生物化学第八章氨基酸代谢
生物化学第八章氨基酸代谢教材课程

二、蛋白质的消化 ▪蛋白质消化的生理意义:
(1)由大分子转变为小分子,便于吸收。 (2)消除种属特异性和抗原性,防止过敏、毒性反应。
消化道内几种蛋白酶的专一性
氨肽酶
(Phe.Tyr.Trp)
(s)
羧羧肽肽酶酶
(四)、尿素的生成 1、生成部位: 主要在肝细胞的线粒体及胞液中。
2、生成过程
尿素的生成过程由Hans Krebs 和Kurt Henseleit 提出,称为鸟氨酸循环(orinithine cycle),又称尿素 循环(urea cycle)或Krebs- Henseleit循环。
CO2 + NH3 + H2O
5
* FH4携带一碳单位的形式: 如:
N5—CH3—FH4
N5、N10=CH—FH4
(二)一碳单位的生理功能
*作为合成嘌呤和嘧啶的原料 *把氨基酸代谢和核酸代谢联系起来
本章内容结束,谢谢!
2、转氨基偶联嘌呤核苷酸循环
腺苷酸代琥
氨
α-酮戊
珀酸合成酶
基
二酸 天冬氨酸
酸
转
氨 酶
转
氨 酶
1
2
腺苷酸 代琥珀酸
谷氨酸 α-酮酸
草酰乙酸 苹果酸
延胡索酸
次黄嘌呤 核苷酸 (IMP)
NH3 腺苷酸 脱氢酶
H2O
腺嘌呤 核苷酸 (AMP)
二、氨基酸的脱羧基作用
脱羧基作用(decarboxylation)
• 依赖ATP • 降解异常蛋白和短寿命蛋白
泛素?
*76个氨基酸的小分子蛋白(8.5kD); *普遍存在于真核生物而得名; *一级结构高度保守。
氨基酸代谢—氨的代谢(生物化学课件)

血氨的来源
2.肠道吸收
01 NH3比NH4+更易透过细胞膜而被吸收。
氨的吸收与肠道pH有关,当肠道pH较低时(pH<6),NH3与
02 H+结合成NH4+,而减少氨的吸收。肠道pH较高时,NH4+转变
为NH3,氨的吸收增多。
03
临床上对高血氨病人采用弱酸性透析液作结肠透析就是为了减 少氨的吸收,促进氨的排泄。
• 机体代谢产生的氨,正常情况下由体内解氨毒的代谢途径排出,使血氨 的来源和去路保持动态平衡。因此,正常人血氨浓度维持在较低水平, 不引起中毒。
• 正常人血氨浓度一般不超过 0.06mmol/L。
血氨的来源
1.氨基酸脱氨基作用
血氨的来源
2.肠道吸收
两个 来源
肠道内的蛋白质、氨基酸经肠道 腐败作用产生。
氨的来源
生物化学 B i o c h e m i s t r y
氨中毒案例
案例
某年7月21日,某厂酮苯脱蜡车间3号氨冷冻机开车时,由于液氨进入缸体 使二段缸打碎。爆裂碎片击伤在场协助开车的电工臀部,该电工当即摔倒在 地,大量氨逸出,使其中毒死亡。
案例分析
分析:导致伤者死亡的真正原因是氨中毒。
• 氨,也称“氨气”,氮和氢的化合物,分子式为NH3,是一种无色气体, 密度小,沸点高,易溶于水。广泛应用于化工、轻工、化肥、制药等。
血氨的来源
3.肾脏中谷氨酰胺分解产生氨
肾小管上皮细胞分泌的氨主要来自谷氨酰胺。
谷氨酰胺在谷氨酰 胺酶催化下水解, 生成谷氨酸和NH3。
肾小管中氨的去路 主要取决于肾小管 液的pH值。
血氨的来源
思考
为什么临床上对肝硬化腹水的病人不宜 使用碱性利尿剂?
(完整版)生物化学及分子生物学(人卫第九版)-08蛋白质消化吸收和氨基酸代谢

(二)蛋白质的生理需要量
正常成人每日蛋白质的最低生理需要量为30~50g 我国营养学会推荐成人每日蛋白质的需要量为80g
重点难点
掌握 1. 营养必需氨基酸 2. 脱氨基作用及重要的转氨酶 3. 氨在血液中的转运形式及尿素的合成 4. 一碳单位 5. 含硫氨基酸代谢
熟悉 1. 血氨的来源 2. 氨基酸碳链骨架的转换或分解 3. 氨基酸的脱羧基作用 4. 芳香族氨基酸代谢
了解 1. 蛋白质的消化、吸收及蛋白质的营养价值 2. 真核细胞内蛋白质的降解 3. 支链氨基酸代谢
二、营养必需氨基酸决定蛋白质的营养价值
(一)营养必需氨基酸(essential amino acid)
1. 体内需要而不能自身合成,必须由食物提供的氨基酸 2. 9种:亮氨酸、异亮氨酸、苏氨酸、缬氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、
色氨酸、组氨酸 3. 其余11种为营养非必需氨基酸
(二)蛋白质的营养价值(nutrition value)
氨肽酶
二肽酶
氨肽酶
内肽酶
羧肽酶
氨基酸 +
二肽酶
氨基酸
➢蛋白酶原的活化
肠激酶
胰蛋白酶原 胰蛋白酶
糜蛋白酶原
糜蛋白酶 羧肽酶原
弹性蛋白酶原 羧肽酶
弹性蛋白酶
(二)氨基酸和寡肽通过主动转运机制被吸收
1. 吸收部位:主要在小肠
2. 吸收形式:氨基酸、寡肽
3. 吸收机制:主动转运
转运蛋白的类型:
中性氨基酸转运蛋白 酸性氨基酸转运蛋白 碱性氨基酸转运蛋白 亚氨基酸转运蛋白 β-氨基酸转运蛋白 二肽转运蛋白 三肽转运蛋白
生物化学_08 蛋白质的酶促降解和氨基酸代谢

R1-C| H-COONH+3
α-氨基酸1
R2-C|| -COOO
α-酮酸2
R1-C|| -COOO
α-酮酸1
转氨酶
R2-C| H-COONH+3
α-氨基酸2
(辅酶:磷酸吡哆醛)
-氨基酸 磷酸吡哆醛
醛亚胺
互变异构
-酮酸
磷酸吡哆胺
酮亚胺
磷酸吡哆醛的作用机理
谷丙转氨酶和谷草转氨酶
谷丙转氨酶 (GPT)
蛋白质
动植物
动植物废物 死的有机体
硝酸盐还原 反硝化作用 氧化亚氮
NH3
亚硝酸
硝酸盐
入地下水
(1)意义:
不需高温高压,节约能源,不污染环境; 生物固氮可以为农作物提供氮肥 (2)固氮酶结构(多功能酶):
铁蛋白 + 钼铁蛋白 二者结合才有活性 (3)固氮酶催化的反应及反应条件
催化的反应:
N2 + 6H+ + 6e-
合成尿素并随尿排出体外。
2NH3 + CO2 + 3ATP + 3H2O
H2N C=O + 2ADP +
H2N
AMP + 4Pi
在植物体内也有尿素的生成,植物体中含有脲 酶,能将尿素水解:
H2N C=O + H2O
H2N
脲酶 2NH3 + CO2
生成的氨可再循环利用。
(二)α-酮酸的代谢转变
1、还原氨基化: 合成新AA。 2、转变为糖和脂肪。 生糖AA: 分解生成丙酮酸和TCA循环的有机酸, 通过 糖异生作用转化为糖。 ※ 生酮AA:代谢终产物为乙酰CoA或乙酰乙酰CoA的AA。 (只有Leu、Lys是纯粹的生酮AA)。 ※ 3、氧化为CO2和H2O。
生物化学——第八章 氨基酸代谢

氨基酸代谢概况
食物蛋白质
组织蛋白质
消化吸收
合成 分解
脱羧基作用
氨基酸代谢库
转变
(metabolic pool)
合成 脱氨基作用 其他含氮化合物
胺类 CO2 NH3
α- 酮酸
2021/1/8
尿素 糖
氧化供能 酮体
第二节 氨基酸的分解代谢
H R C COOH
NH2 氨基酸
O H R C COOH
主要是酸性pH下活化的小分子蛋白酶,水解长寿命蛋白质和 外来蛋白。 2、泛肽系统: 水解短寿命蛋白和反常蛋白
2021/1/8
(三)细胞内蛋白质降解的意义
1)及时降解清除反常蛋白的产生 有些可恢复为正常蛋白
2)短寿命的蛋白在生物体的特殊作用 经常是一些代谢限速酶,便于通过基因表达和降解对其含量 加以调控。
3)氨基甲酰磷酸经环化化→二氢乳清酸→尿苷酸→嘧啶 类化合物
2021/1/8
四、α-酮酸的代谢
1、合成氨基酸(合成代谢占优势时)
α-酮酸 + NH3
氨基化
α-氨基酸
氨基化
α-酮戊二酸 + NH3
谷氨酸
其余氨基酸是通过Glu与α-酮酸的转氨作用合成。 是合成非必需氨基酸的途径之一。
2021/1/8
2、进入三羧酸循环分解成CO2 + H2O 3、转变成糖及脂肪
特点:a. 可逆,受平衡影响 b. 氨基大多转给了α-酮戊二酸
2021/1/8
谷丙转氨酶和谷草转氨酶
谷丙转氨酶 (GPT)
谷草转氨酶 (GOT)
2021/1/8
2021/1/8
正常成人各组织中GOT和GPT活性
生物化学与分子生物学课件-第八章-氨基酸代谢

第八章氨基酸代谢教学要求(一)掌握内容1. 氨基酸脱氨基作用方式:转氨基作用、氧化脱氨基作用、联合脱氨基作用。
2. 氨的来源和去路;氨的转运过程;丙氨酸-葡萄糖循环。
3. 尿素生成鸟氨酸循环的过程、部位及调节。
(二)熟悉内容1. 氮平衡及必需氨基酸的概念、蛋白质的生理功能。
2. 蛋白质消化中各种酶的作用及γ-谷氨酰基循环。
3. 氨基酸脱羧基作用及生成的生理活性物质。
4. 一碳单位的概念、载体及生理功能。
5. 熟悉活性甲基的形式。
(三)了解内容1. 蛋白质的腐败作用及腐败产物。
2. 甲硫氨酸循环和肌酸合成。
3. 苯丙氨酸和酪氨酸生成的生理活性物质。
教学内容(一)蛋白质的营养作用1. 蛋白质的生理功能2. 蛋白质的需要量和营养价值(二)蛋白质的消化、吸收与腐败1. 蛋白质的消化(1)胃中的消化;(2)小肠内的消化。
2. 氨基酸的吸收(1)主要部位;(2)吸收形式;(3)吸收机制。
3. 白质的腐败作用(1)胺类的生成;(2)氨的生成;(3)其他有害物质的生成。
(三)氨基酸的一般代谢1. 概述(1)细胞蛋白质降解的两条途径;(2)氨基酸代谢库(metabolic pool)。
2. 氨基酸的脱氨基作用(1)转氨基作用;(2)氧化脱氨基作用;(3)联合脱氨基作用。
(4)非氧化脱氨基作用。
3. α-酮酸的代谢(1)经氨基化生成非必需氨基酸;(2)经三羧酸循环氧化供能;(3)转变为糖及脂类。
(四)氨的代谢1. 体内氨的来源(1)氨基酸及胺分解产氨;(2)肠道吸收的氨;(3)肾小管分泌氨。
2. 氨的去路(1)合成尿素排出(主);(2)与谷氨酸合成谷氨酰胺;(3)合成非必需氨基酸及含氮物;(4)经肾脏以铵盐形式排出。
3. 氨的转运(1)丙氨酸-葡萄糖循环;(2)谷氨酰胺(Gln)的运氨作用。
4. 尿素的生成(1)尿素合成的主要器官;(2)尿素合成的鸟氨酸循环;(3)鸟氨酸循环的步骤;(4)尿素合成的调节。
5. 高血氨症和氨中毒(五)个别氨基酸的代谢1. 氨基酸的脱羧基作用(1)γ-氨基丁酸;(2)组胺;(3)牛磺酸;(4)5-羟色胺;(5)多胺。
生物化学8 氨基酸代谢与合成

蛋白质降解和氨基酸的分解代谢蛋白质的降解细胞总是不断地从氨基酸合成蛋白质,又把蛋白质降解为氨基酸。
从表面上看,这样的变化过程看似是一种浪费,实际上它有二重功能,其一是排除那些不正常的蛋白质,它们一旦积聚,将对细胞有害;其二是通过排除积累过多的酶和调节蛋白使细胞代谢的井然有序得以进行。
蛋白质降解的特性蛋白质有选择地降解非正常蛋白质,例如血红蛋白与缬氨酸类似物结合,得到的产物在网织红细胞中的半存活期约10min,而正常血红蛋白可延续红细胞的存活期最终可达120天。
正常的胞内蛋白被排除的速度是由它们的个性决定的,绝大多数快速降解的酶都居于重要的“代谢控制”位置,而较稳定的酶在所有生理条件下有较稳定的催化活性。
降解速度还因它的营养及激素状态而有所不同。
在营养条件被剥夺的情况下,细胞提高它的蛋白质降解速度,以维持它的必需营养源使不可或缺的代谢过程得以进行。
蛋白质降解的反应机制真核细胞对于蛋白质降解有两种体系,一个是溶酶体的降解体质和一种ATP-依赖性的以细胞溶胶为基础的机制。
溶酶体溶酶体是具有单层被膜的细胞器,其中个含有50多种水解酶,包括不同种的蛋白酶,称之为组织蛋白酶。
溶酶体保持其内部PH在5左右,而它含有的酶的最适PH就是酸性。
如此可以抵制偶然的溶酶体渗漏从而保护了细胞,因此在细胞溶胶PH下,溶酶体的大部分酶都是无活性的。
溶酶体对细胞各组分的再利用是通过它融合细胞质的膜被点块即自(体吞)噬泡,并随即分解其内容物实现的。
溶酶体的阻断剂有抗虐药物——氯代奎宁(是一种弱碱,在不带电形式随意穿透溶酶体,在溶酶体内积累形成特电荷型,因此增高了溶酶体内部的pH,并阻碍了溶酶体的功能。
溶酶体降解蛋白质是无选择性的,而rong'mei't'抑制剂对于非正常蛋白或短寿命酶无快速的降解效应,但是它们可以防止饥饿状态下蛋白质的加速度崩溃。
许多正常的和病理活动都伴随溶酶体活性的升高。
ATP-依赖真核细胞蛋白质的降解主要是溶酶体的作用,但是缺少溶酶体的网织红细胞却可选择性的降解非正常蛋白质,这里有ATP-依赖的蛋白质水解体系存在ATP依赖蛋白质需要有泛肽存在。
生物化学丨氨基酸代谢

生物化学丨氨基酸代谢氨基酸代谢蛋白质的生理功能及营养作用一、蛋白质的生理功能1.维持细胞组织的生长、更新和修补2.参与多种重要的生理活动3.氧化供能蛋白质在肠道的消化吸收及腐败作用一、胃蛋白酶作用的特点:①胃蛋白酶的最适pH为1.5—2.5;二、氨基酸的吸收氨基酸的吸收部位是小肠,主要是耗能的主动吸收过程。
三、蛋白质的腐败作用肠道细菌对未被消化的蛋白质及其消化产物所起的作用,称为腐败作用。
氨基酸的一般代谢一、转氨酶又称氨基转移酶,催化某一氨基酸的α氨基转移到另一种α酮酸的酮基上,形成转氨基反应。
其辅酶是磷酸吡哆醛。
二、氨基酸的脱氯基作用1.转氨基作用:转氨酶。
2.氧化脱氨:L—谷氨酸脱氢酶。
3.联合脱氨基作用:转氨基作用偶联L—Glu氧化脱氨,存在于肝、肾、脑等组织。
4.嘌呤核苷酸循环:存在于心肌和骨骼肌。
氨的代谢一、氨的来源1.氨基酸脱氨基作用产生的氨是体内氨的主要来源。
2.肠道吸收的氨。
3.肾小管上皮细胞分泌的氨。
二、氨的转运(一)丙氨酸-葡萄糖循环肌肉中的氨以无毒的丙氨酸形式运输到肝,丙氨酸脱下的氨在肝合成尿素,脱氨后形成的丙酮酸异生成葡萄糖经血液循环运回肌肉。
(二)谷氨酰氨的运氨作用在脑和肌肉组织,氨和谷氨酸在谷氨酰胺合成酶的催化下生成谷氨酰胺,并由血液运至肝和肾,再经谷氨酰胺酶水解成谷氨酸和氨。
血液中丙氨酸、谷氨酰氨、谷氨酸的含量相对较高。
三、氨的去路(一)在肝内合成尿素是体内氨的主要去路尿素合成过程又称鸟氨酸循环,鸟氨酸循环的要点:1.部位:肝细胞的线粒体、胞液。
2.终产物:尿素。
3.关键酶:氨基甲酰磷酸合成酶I:位于线粒体中,其激活剂为N 一乙酰谷氨酸;精氨酸代琥珀酸合成酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学ppt
29
一、α-酮酸的代谢去向
1、经氨基化生成非必需氨基酸;
2、转变成糖及脂类;
氨基酸生糖及生酮性质的分类
二、蛋白质的消化 ▪蛋白质消化的生理意义:
(1)由大分子转变为小分子,便于吸收。 (2)消除种属特异性和抗原性,防止过敏、毒性反应。
教学ppt
6
消化道内几种蛋白酶的专一性
氨肽酶
(Phe.Tyr.Trp)
(Arg.Lys)
羧羧肽肽酶酶
(Phe. Trp)
(脂肪族)
胃蛋白酶 胰凝乳 弹性蛋白酶 胰蛋白酶 蛋白酶
• 依赖ATP • 降解异常蛋白和短寿命蛋白
教学ppt
10
泛素?
*76个氨基酸的小分子蛋白(8.5kD); *普遍存在于真核生物而得名; *一级结构高度保守。
泛素介导的蛋白质降解过程
教学ppt
11
ATP AMP+PPi
(ubiquitin) E1-SH
E1-S-
E2-SH E1-SH
E2-S-
E3 E2-SH
氮平衡的意义:可以反映体内蛋白质代谢的慨况。
教学ppt
4
2、生理需要量
80克/日
3、蛋白质的营养价值
*必需氨基酸(essential amino acid)
指体内需要而又不能自身合成,必须由食物供给 的氨基酸,共有8种:Val、Ile、Leu、Thr、Met、Lys、 Phe、Trp。
教学ppt
5
胺类
+ CO2
教学ppt
25
(一)、γ-氨基丁酸,(γ-aminobutyric acid, GABA)
L-谷氨酸
L- 谷氨酸脱酶
GABA
CO2
*GABA是抑制性神经递质,对中枢神经有抑制作用。
教学ppt
26
(二)、组胺 (histamine)
L-组氨酸 组氨酸脱羧酶 组胺
CO2
*组胺是强烈的血管舒张剂,可增加毛细血管的通透性,
氨基酸
转氨酶
α-酮酸
α-酮戊二酸 谷氨酸
NH3+NADH+H+
L-谷氨酸脱氢酶
H2O+NAD+
*此种方式既是氨基酸脱氨基的主要方式,也是体内合成 非必需氨基酸的主要方式。
*主要在肝、肾组织进行。
教学ppt
23
2、转氨基偶联嘌呤核苷酸循环
腺苷酸代琥
氨 基 酸
α-酮戊 二酸
天冬氨酸
珀酸合成酶
转 氨 酶
酮体 氧化供能
组织
分解
蛋白质
合成
氨基酸 代谢库
代谢转变
糖 胺类
体内合成氨基酸 (非必需氨基酸)
其它含氮化合物 (嘌呤、嘧啶等)
教学ppt
14
一、氨基酸的脱氨基作用
脱氨基方式:
▪氧化脱氨基 ▪转氨基作用 转氨基和氧化脱氨基偶联 ▪联合脱氨基 转氨基和嘌呤核苷酸循环偶联 ▪非氧化脱氨基
教学ppt
15
(一)、氧化脱氨基作用
Metabolism of Amino Acids
教学ppt
1
本章主要内容:
一、蛋白质的营养作用 二、氨基酸的一般代谢 三、氨的代谢 四、氨基酸的生物合成(自学)
教学ppt
2
第一节、蛋白质的营养作用
Nutritional Function of Protein
教学ppt
3
一、蛋白质的营养作用
1、氮平衡(nitrogen balance) 氮总平衡:摄入氮 = 排出氮(正常成人) 氮正平衡:摄入氮 > 排出氮(儿童、孕妇等) 氮负平衡:摄入氮 < 排出氮(饥饿、消耗性疾病患者)
E1:泛肽激活酶 E2:泛肽载体蛋白 E3:泛肽-蛋白质连接酶
19S调节亚基
20S蛋白酶体
ATP
教学ppt
多泛肽化蛋白 ATP
去折叠 水解
26S蛋白酶体
12
第二节、氨基酸的一般代谢
General Metabolism of Amino Acids
教学ppt
13
氨基酸代谢概况
食物蛋白质
尿素
氨 α-酮酸
教学ppt
7
三、细胞内蛋白质的降解
▪溶酶体途径:
—无选择地降解蛋白质
▪泛肽途径:
—给选择降解的蛋白质加以标记
教学ppt
8
1、溶酶体内降解过程
• 不依赖ATP • 利用组织蛋白酶(cathepsin)降解外源性蛋白、膜蛋白和
长寿命的细胞内蛋白
教学ppt
9
2、依赖泛素(ubiquitin)的降解过程
教学ppt
20
2、转氨基作用的生理意义
转氨基作用不仅是体内多数氨基酸脱氨基的重要 方式,也是机体合成非必需氨基酸的重要途径。
*通过此种方式并未产生游离的氨。
教学ppt
21
(三)、联合脱氨基作用
1、转氨基和氧化脱氨基偶联 2、转氨基和嘌呤核苷酸循环偶联:主要在肌肉组织中
教学ppt
22
1、 转氨基偶联氧化脱氨基作用
还可刺激胃蛋白酶及胃酸的分泌。
教学ppt
27
(三)、5-羟色胺 (5-hydroxytryptamine, 5-HT)
色氨酸羟化酶
色氨酸
5-羟色氨酸脱羧酶
5-羟色氨酸
5-HT
CO2
* 5-HT在脑内作为神经递质,起抑制作用;在外周组
织有收缩血管的作用。
教学ppt
28
第三节、氨 的 代 谢
Metabolism of Ammonia
酸的比例。 *大多数氨基酸可参与转氨基作用,但赖氨酸、脯氨酸、
羟脯氨酸除外。
教学ppt
18
1、转氨基作用的机制
*转氨酶的辅酶是磷酸吡哆醛
氨基酸 α-酮酸
磷酸吡哆醛 转氨酶
磷酸吡哆胺
谷氨酸 α-酮戊二酸
教学ppt
19
谷丙转氨酶(GPT)和谷草转氨酶(GOT)
谷丙转氨酶 (GPT)
谷草转氨酶 (GOT)
R-|C| -COO-+NH3
NH+3
α-氨基酸
H2O+O2
H酶(活性低,分布于肝及肾脏,辅基为FMN)
*D-氨基酸氧化酶(活性强,但体内D-氨基酸少,辅基为 FAD)
教学ppt
17
(二)、转氨基作用(transamination)
特点: *没有游离的氨产生,但改变了氨基酸代谢库中各种氨基
转 氨 酶
1
2
腺苷酸 代琥珀酸
谷氨酸 α-酮酸
草酰乙酸
苹果酸
教学ppt
延胡索酸
次黄嘌呤 核苷酸 (IMP)
NH3 腺苷酸 脱氢酶
H2O
腺嘌呤 核苷酸 (AMP)
24
二、氨基酸的脱羧基作用
脱羧基作用(decarboxylation)
R
H C NH2 COOH
氨基酸
氨基酸脱羧酶 磷酸吡哆醛
RCH2NH2
COOH
COOH
CH2 CH2 + CH NH2 COOH
H2O
L-谷氨酸脱氢酶 NAD(P)+ NAD(P)H+H+
CH2 CH2 + C=O
COOH
NH3
*L-谷氨酸脱氢酶:
•活性强,分布于肝、肾及脑组织 •辅酶为NAD+或NADP+ •专一性强,只作用于谷氨酸
教学ppt
16
R-CH-COO-氨基酸氧化酶(FAD、FMN) |