ,顶点为点D .(1)求该抛物线的表达式及点C 的坐标;(2)联结BC 、BD ,求∠CBD 的正切值;(3)若点P 为x 轴上一点,当△BDP 与△ABC 相似时,求点P 的坐标.【答案】(1)解:将A (-1,0)、B (3,0)代入y =x 2+bx +c ,得 {1−b +c =0,9+3b +c =0.解得:{b =−2,c =−3. 所以,y =x 2−2x −3.当x=0时,y =−3.∴点C 的坐标为(0,-3).(2)解:连接CD ,过点D 作DE ⊥y 轴于点E ,∵y =x 2−2x −3=(x −1)2−4,∴点D 的坐标为(1,-4).∵B (3,0)、C (0,-3)、D (1,-4),E (0,-4),∴OB=OC=3,CE=DE=1,∴BC=3√2,DC=√2,BD=2√5.∴BC 2+DC 2=18+2=20=DB 2.∴∠BCD=90°.∴tan ∠CBD=DC BC =√23√2=13.(3)解:∵tan ∠ACO=AO OC =13, ∴∠ACO=∠CBD .∵OC=OB ,∴∠OCB=∠OBC=45°.∴∠ACO+∠OCB=∠CBD+∠OBC .即:∠ACB=∠DBO .∴当△BDP 与△ABC 相似时,点P 在点B 左侧. (i )当AC CB =DB BP 时, ∴√103√2=2√5BP . ∴BP=6.∴P (-3,0).(ii )当AC CB =BP DB 时, ∴√103√2=BP 2√5. ∴BP=103. ∴P (-13,0). 综上,点P 的坐标为(-3,0)或(-13,0).。

(必考题)初中数学九年级数学下册第二单元《二次函数》检测(包含答案解析)(1)

(必考题)初中数学九年级数学下册第二单元《二次函数》检测(包含答案解析)(1)

一、选择题1.二次函数2y ax bx c =++的图象如图所示,则函数值y 0>时,x 的取值范围是( )A .x 2<-B .x 5>C .2x 5-<<D .x 2<-或x 5>2.如图在平面直角坐标系中,点A 在抛物线245y x x =-+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,则对角线BD 的最小值为( )A .4B .3C .2D .13.已知二次函数2y x bx c =-+与x 轴只有一个交点,且图象经过两点A (1,n ),B (m +2,n ),则m 、n 满足的关系为( )A .24m n =B .22m n =C .()214m n += D .()212m n += 4.如图,已知ABC 中,,120,3AC BC ACB AB =∠=︒=,点D 为边AB 上一点,过点D 作//DE AC ,交BC 于点E ,过点E 作EF DE ⊥,交AB 于点F .设,AD x DEF =的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .5.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( )A .2B .4C .-4D .6.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =-- 7.二次函数()210y ax bx c a =++>的图象与x 轴的一个交点为()3,0-,对称轴为直线1x =-,一次函数()20y kx n k =+<的图象过点()3,0-和二次函数()210y ax bx c a =++>图象的顶点.下列结论:( )①0abc <;②若31x -<<-,则12y y <;③若二次函数1y 的值大于0,则1x >;④过动点(),0P m 且垂直于x 轴的直线与函数12,y y 的图象的交点分别为,C D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-.错误的是( )A .①B .②C .③D .④8.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =.有下列结论:①0abc >;②关于x 的方程20ax bx c ++=有两个不等的实数根;③12a <-.其中正确结论的个数是( ) A .0B .1C .2D .3 9.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①② B .②④ C .③④ D .②③④ 10.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2b a =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个11.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④ 12.已知二次函数2y ax bx c =++的图象如图所示,则下列结论正确的个数有( ) ①0c >;②240b ac -<;③0a b c -+>;④当1x >时,y 随x 的增大而减小A .4个B .3个C .2个D .1个二、填空题13.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出下列四个结论:①a <0;②4ac >b 2;③4a +c <2b ;④3b +2c <0.其中正确的是____________.(填序号)14.已知二次函数2(0)y ax bx ca =++≠的自变量x 与函数值y 之间满足下列数量关系: x 01 2 3 y7 5 7 13 则代数式的值为_______.15.抛物线2(0)y ax bx c a =++≠与x 轴的交点是(1,0)-,(5,0),则这条抛物线的对称轴是直线x =__________.16.将抛物线21:23C y x x =-+向左平移一个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于y 轴对称,则抛物线3C 的表达式为____.17.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.18.将抛物线2610y x x =-+先向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线与x 轴的交点坐标是______.19.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2021的坐标为____.20.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.三、解答题21.在平面直角坐标系中,设二次函数2212,1y x bx a y ax bx =++=++(,a b 是实数,0a ≠).(1)若函数1y 的对称轴为直线3x =,且函数1y 的图象经过点(,)a b ,求1y 的表达式. (2)设函数1y 的图象经过点(,)m n ,函数2y 的图象经过点11,m n ⎛⎫ ⎪⎝⎭,其中0mn ≠,求,m n 满足的关系式.(3)当01x <<时,比较1y 和2y 的函数值的大小.22.在平面直角坐标系中,函数2y x bx c =-++图象过点(,0)A m ,(3,0)B m + (1)当1m =时,求该函数的表达式(2)证明该函数的图像必过点(m+1,2)(3)求该函数的最大值23.如图,抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 的左侧),点A 的坐标为(﹣1,0),与y 轴交于点C (0,3),作直线BC .动点P 在x 轴上运动,过点P 作PM ⊥x 轴,交抛物线于点M ,交直线BC 于点N ,设点P 的横坐标为m .(1)求抛物线的解析式和直线BC 的解析式;(2)当点P 在线段OB 上运动时,求线段MN 的最大值;(3)当点P 在线段OB 上运动时,若△CMN 是以MN 为腰的等腰直角三角形时,求m 的值;(4)当以C 、O 、M 、N 为顶点的四边形是平行四边形时,直接写出m 的值.24.如图,在平面直角坐标系中,点()2,3A 为二次函数()220y ax bx a =+-≠与反比例函数()0k y k x=≠在第一象限的交点,已知该抛物线()220y ax bx a =+-≠与x 轴正、负半轴分别交于点E 、点D ,交y 轴负半轴于点B ,且1tan 2ADE ∠=. (1)求二次函数和反比例函数的表达式; (2)已知点M 为抛物线上一点,且在第三象限,顺次连接点D M B E 、、、,求四边形DMBE 面积的最大值.25.如图①,抛物线232y x bx c =-++与x 轴交于()()1,0,3,0A B -两点,点C 是抛物线顶点.(1)求抛物线的解析式; (2)如图②,连接,AC BC .若点,P D 分别是抛物线对称轴和BC 上动点,求PB PD +的最小值;(3)在(2)的条件下,点M 是x 轴上方抛物线上一点,点N 是x 轴上一点,当以,,,M N B D 为顶点的四边形为平行四边形时,直接写出点N 坐标.26.阅读材料:二次函数的应用小明在学习过程中遇到一个问题:下列两个两位数相乘的运算中(两个乘数的十位上的数都是8,个位上的数的和等于10),猜想其中哪个积最大,并说明理由.8189⨯,8288⨯,8387⨯,……,8783⨯,8882⨯,8981⨯小明结合已学知识做了如下尝试:设两个乘数的积为y ,其中一个乘数的个位上的数为x ,则另一个乘数个位上的数为(10)x -,根据题意得:(80)[80(10)]y x x =++-=(80)(90)(80)(90)x x x x +-=-+-……(1)问题解决:请帮助小明判断以上问题中哪个积最大并求出这个最大的积;(2)问题拓展:下列两个三位数相乘的运算中(两个乘数的百位上的数都是7,十位上的数与个位上的数组成的数的和等于100),用以上方法猜想其中哪个积最大,并说明理由.701799⨯,702798⨯,703797⨯,……,797703⨯,798702⨯,799701⨯【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据函数图象求出与x 轴的交点坐标,再由图象得出答案.【详解】解:有函数图象观察可知,当25x -<<时,函数值0y >.故选:C .【点睛】本题考查二次函数与不等式.掌握数形结合思想是解题关键.2.D解析:D【分析】先利用配方法得到抛物线的顶点坐标为(2,1),再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为2,从而得到BD 的最小值.【详解】解:∵y =x 2﹣4x +5=(x ﹣2)2+1,∴抛物线的顶点坐标为(2,1),∵四边形ABCD 为矩形,∴BD =AC ,而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1,∴对角线BD 的最小值为1.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.3.C解析:C【分析】设解析式为()()12y x x m n =---+,得对称轴为32m x +=,由抛物线与x 轴只有一个交点得顶点为3,02m +⎛⎫ ⎪⎝⎭,代入()()12y x x m n =---+整理后即可得出结论. 【详解】解:设解析式为()()12y x x m n =---+∵A ,B 两点关于对称轴对称∴对称轴为直线12322m m x +++== ∵二次函数与x 轴只有一个交点∴顶点为3,02m +⎛⎫ ⎪⎝⎭把3,02m +⎛⎫ ⎪⎝⎭代入()()12y x x m n =---+ ∴3312022m m m n ++⎛⎫⎛⎫---+= ⎪⎪⎝⎭⎝⎭∴1102222m m n ⎛⎫⎛⎫+--+= ⎪⎪⎝⎭⎝⎭∴()214m n += 故选:C【点睛】本题考查的是抛物线与x 轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.4.B解析:B【分析】过点C 作CG ⊥AB ,求出CG 、AC ,证明△ACB ∽△DEB ,求出DE ,再根据直角三角形的性质求出EF ,根据三角形面积公式得到y 关于x 的函数表达式,从而判断图像.【详解】解:∵AC=BC ,∠ACB=120°,∴∠A=∠B=30°,过点C 作CG ⊥AB ,则AG=BG=12AB=32,AC=2CG , 则CG=3=3,AC=3, ∵DE ∥AC ,∴△ACB ∽△DEB ,∴AC AB DE BD =,即333x=-, 解得:DE=()333x -, ∵∠DEF=90°,∠EDF=∠A=30°,∴EF=3=33x -, ∴y=S △DEF =12DE EF ⨯⨯=()3313233x x --⨯⨯=()23318x -, 可得:当0<x <3时,图像为抛物线,y 随x 的增大而减小,选项B 中的图像最合适,故选B .【点睛】本题考查了相似三角形的判定和性质,以及直角三角形的性质,二次函数,解题的关键是通过相似三角形的性质得到线段的长,从而得到二次函数表达式.5.D解析:D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯,∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.6.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =--- 即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.7.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性,以及一次函数的性质逐个进行判断,即可得出答案.【详解】解:根据题意,∵对称轴12b x a=-=-,0a >, ∴20b a =>, ∵抛物线与x 轴的一个交点为()3,0-,∴另一个交点为()1,0,∴抛物线与y 的负半轴有交点,则0c <,∴0abc <;故①正确;∵一次函数()20y kx n k =+<的图象过点()3,0-和顶点()1,a b c --+,∴若31x -<<-,则12y y <;故②正确;∵抛物线与x 轴的一个交点为()3,0-和()1,0,若二次函数1y 的值大于0,则1x >或3x <-;故③错误;由题意,当12y y >时,有3m <-或1m >-;故④正确;故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.8.C解析:C【分析】由二次函数的对称性及题意可得该抛物线与x 轴的另一个交点坐标为()1,0-,进而可得抛物线的开口方向向下,则有a 0,b 0,c 0<>>,然后根据二次函数的性质可进行排除选项.【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =, ∴抛物线与x 轴的另一个交点的横坐标为12212⨯-=-, ∴该点坐标为()1,0-,∴抛物线的开口方向向下,即0a <,根据“左同右异”可得0b >,∴0abc <,故①错误; ∴令y=0,则关于x 的方程20ax bx c ++=的解为:122,1x x ==-,故②正确; 根据根与系数的关系可得122c x x a==-, ∴21c a =->, 解得12a <-,故③正确; ∴正确的个数有2个;故选C .【点睛】 本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 9.B解析:B【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④.【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误;②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2b a=-1<0,即b=2a <0,即③错误; ④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确; 所以正确的有:②④,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键. 10.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0,∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.11.A解析:A【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a=-=-<0, b ∴<0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12b x a=-=-, 2,b a ∴= 即1,2a b = 当1x =时,y a b c =++<0,12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.12.B解析:B【分析】根据二次函数的图象与y 轴的交点判断c 的正负;根据二次函数的图象与x 轴交点个数,判断②的正确性;根据1x =-时,y 取值的正负,判断③的正确性;根据图象中函数的增减性判断④的正确性.【详解】解:∵二次函数的图象与y 轴的交点在正半轴,∴0c >,故①正确;∵二次函数的图象与x 轴有两个交点,∴方程20ax bx c ++=有两个不相同的实数根,∴240b ac ->,故②错误;当1x =-时,0y >,即0a b c -+>,故③正确;根据图象,当1x >时,y 随x 的增大而减小,故④正确.故选:B .【点睛】本题考查二次函数,解题的关键是根据二次函数的图象分析解析式中系数的关系.二、填空题13.①④【分析】根据二次函数的性质和系数之间的关系和图象逐个判断即可【详解】解:∵抛物线开口向下∴a <0;①正确;∵图象与x 轴有两个交点∴方程ax2+bx+c=0有两个不相等的实数根∴b2-4ac >0∴解析:①④【分析】根据二次函数的性质和系数之间的关系和图象逐个判断即可.【详解】解:∵抛物线开口向下,∴a <0;①正确;∵图象与x 轴有两个交点,∴方程ax 2+bx+c=0有两个不相等的实数根,∴b 2-4ac >0,∴4ac <b 2,②错误;∵当x=-2时,y >0,∴4a-2b+c >0,∴4a+c >2b ,③错误;∵抛物线的对称轴为12b x a=-=-, ∴b=2a ,∵当x=1时,y <0,∴a+b+c <0 ∴102b b c ++<, ∴320b c +<,④正确故答案为①④.【点睛】本题考查了二次函数的图象与系数的关系:二次函数y=ax 2+bx+c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-,抛物线与y 轴的交点坐标为(0,c );当b 2-4ac >0,抛物线与x 轴有两个交点;当b 2-4ac=0,抛物线与x 轴有一个交点;当b 2-4ac <0,抛物线与x 轴没有交点.14.91【分析】观察表格可知:x=0时y=7x=2时y=7即可求得抛物线的对称轴为直线x==1根据抛物线的对称性求得x=-1时y=13从而求得4a+2b+c=7a-b+c=13【详解】解:观察表格可知:解析:91【分析】观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=022+=1,根据抛物线的对称性求得x=-1时,y=13,从而求得4a+2b+c=7,a-b+c=13.【详解】解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x=022+=1, ∵x=3时,y=13,∴x=-1时,y=13,∴4a+2b+c=7,a-b+c=13,∴(4a+2b+c )(a-b+c )的值为91,故答案为91.【点睛】本题考查二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【分析】根据抛物线的对称性即可求解【详解】解:∵抛物线y=ax2+bx+c 与x 轴的公共点的坐标是(-10)(50)∴这条抛物线的对称轴是直线x=(5-1)=2故答案为2【点睛】本题考查了抛物线与x 轴解析:2【分析】根据抛物线的对称性即可求解.【详解】解:∵抛物线y=ax 2+bx+c 与x 轴的公共点的坐标是(-1,0),(5,0),∴这条抛物线的对称轴是直线x=12(5-1)=2, 故答案为2.【点睛】本题考查了抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 16.【分析】根据抛物线的解析式得到顶点坐标根据顶点式及平移前后二次项的系数不变可得抛物线的顶点坐标而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等横坐标互为相反数由此可得到抛物线所对应的函数表达式【详解 解析:22y x =+【分析】根据抛物线1C 的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线 2C 的顶点坐标,而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,由此可得到抛物线3C 所对应的函数表达式.【详解】抛物线1C :2223=(1)2y x x x =-+-+, ∴抛物线1C 的顶点为(1,2),向左平移一个单位长度,得到抛物线2C ,∴抛物线2C 的顶点为(0,2),抛物线2C 与抛物线3C 关于y 轴对称,∴抛物线3C 的开口方向相同,顶点为(0,2),∴抛物线3C 的解析式为22y x =+.故答案为22y x =+.【点睛】本题主要考查了二次函数的图像的平移问题,只需看顶点坐标是如何平移得到的即可,关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,难度适中. 17.y=-x2-2x-1【分析】首先由①得到a <0;由②得到-≤0;只要举出满足以上两个条件的abc 的值即可得出所填答案【详解】解:二次函数y=ax2+bx+c①开口向下∴a <0;②当x >0时y 随着x 的解析:y=-x 2-2x-1.【分析】首先由①得到a <0;由②得到-2b a ≤0;只要举出满足以上两个条件的a 、b 、c 的值即可得出所填答案.【详解】解:二次函数y=ax 2+bx+c ,①开口向下,∴a <0;②当x >0时,y 随着x 的增大而减小,-2b a≤0,即b <0; ∴只要满足以上两个条件就行,如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x 2-2x-1.故答案为:y=-x 2-2x-1.【点睛】本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目. 18.【分析】先把抛物线解析式整理出顶点式形式再根据规律求出平移后的抛物线再求出抛物线与轴的交点坐标即可【详解】解:∵∴抛物线向左平移2个单位长度再向下平移个单位长度得:∴平移后的抛物线顶点坐标为(10) 解析:()1,0【分析】先把抛物线解析式整理出顶点式形式,再根据规律求出平移后的抛物线,再求出抛物线与x 轴的交点坐标即可.【详解】解:∵22610=(3)1y x x x =-+-+,∴抛物线2610y x x =-+向左平移2个单位长度,再向下平移1个单位长度,得: 222610=(3+2)11(1)y x x x x =-+-+-=-∴平移后的抛物线顶点坐标为(1,0),即所得到的抛物线与x 轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式,本题巧妙之处在于抛物线顶点坐标在x 轴上.19.(-101110112)【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变化规律即解析:(-1011,10112)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2021的坐标.【详解】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==,得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2021(-1011,10112),故答案为(-1011,10112).【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.20.【分析】当BCP三点共线且C在BP之间时BP最大连接PB此时△OAQ∽△BAP且相似比为1:3由此即可求得求出BP的最大值即可求解【详解】解:如下图所示连接BP当BCP三点共线且C在BP之间时BP最解析:7 3【分析】当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,连接PB ,此时△OAQ ∽△BAP ,且相似比为1:3,由此即可求得13=OQ BP ,求出BP 的最大值即可求解. 【详解】解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0),∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大, 此时BP 最大值为:224327++=BC CP , ∴OQ 的最大值为:73. 【点睛】本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.三、解答题21.(1)2126y x x =+-或2136y x x =+-;(2)220m n -=;(3)当1a <且0a ≠时,12y y <;当1a >时,12y y >【分析】(1)由题意易得32b -=,则有6b =-,然后再把点(,)a b 代入求解即可; (2)把点(),m n 和点11,m n ⎛⎫ ⎪⎝⎭分别代入1y ,2y 进行求解即可; (3)由题意可求12y y -的值,然后根据01x <<及分类讨论a 的范围,从而得出12y y -的大小即可.【详解】解:(1)由函数1y 的对称轴为直线3x =,可得32b -=, ∴6b =-,∴点(),6a -,∴266a a a -+=-,解得:122,3a a ==,∴函数1y 的解析式为2126y x x =+-或2136y x x =+-;(2)把点(),m n 和点11,m n ⎛⎫ ⎪⎝⎭分别代入1y ,2y 得: 22111m mb a n b a m mn ⎧++=⎪⎨⎛⎫++=⎪ ⎪⎝⎭⎩,解得:220m n -=;(3)由2212,1y x bx a y ax bx =++=++可得: ()()()()22212211111y x bx a ax bx a x y a a x =++-++-+-=--=-,∵01x <<,∴210x -<,∴当1a <且0a ≠时,10a ->,则有120y y -<,即12y y <;当1a >时,10a -<,则有120y y ->,即12y y >;综上:当1a <且0a ≠时,12y y <;当1a >时,12y y >.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 22.(1)254y x x =-+-;(2)见解析;(3)94 【分析】(1)由已知可得AB 两点坐标,根据待定系数法将点坐标代入解析式中求出bc 即可; (2)由AB 两点坐标可得函数的交点式,再将1x m =+代入可得2y =,即可证明; (3)根据二次函数的顶点坐标公式求出该函数的最大值.【详解】解:(1)把1m =代入得:A (1,0)、B (4,0)∴2210440b c b c ⎧-++=⎨-++=⎩, 解得 54b c =⎧⎨=-⎩, 故函数表达式为254y x x =-+-,(2)由题意得()(3)y x m x m =----,把1x m =+代入得:(1)(13)2y m m m m =-+-+--=,∴该函数的图像必过点(m+1,2);(3)由(2)知2()(3)(23)(3)y x m x m x m x m m =----=-++-+, 当2322b m x a +=-=时,函数最大值为:23239()(3)224m m y m m ++=----=. 【点睛】本题考查待了定系数法求二次函数解析式;二次函数图象上点的特征.熟练掌握二次函数的性质是解决本题的关键.23.(1)y =﹣x 2+2x +3,y =﹣x +3;(2)当m =32时,MN 有最大值,MN 的最大值为94;(3)m =2;(4)m 的值为2或32. 【分析】(1)由A 、C 两点的坐标利用待定系数法可求得抛物线解析式,则可求得B 点坐标,再利用待定系数法可求得直线BC 的解析式;(2)用m 可分别表示出N 、M 的坐标,则可表示出MN 的长,再利用二次函数的最值可求得MN 的最大值;(3)由题意可得当△CMN 是以MN 为腰的等腰直角三角形时则有MN=MC ,且MC ⊥MN ,则可求表示出M 点坐标,代入抛物线解析式可求得m 的值;(4)由条件可得出MN=OC ,结合(2)可得到关于m 的方程,可求得m 的值.【详解】解:(1)∵抛物线过A 、C 两点,∴代入抛物线解析式可得103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴抛物线解析式为y =﹣x 2+2x +3,令y =0可得,﹣x 2+2x +3=0,解x 1=﹣1,x 2=3,∵B 点在A 点右侧,∴B 点坐标为(3,0),设直线BC 解析式为y =kx +s ,把B 、C 坐标代入可得303k s s +=⎧⎨=⎩,解得13k s =-⎧⎨=⎩, ∴直线BC 解析式为y =﹣x +3;(2)∵PM ⊥x 轴,点P 的横坐标为m ,∴M (m ,﹣m 2+2m +3),N (m ,﹣m +3),∵P 在线段OB 上运动,∴M 点在N 点上方,∴MN =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m =﹣(m ﹣32)2+94, ∴当m =32时,MN 有最大值,MN 的最大值为94; (3)∵PM ⊥x 轴, ∴当△CMN 是以MN 为腰的等腰直角三角形时,则有CM ⊥MN ,∴M 点纵坐标为3,∴﹣m 2+2m +3=3,解得m =0或m =2,当m =0时,则M 、C 重合,不能构成三角形,不符合题意,舍去,∴m =2;(4)∵PM ⊥x 轴,∴MN ∥OC ,当以C 、O 、M 、N 为顶点的四边形是平行四边形时,则有OC =MN ,当点P 在线段OB 上时,则有MN =﹣m 2+3m ,∴﹣m 2+3m =3,此方程无实数根,当点P 不在线段OB 上时,则有MN =﹣m +3﹣(﹣m 2+2m +3)=m 2﹣3m ,∴m 2﹣3m =3,解得m =32或m =32,综上可知当以C 、O 、M 、N 为顶点的四边形是平行四边形时,m 的值为32+或32-. 【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的最值、等腰直角三角形的判定和性质、平行四边形的性质及分类讨论思想等知识点.在(2)中用m 表示出MN 的长是解题的关键,在(3)中确定出CM ⊥MN 是解题的关键,在(4)中由平行四边形的性质得到OC=MN 是解题的关键.24.(1)213222y x x =+-;6y x =;(2)9 【分析】(1)将()2,3A 代入反比例函数解析式即可求出k 值;再根据1tan 2ADE ∠=构建直角三角形即可求出D 点坐标;再讲A 、D 两点坐标代入二次函数解析式即可求出二次函数的表达式;(2)作出辅助线后将所求四边形的面积分为三部分,即DHM △、OEB 和梯形HOBM ,分别求出后求和,即可得出面积S 与M 点横坐标m 的二次函数关系式,有函数性质即可求出四边形DMBE 面积的最大值. 【详解】解:(1)如图,过A 点作AC x ⊥轴且与x 轴交于点C ;将()2,3A 代入k y x =中,解得6k =, ∴6y x=, ∴3AC =,2OC =∵1tan 2ADE ∠=, ∴6DC =,∴4DO DC OC =-=,∴(4,0)D -,将A ,D 代入()220y ax bx a =+-≠中得: 422316420a b a b +-=⎧⎨--=⎩解得1232a b ⎧=⎪⎪⎨⎪=⎪⎩,∴二次函数表达式为:213222y x x =+-; (2)如图,过M 作MH x ⊥轴于H ,并设点M 的坐标为213(,2)22m m m +-, ∵M 点在第三象限 ∴213222MH m m =--+ 则+DMBE HOBM S S S S =+△DHM △OEB 四边形梯形, 4212=222m MH m ++⨯++()MH ()(-) 42=12mMH MH m mMH +--+ =21MH m -+213=2(2)122m m m --+-+ 2=45m m --+2=(2)9m -++∴当2m =-时四边形DMBE 的面积最大,最大面积为9.【点睛】本题主要考查利用待定系数法求解二次函数、反比例函数的解析式以及函数的性质和数形结合的能力,对于学生的综合能力要求较高.25.(1)222y x =-++;(2)3)()12N +,()22N ,()34N -,()44N【分析】(1)直接将()()1,0,3,0A B -代入解析式,运用待定系数法求解即可;(2)由题意可知ABC 为等腰三角形,即:AC BC =,作BE AC ⊥于E 点,交对称轴于P 点,将E 点关于对称轴对称至BC 上D 点,此时PB PD +最小,即为BE 的长,然后利用等面积法求解BE 即可;(3)设2,M m ⎛+ ⎝⎭,(),0N n ,当BM 和BD 分别为对角线时,进行分类讨论即可.【详解】(1)将()()1,0,3,0A B -代入解析式得:309330b c b c ⎧--+=⎪⎪⎨⎪-++=⎪⎩,解得:333b c ⎧=⎪⎨=⎪⎩,∴抛物线的解析式为:2333322y x x =-++; (2)由抛物线的对称性可知,ABC 为等腰三角形,即:AC BC =,如图所示,作BE AC ⊥于E 点,交对称轴于P 点,此时,将E 点关于对称轴对称至BC 上D 点,∴此时PB PD +最小,即为:BE 的长,∵()()1,0,3,0A B -,∴4AB =,由抛物线解析式可得:顶点()1,23C , ∴114234322ABC C S AB y ==⨯⨯=△, 由A 、C 坐标可得4AC =, ∴由1·2ABC S AC BE =,解得:23BE =, ∴PB PD +的最小值为23;(3)设2333,322M m m ⎛-++ ⎝⎭,(),0N n , 由(2)可知,4AB =,4AC BC ==,∴△ABC 为等边三角形,在(2)的条件下,D 为BC 的中点,则D 的坐标为(23,,①当BM 为对角线时,如图所示,根据平行四边形四个顶点的相对位置关系有:2323333322m n m m +=+⎧⎪⎨-++=⎪⎩,解得:1222m n ⎧=+⎪⎨=+⎪⎩或1222m n ⎧=-⎪⎨=-⎪⎩, 即:()122,0N +,()222,0N -;②当BD 为对角线时,如图所示,根据平行四边形四个顶点的相对位置关系有:2533333m n m m +=⎧⎪⎨-++=⎪⎩,解得:1242m n ⎧=+⎪⎨=-⎪⎩或1242m n ⎧=-⎪⎨=+⎪⎩, 即:()342,0N -,()442,0N +;综上所述,N 的坐标为()122,0N +,()222,0N -,()342,0N ,()442,0N +.【点睛】本题考查二次函数与几何综合,准确求取解析式并熟练运用平行四边形的性质进行合理的分类讨论是解题关键.26.(1)8585⨯最大,为7225;(2)750750⨯的积最大,理由见解析【分析】(1)由(80)(90)y x x =-+-,求解抛物线的对称轴,从而得到抛物线的顶点的横坐标,于是可得函数的最大值;(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,从而可得函数关系式为::w =(700)(800)a a -+-,再求解抛物线的对称轴为:7008001005022a -+===,再利用二次函数的性质可得答案.【详解】(1)解: (80)(90)y x x =-+-, ∴ 抛物线的对称轴为:809010522x -+=== 而对称轴5x =在自变量取值范围内(19x ≤≤且x 为整数)∴当5x =时,2max (580)(590)857225y =-+-==,所以:8585⨯最大,最大积为7225.(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,依题意,得:(700)[700(100)]w a a =++-=(700)(800)(700)(800)a a a a +-=-+-∴抛物线的对称轴为:7008001005022a -+=== 而对称轴50a =在自变量取值范围内(199a ≤≤且x 为整数)∴当50a =时,750750⨯的积最大. 【点睛】本题考查的是列二次函数关系式,二次函数的性质与二次函数的最值,二次函数的应用,掌握以上知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十六章二次函数章末测试(一)一.选择题(共8小题,每题3分)1.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A.y=B.y=﹣C.y=﹣D.y=(第1题)(第4题)(第7题)2.把一根长为50cm的铁丝弯成一个长方形,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50x C.y=﹣x2+25x D.y=﹣2x2+253.二次函数y=kx2+2x+1(k<0)的图象可能是()A.B.C.D.4.已知抛物线y=ax2+bx+c(a<0)的部分图象如图所示,当y>0时,x的取值范围是()A.﹣2<x<2 B.﹣4<x<2 C.x<﹣2或x>2 D.x<﹣4或x>25.抛物线y=x2﹣4x﹣7的顶点坐标是()A.(2,﹣11)B.(﹣2,7)C.(2,11) D.(2,﹣3)6.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为4 D.抛物线与x轴的交点为(﹣1,0),(3,0)7.如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m8.如图,有一座抛物线拱桥,当水位在AB位置时,桥拱顶离水面2m,水面宽4m.若水面下降1m,则水面宽CD 为()A.5m B.6m C.m D.m(第8题)(第9题)(第10题)(第14题)二.填空题(共6小题,每题3分)9.函数与y2=x+2的图象及交点如图所示,则不等式x2<x+2的解集是_________.10.如图是二次函数y=ax2+bx+c的部分图象,由图象可知ax2+bx+c>0时x的取值范围是_________.11.抛物线y=x2﹣4x+3的顶点坐标和对称轴分别是_________.12.抛物线y=x2﹣(m2﹣3m+2)x+m2﹣4的图象的对称轴是y轴,且顶点在原点,则m的值为_________.13.若抛物线y=ax2+4x+a的顶点的纵坐标是3,则a=_________.14.如图,一块草地是长80 m,宽60 m的矩形,欲在中间修筑两条互相垂直的宽为xm的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值.三.解答题(共10小题)15.(6分)已知正方形的面积为y(cm2),周长为x(cm).(1)请写出y与x的函数关系式.(2)判断y是否为x的二次函数.16.(6分)为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一条矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带BC边长为xm,绿化带的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.17.(6分)如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.18.(8分)已知抛物线y=ax2+bx+c经过A(0,﹣5),B(1,﹣3),C(﹣1,11)三点,求抛物线的顶点坐标及对称轴.19.(8分)如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)当m取何值时,ax2+bx+c=m有两个不相等的实数根.20.(8分)已知抛物线的顶点坐标是(2,﹣3),且经过点(1,﹣).(1)求这个抛物线的函数解析式,并作出这个函数的大致图象;(2)当x在什么范围内时,y随x的增大而增大?当x在什么范围内时,y随x的增大而减小?21.(8分)如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.求:(1)求抛物线的解析式;(2)求点D的坐标.22(8分).根据下列条件求二次函数解析式:(1)二次函数的图象过点(0,﹣1),对称轴是直线x=﹣1,且二次函数有最大值2.(2)二次函数的图象过点(5,6),与x轴交于(﹣1,0),(2,0)两点.23.(10分)如图,在平面直角坐标系中,三个小正方形的边长均为1,且正方形的边与坐标轴平行,边DE落在x 轴的正半轴上,边AG落在y轴的正半轴上,A、B两点在抛物线y=x2+bx+c上.(1)直接写出点B的坐标;(2)求抛物线y=x2+bx+c的解析式;(3)将正方形CDEF沿x轴向右平移,使点F落在抛物线y=x2+bx+c上,求平移的距离.24(10分).如图,已知二次函数y=﹣x2+x+4的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接A C.(1)点A的坐标为_________,点C的坐标为_________;(2)△ABC是直角三角形吗?若是,请给予证明;(3)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A.y=B.y=﹣C.y=﹣D.y=考点:根据实际问题列二次函数关系式.分析:抛物线的顶点在原点,对称轴为y轴,解析式符合最简形式y=ax2,把点A或点B的坐标代入即可确定抛物线解析式.解答:解:依题意设抛物线解析式y=ax2,把B(5,﹣4)代入解析式,得﹣4=a×52,解得a=﹣,所以y=﹣x2.故选C.点评:根据抛物线在坐标系的位置,合理地设抛物线解析式,是解答本题的关键.2.把一根长为50cm的铁丝弯成一个长方形,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50x C.y=﹣x2+25x D.y=﹣2x2+25考点:根据实际问题列二次函数关系式.分析:由长方形的面积=长×宽可求解.解答:解:设这个长方形的一边长为xcm,则另一边长为(25﹣x)cm,以面积y=x(25﹣x)=﹣x2+25x.故选C.点评:根据题意,找到所求量的等量关系是解决问题的关键.3.二次函数y=kx2+2x+1(k<0)的图象可能是()A.B.C.D.考点:二次函数的图象.分析:由图象判定k<0,可以判断抛物线对称轴的位置,抛物线与y轴的交点位置,选择符合条件的选项.解答:解:因为二次函数y=kx2+2x+1(k<0)的图象开口向下,过点(0,1),对称轴x=﹣>0,观察图象可知,符合上述条件的只有C.故选C.点评:应熟练掌握二次函数y=ax2+bx+c的图象有关性质:开口方向、顶点坐标、对称轴.4.已知抛物线y=ax2+bx+c(a<0)的部分图象如图所示,当y>0时,x的取值范围是()A.﹣2<x<2 B.﹣4<x<2 C.x<﹣2或x>2 D.x<﹣4或x>2考点:二次函数的图象.专题:压轴题.分析:先根据对称轴和抛物线与x轴的交点求出另一交点;再根据开口方向,结合图形,求出y>0时,x的取值范围.解答:解:因为抛物线过点(2,0),对称轴是x=﹣1,根据抛物线的对称性可知,抛物线必过另一点(﹣4,0),因为抛物线开口向下,y>0时,图象在x轴的上方,此时,﹣4<x<2.故选B.点评:解答本题,利用二次函数的对称性,关键是判断图象与x轴的交点,根据开口方向,形数结合,得出结论.5抛物线y=x2﹣4x﹣7的顶点坐标是()A.(2,﹣11)B.(﹣2,7)C.(2,11)D.(2,﹣3)考点:二次函数的性质.分析:直接根据顶点公式或配方法求解即可.解答:解:∵=2,=﹣11,∴顶点坐标为(2,﹣11).故选A.点评:主要考查了求抛物线的顶点坐标的方法.6.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为4 D.抛物线与x轴的交点为(﹣1,0),(3,0)考点:二次函数的性质.专题:压轴题.分析:把(0,﹣3)代入抛物线解析式求c的值,然后再求出顶点坐标、与x轴的交点坐标.解答:解:把(0,﹣3)代入y=x2﹣2x+c中得c=﹣3,抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4=(x+1)(x﹣3),所以:抛物线开口向上,对称轴是x=1,当x=1时,y的最小值为﹣4,与x轴的交点为(﹣1,0),(3,0);C错误.故选C.点评:要求掌握抛物线的性质并对其中的a,b,c熟悉其相关运用.7.如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m考点:二次函数的应用.分析:由题意可以知道M(1,),A(0,10)用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x 的值,这样就可以求出OB的值.解答:解:设抛物线的解析式为y=a(x﹣1)2+,由题意,得10=a+,a=﹣.∴抛物线的解析式为:y=﹣(x﹣1)2+.当y=0时,0=﹣(x﹣1)2+,解得:x1=﹣1(舍去),x2=3.OB=3m.故选:B.点评:此题考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.8.如图,有一座抛物线拱桥,当水位在AB位置时,桥拱顶离水面2m,水面宽4m.若水面下降1m,则水面宽CD 为()A.5m B.6m C.m D.m考点:二次函数的应用.分析:设抛物线的解析式为y=ax2将A点代入抛物线方程求得a,得到抛物线解析式,再把y=﹣3代入抛物线解析式求得x0进而得到答案.解答:解:设抛物线方程为y=ax2,将A(2,﹣2)代入y=ax2,解得:a=﹣,∴y=﹣x2,代入B(x0,﹣3)得x0=,∴水面宽CD为2,故选D.点评:本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.二.填空题(共6小题)9.函数与y2=x+2的图象及交点如图所示,则不等式x2<x+2的解集是﹣1<x<2.考点:二次函数与不等式(组).分析:利用函数图象得出交点坐标,利用一次函数图象只有在二次函数图象上方时,不等式x2<x+2,进而得出答案.解答:解:利用图象得出函数与y2=x+2的图象交点坐标分别为:(﹣1,1)和(2,4),∴不等式x2<x+2的解集为:﹣1<x<2.故答案为:﹣1<x<2.点评:此题主要考查了二次函数与不等式,利用数形结合得出不等式的解集是解题关键.10.如图是二次函数y=ax2+bx+c的部分图象,由图象可知ax2+bx+c>0时x的取值范围是﹣1<x<5.考点:二次函数与不等式(组).分析:根据二次函数的对称性求出函数图象与x轴的另一交点,再写出函数图象在x轴上方部分的x的取值范围即可.解答:解:由图可知,二次函数图象为直线x=2,所以,函数图象与x轴的另一交点为(﹣1,0),所以,ax2+bx+c>0时x的取值范围是﹣1<x<5.故答案为:﹣1<x<5.点评:本题考查了二次函数与不等式,此类题目一般都利用数形结合的思想求解,本题求出函数图象与x轴的另一个交点是解题的关键.11.抛物线y=x2﹣4x+3的顶点坐标和对称轴分别是(4,﹣5),x=4.考点:二次函数的性质.分析:根据配方法,或者顶点坐标公式,可直接求出顶点坐标,对称轴.解答:解:∵y=x2﹣4x+3=(x﹣4)2﹣5,∴顶点坐标为(4,﹣5),对称轴为x=4.故答案为(4,﹣5),x=4.点评:主要考查了求抛物线的对称轴和顶点坐标的方法.通常有两种方法:(1)公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=﹣;(2)配方法:将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.12.抛物线y=x2﹣(m2﹣3m+2)x+m2﹣4的图象的对称轴是y轴,且顶点在原点,则m的值为2.考点:二次函数的性质.专题:计算题.分析:根据二次函数对称轴直线x=﹣=0,得到m2﹣3m+2=0,再由顶点在原点得到m2﹣4=0,然后分别解两个一元二次方程,再得到它们的公共解即可.解答:解:根据题意得m2﹣3m+2=0且m2﹣4=0,解m2﹣3m+2=0得m=1或2,解m2﹣4=0得m=2或﹣2,所以m的值为2.故答案为:2.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.13.若抛物线y=ax2+4x+a的顶点的纵坐标是3,则a=4或﹣1.考点:二次函数的性质.分析:直接利用二次函数顶点坐标公式得出=3,进而求出即可.解答:解:∵抛物线y=ax2+4x+a的顶点的纵坐标是3,∴=3,整理得出:a2﹣3a﹣4=0,解得:a1=4,a2=﹣1,检验:当a=4或﹣1时,都是方程的根,故答案为:4或﹣1.点评:此题主要考查了二次函数的性质,直接利用顶点公式求出是解题关键.14.如图,一块草地是长80 m,宽60 m的矩形,欲在中间修筑两条互相垂直的宽为xm的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值.考点:根据实际问题列二次函数关系式.分析:把两条路进行平移,与长为80m的路移动到上方,长为60m的路移动左方,那么草坪就变成了边长为(80﹣x)和(60﹣x)的长方形,然后根据长方形的面积公式即可确定函数关系式,其中自变量的取值应根据原来长方形的长、宽确定.解答:解:依题意得把两条路分别进行平移,长为80m的路移动到上方,长为60m的路移动左方,∴草坪就变成了边长为(80﹣x)和(60﹣x)的长方形,∴y=(80﹣x)(60﹣x)=x2﹣140x+4800,自变量的取值应大于等于0,但应小于60,即0<x<60.故填空答案:y=(80﹣x)(60﹣x)=x2﹣140x+4800(0<x<60).点评:解决本题的关键是把两条路进行平移,使草坪的面积成为一长方形的面积.三.解答题(共10小题)15.已知正方形的面积为y(cm2),周长为x(cm).(1)请写出y与x的函数关系式.(2)判断y是否为x的二次函数.考点:根据实际问题列二次函数关系式;二次函数的定义.分析:(1)根据正方形的周长为x(cm),即可得出边长,进而得出正方形的面积为y与x之间的函数关系式;(2)利用函数的定义判断得出即可.解答:解:(1)∵正方形的周长为x(cm),∴正方形的边长为:xcm,∴y与x的函数关系式为:y=x×x=x2;(2)利用二次函数的定义得出y是x的二次函数.点评:此题主要考查了根据实际问题列二次函数解析式,利用正方形的性质得出是解题关键.16.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一条矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带BC边长为xm,绿化带的面积为ym2,求y与x 之间的函数关系式,并写出自变量x的取值范围.考点:根据实际问题列二次函数关系式.分析:根据矩形的面积公式列出关于二次函数解析式;根据墙长、x、y所表示的实际意义来确定x的取值范围.解答:解:由题意得:y=x×=﹣x2+20x,自变量x的取值范围是0<x≤25.点评:此题主要考查了根据实际问题列二次函数解析式,注意在求自变量x的取值范围时,要根据函数中自变量所表示的实际意义来确定.17.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.考点:根据实际问题列二次函数关系式.分析:△BPQ的面积=BP×BQ,把相关数值代入即可求解,注意得到的相关线段为非负数即可.解答:解:∵PB=6﹣t,BE+EQ=6+t,∴S=PB•BQ=PB•(BE+EQ)=(6﹣t)(6+t)=﹣t2+18,∴S=﹣t2+18(0≤t<6).点评:解决本题的关键是找到所求的三角形的面积的等量关系,注意求自变量的取值应从线段长度为非负数考虑.18.已知抛物线y=ax2+bx+c经过A(0,﹣5),B(1,﹣3),C(﹣1,11)三点,求抛物线的顶点坐标及对称轴.考点:待定系数法求二次函数解析式;二次函数的性质.分析:将A、B、C三点代入y=ax2+bx+c,得到三元一次方程组,解这个方程组得a、b、c的值,得到抛物线的解析式,然后将该抛物线解析式通过配方,转化为顶点式解析式,最后找出其顶点坐标和对称轴.解答:解:由题意得,解得,所以这个抛物线的表达式为y=8x2﹣6x﹣5;配方得y=8(x﹣)2﹣,所以顶点坐标为(,﹣),点评:本题主要考查了二次函数的性质、待定系数法求二次函数的解析式以及求二次函数的顶点坐标和对称轴,通过配方得到顶点式是本题的关键.19.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)当m取何值时,ax2+bx+c=m有两个不相等的实数根.考点:待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点.分析:(1)观察图象直接写出三点的坐标,运用待定系数法求出函数解析式;(2)将解析式配成顶点式即可解决问题;(3)运用二次方程根的判别式列出不等式求解即可解决问题.解答:解:(1)由题意得:A、B、C三点的坐标分别为:(﹣1,0)、(0,﹣3)、(4,5);设该二次函数的解析式为:y=ax2+bx+c,由题意得:,解得:a=1,b=﹣2,c=﹣3,∴该抛物线解析式为:y=x2﹣2x﹣3.(2)由(1)知:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的顶点坐标为(1,﹣4),对称轴为x=1.(3)由题意得:x2﹣2x﹣3=m,即x2﹣2x﹣3﹣m=0①,若该方程组有两个不相等的实数根,则必有△=(﹣2)2﹣4×1×(﹣3﹣m)>0,解得:m>﹣4.即当m>﹣4时,ax2+bx+c=m有两个不相等的实数根.点评:该命题以平面直角坐标系为载体,重点考查了二次函数的解析式的求法、二次函数的性质、二次函数与二次方程的联系等代数问题;对综合的分析问题解决问题的能力提出了较高的要求.20.已知抛物线的顶点坐标是(2,﹣3),且经过点(1,﹣).(1)求这个抛物线的函数解析式,并作出这个函数的大致图象;(2)当x在什么范围内时,y随x的增大而增大?当x在什么范围内时,y随x的增大而减小?考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.专题:计算题.分析:(1)根据题意设出抛物线的顶点形式,把已知点代入求出a的值,确定出解析式,画出函数图象即可;(2)利用二次函数的增减性求出x的范围即可.解答:解:(1)根据题意设抛物线解析式为y=a(x﹣2)2﹣3,把x=1,y=﹣代入得:﹣=a﹣3,即a=,则抛物线解析式为y=x2﹣2x﹣1;(2)当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小.点评:此题考查了待定系数法求二次函数解析式,以及二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.21.如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.求:(1)求抛物线的解析式;(2)求点D的坐标.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)先求得C的坐标,然后证得C为抛物线的顶点,即可设抛物线的解析式为y=ax2﹣1,把A(﹣1,0)代入即可求得;(2)联立方程,解方程组即可求得.解答:解:(1)∵直线y=2x﹣1与y轴交于点C,∴C的坐标(0,﹣1),∵抛物线与x轴交于点A(﹣1,0)和点B(1,0),∴对称轴为y轴,∴C点就是抛物线的顶点,设把A(﹣1,0)代入得,a﹣1=0,∴a=1,∴抛物线的解析式为y=x2﹣1.(2)解得或,所以D的坐标为(2,3).点评:本题考查了待定系数法求函数的解析式以及直线和抛物线的交点的求法.22.根据下列条件求二次函数解析式:(1)二次函数的图象过点(0,﹣1),对称轴是直线x=﹣1,且二次函数有最大值2.(2)二次函数的图象过点(5,6),与x轴交于(﹣1,0),(2,0)两点.考点:待定系数法求二次函数解析式.分析:(1)由题意二次函数的图象的对称轴为x=1,函数的最大值为﹣6,可设二次函数为:y=a(x+1)2+2,且函数过点(0,﹣1)代入函数的解析式求出a值,从而求出二次函数的解析式.(2)根据与x轴的两个交点的坐标,设出二次函数交点式解析式y=a(x﹣2)(x+1),然后把点(5,6)的坐标代入计算求出a的值,即可得到二次函数解析式;解答:解:(1)∵二次函数的图象的对称轴为x=﹣1,函数的最大值为2,∴可设函数解析式为:y=a(x+1)2+2,∵函数图象经过点(0,﹣1),∴a×1+2=﹣1,∴a=﹣3,∴二次函数的表达式为:y=﹣3(x+1)2+2,即y=﹣3x2﹣6x﹣1;(2)∵二次函数的图象交x轴于(﹣1,0)、(2,0),∴设该二次函数的解析式为:y=a(x﹣2)(x+1)(a≠0).将x=5,y=6代入,得6=a(5﹣2)(5+1),解得a=,∴抛物线的解析式为y=(x﹣2)(x+1),即y=x2﹣x﹣.点评:本题考查了待定系数法求二次函数解析式,利用待定系数法求二次函数解析式时,注意合理利用抛物线解析式的三种形式.23.如图,在平面直角坐标系中,三个小正方形的边长均为1,且正方形的边与坐标轴平行,边DE落在x轴的正半轴上,边AG落在y轴的正半轴上,A、B两点在抛物线y=x2+bx+c上.(1)直接写出点B的坐标;(2)求抛物线y=x2+bx+c的解析式;(3)将正方形CDEF沿x轴向右平移,使点F落在抛物线y=x2+bx+c上,求平移的距离.考点:二次函数综合题.专题:压轴题.分析:(1)由图中的三个小正方形的边长为1,根据图形可以知道B点的横坐标为1,做那个坐标为3,从而得出点B的坐标.(2)根据图象求出点A的坐标,再把A、B的坐标代入解析式,根据待定系数法就可以求出b、c的值,从而求出抛物线的解析式.(3)实际上就是当y=1时代入解析式就可以求出平移后点F′的横坐标,就可以求出E′点的坐标,此时OE′﹣3就是平移的距离.解答:解:(1)由图象,得B(1,3).(2)由题意,得A(0,2)∴,解得:,∴,∴抛物线的解析式为:.(3)当y=1时,∴解得:x=或(不符合题意应舍去),∴F′(,1),∴E′(,0),∴OE′=,∴平移的距离为:.点评:本题是一道二次函数综合试题,考查了求点的坐标,用待定系数法求函数的解析式,平移的运用等知识.24如图,已知二次函数y=﹣x2+x+4的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接A C.(1)点A的坐标为(0,4),点C的坐标为(8,0);(2)△ABC是直角三角形吗?若是,请给予证明;(3)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由.考点:二次函数综合题;点的坐标;二次函数的性质;抛物线与x轴的交点;三角形的面积;等腰三角形的判定.分析:(1)抛物线的解析式中,令x=0即得二次函数与y轴交点A的纵坐标,令y=0即得二次函数与x轴交点的横坐标.(2)根据(1)中点的坐标得出AB,BC,AC的长,进而利用勾股定理逆定理得出即可;(3)根据A、C的坐标,易求得直线AC的解析式,由于等腰△EDC的腰和底不确定,因此要分成三种情况讨论:①CD=DE,由于OD=3,DA=DC=5,此时A点符合E点的要求,即此时A、E重合;②CE=DE,根据等腰三角形三线合一的性质知:E点横坐标为点D的横坐标加上CD的一半,然后将其代入直线AC的解析式中,即可得到点E的坐标;③CD=CE,此时CE=5,过E作EG⊥x轴于G,已求得CE、CA的长,即可通过相似三角形(△CEG∽△CAO)所得比例线段求得EG、CG的长,从而得到点E的坐标.解答:解:(1)在二次函数中令x=0得y=4,∴点A的坐标为(0,4),令y=0得:,即:x2﹣6x﹣16=0,∴x=﹣2和x=8,∴点B的坐标为(﹣2,0),点C的坐标为(8,0).故答案为:A(0,4),C(8,0);(2)∵点A的坐标为(0,4),∴AO=4,∵点B的坐标为(﹣2,0),点C的坐标为(8,0),∴BO=2,CO=8,∴BC=10,∴AC==4,∴AB==2,∴AB2+AC2=100,∵BC2=100,∴AB2+AC2=BC2,∴△ABC是直角三角形;(3)易得D(3,0),CD=5,设直线AC对应的函数关系式为y=kx+b,则:,解得;∴y=﹣x+4;①当DE=DC时,∵CD=5,∴AD=5,∵D(3,0),∴OE==4,∴E1(0,4);②当DE=EC时,可得出E点在CD的垂直平分线上,可得出E点横坐标为:3+=,进而将x=代入y=﹣x+4,得出y=,可得E2(,);③当DC=EC时,如图,过点E作EG⊥CD,则△CEG∽△CAO,∴,即EG=,CG=2 ,∴E3(8﹣2 ,);综上所述,符合条件的E点共有三个:E1(0,4)、E2(,)、E3(8﹣2 ,).点评:此题考查了二次函数图象与坐标轴交点坐标的求法、等腰三角形的构成条件、图形面积的求法等知识,(3)题的解题过程并不复杂,关键在于理解题意.。

相关文档
最新文档