高中数学必修4三角函数教案

合集下载

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

数学必修4——三角函数的图像与性质

数学必修4——三角函数的图像与性质

数学必修4——三⾓函数的图像与性质数学必修4——三⾓函数的图像与性质⼀. 教学内容:三⾓函数的图像与性质⼆. 教学⽬标:了解正弦函数、余弦函数、正切函数的图像和性质,会⽤“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。

三. 知识要点:1. 正弦函数、余弦函数、正切函数的图像2. 三⾓函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是的递增区间是,3. 函数最⼤值是,最⼩值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中⼼。

4. 由y=sinx的图象变换出y=sin(ωx+)的图象⼀般有两个途径,只有区别开这两个途径,才能灵活地进⾏图象变换。

利⽤图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.⽆论哪种变形,请切记每⼀个变换总是对字母x⽽⾔,即图象变换要看“变量”起多⼤变化,⽽不是“⾓变化”多少。

途径⼀:先平移变换再周期变换(伸缩变换)先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得到y=sin(ωx+)的图象。

途径⼆:先周期变换(伸缩变换)再平移变换。

先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0,平移个单位,便得到y=sin(ωx+)的图象。

5. 对称轴与对称中⼼:的对称轴为,对称中⼼为;的对称轴为,对称中⼼为;对于和来说,对称中⼼与零点相联系,对称轴与最值点相联系。

6. 五点法作y=Asin(ωx+)的简图:五点法是设X=ωx+,由X取0、、π、、2π来求相应的x值及对应的y值,再描点作图。

【典型例题】例1. 把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最⼩值是()A. B. C. D.解:先写出向左平移4个单位后的解析式,再利⽤偶函数的性质求解。

人教版高中数学必修四教案三角函数

人教版高中数学必修四教案三角函数

1.1. 1 任意角教学目标1、知识与技能目标:理解任意角的概念(包括正角、负角、零角) 与区间角的概念.2、过程与能力目标:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.3、情感与态度目标1.提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度?2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 3.探究:终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k·360 ° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z.⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角 ⑵B 1 y⑴O x45° B 2O x B 3y30° 60o负角:按顺时针方向旋转形成的角 始边终边 顶点 A O B例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'.例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) .例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法.1.1.2弧度制(一)教学目标1、 知识与技能目标:理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.2、 过程与能力目标:能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题3、 情感与态度目标:通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点:弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点:“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗? (2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:︒=3602π; ︒=180π;rad 01745.01180≈︒=π;︒=n rad n 180π. 5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度7.弧长公式rl a =弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2kπ(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+= 而67π是第三象限的角,193p\是第三象限角.(2) 315316,666p p pp -=-+\-Q 是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R, ∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=.证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180Rn l π=,O R l∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

必修4_ch1 三角函数教学案(16课时)

必修4_ch1   三角函数教学案(16课时)
●720°是怎样的一个角?
二、师生互动:
三、建构数学:
1、角的概念:
(1)0到360之间的角:
(2)0的角:
(3)90、180、360的角:
2、角的概念的推广:
定义:(1)正角:
(2)负角:
(3)零角:
3、象限角、轴线角、终边相同的角的概念:
(1)象限角的概念:
(2)轴线角的概念:
(3)终边相同的角的概念:
(3)终边落在阴影部分(不包含边界),且在0到360的角的集合
(4)终边落在阴影部分(不包含边界),且在-360到0的角的集合.
二、解答题:
9、在0°到360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:
(1) (2) (3) (4)
10、写出与下列各角终边相同的角的集合,并把集合中适合不等式 的元素 写出来:
六、课堂小结:
七、教学反思:
江苏省泰兴中学高一数学同步课时训练2)
【弧度制(1)】
班级姓名
一、填空题:
1、若 rad,则 的终边所在的象限是.
2、若半径为1m的扇形面积为 m2,则词形的圆心角为.
3、将分钟拨慢10min,则分针转过的弧度数为.
4、设集合 , ,则 .
5、半径为 的圆中,弧长为 的弧所对的圆心角的弧度数是.
引申:已知 是第二象限角,问 是第几象限角?
五、课堂练习:
1、在 与 终边相同的角是.
2、已知 与240角终边相同,判断 是第几象限角.
六、课堂小结:
七、教学反思:
江苏省泰兴中学高一数学同步课时训练(1)
【任意角】
班级姓名
一、填空题:
1、下列命题中正确的是.
①第一象限角一定不是负角②小于90°的角一定是锐角

高中数学必修4第一章《三角函数》第五节《1.5函数yAsin(ωx+φ)的图象》 教案

高中数学必修4第一章《三角函数》第五节《1.5函数yAsin(ωx+φ)的图象》 教案

高中数学必修4第一章《三角函数》第五节《1.5函数y=Asin(ωx+φ)的图象》教学设计第一课时湖南师大附中海口中学刘兵一、教学分析(一)教学内容分析本节课所讲的内容是高中数学必修4第一章《三角函数》第五节的内容,是中学数学的重要内容之一。

它是在前面学习了正弦函数和余弦函数的图象和性质的基础上对正弦函数图象的深化和拓展,通过函数y=Asin(ωx+φ)与y=sinx图象间的关系,揭示参数A、ω、φ对函数图象变化的作用(本课时只讨论ω和φ),充分体现了由简单到复杂、特殊到一般的化归的数学思想。

在此基础之上,更进一步推广到一般函数y=f(x)的情况,使学生能借助三角函数桥梁,达到能解决所有函数变换的问题,从而提升学生对数学知识的应用能力。

通过学习y=Asin(ωx+φ)的图象变换有助于学生进一步理解正弦函数的图象和性质,加深学生对其他函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识,同时也为相关学科的学习打下扎实的基础。

(二)教学对象分析高中一年级的学生已经有了一定的观察识图能力及分析判断能力,有利用已有知识解决新问题的愿望。

学生学习了正、余弦函数的图象和性质,已经具有用数学知识解决实际问题的能力。

学生抽象逻辑思维很大程度上还属于经验型,需要感性经验的直接支持。

通过学习,抽象逻辑思维逐步成熟,能够用理论作为指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。

(三)教学环境分析由于本节课涉及到的函数图象较多,对老师的的作图提出了很高的要求。

而且该节课还涉及到函数图象的多种变换,比较注重变换的过程,采用传统的板式教学,根本就无法向学生演示动态过程,很难满足学生的求知欲,达不到教学的最佳效果。

多媒体网络教学,是现代高中数学教学全新的教育技术,使传统的教学方式得到补充。

在计算机的帮助下,利用制作好的几何画板课件,让学生亲手操作演示,感受函数图象“变”的过程。

φ、ω对函数y=sin(ωx+φ)的图象变化的影响能够得到直观的反映,加深学生的认识和理解,同时也符合学生认识事物从感性认识到理想认识的认知过程。

新人教版(B)高中数学必修4三角函数的定义教案

新人教版(B)高中数学必修4三角函数的定义教案

三角函数的定义[考点透视]一、考纲指要1.理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.2.掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.二、命题落点1.考查象限角的概念.如例1.2.考查三角函数化简,求值等知识.如例2.3.考查三角函数在各个象限的符号.如例3.[典例精析]例1:α为第三象限角,那么2α所在的象限是〔〕 A .第一或第二象限 B .第二或第三象限C .第一或第三象限D .第二或第四象限解析:α第三象限,即3222k k k Z πππαπ+<<+∈, ∴3224k k k Z παπππ+<<+∈, 可知2α在第二象限或第四象限.答案:D .例2: tan600°的值是〔 〕A .33-B .33C .3-D .3解析:360tan 240tan 600tan 000===.答案:D .例3:假设sinθcosθ>0,那么θ在〔 〕A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限解析:∵sinθcosθ>0,∴sinθ、cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B .答案:B .[常见误区]1.在角的表示中注意角度值和弧度值不能在同一角的表示中使用.2.三角函数值的符号是学生解题中的易错点、易漏点.[基础演练]1.R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,那么a =〔 〕A .0B .1C .-1D . ±12.设M 和m 分别表示函数y=31cosx -1的最大值和最小值,那么M+m 等于〔〕 A .32B .-32C .-34D .-23.假设A 、B 、C 是△ABC 的三个内角,且A<B<C 〔C≠2π〕,那么以下结论中正确的是〔 〕A .sinA<sinCB .cotA<cotCC .tanA<tanCD .cosA<cosC4.在〔0,2π〕内,使sinx >cosx 成立的x 取值X 围为〔 〕A .〔4π,2π〕∪〔π,45π〕B .〔4π,π〕C .〔4π,45π〕D .〔4π,π〕∪〔45π,23π〕5.点P 〔tanα,cosα〕在第三象限,那么角α的终边在第 象限.6.在△ABC 中,假设最大角的正弦值是22,那么△ABC 必是 三角形.7.比较sin 52π,cos 56π,tan 57π的大小.8.sinθ+cosθ=51,θ∈〔0,π〕,求cotθ的值.9.:sin3α+cos3α=1,求sinα+cosα; sin4α+cos4α;sin6α+cos6α的值.。

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。

《三角函数的诱导公式》新课程高中数学必修4省优质课比赛说课教案

《三角函数的诱导公式》新课程高中数学必修4省优质课比赛说课教案

三角函数的诱导公式教材:在北师大版普通高中课程标准实验教科书必修4中,单位圆与正弦、余弦函数的内容约4课时,下面笔者从教学背景分析、教学设计分析、目标分析、过程分析、板书设计等方面谈谈“三角函数的诱导公式”这节课的教学设计.一、教学背景分析(一)教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用.承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简以及三角函数的图象与性质(包括三角函数的周期性)等内容.同时,学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉,这些构成了学生的知识基础.诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想.(二)目标定位诱导公式可以帮助我们把任意角的三角函数化为锐角三角函数,但是随着计算器的普及,上述意义不是很大.我们认为,诱导公式的教学价值主要体现在以下几个方面:第一,感受探索发现,通过几何对称这个研究工具,去探索发现任意角三角函数间的数量关系式,即三角函数的基本性质乃是圆的几何性质(主要是其对称性质)的代数解析表示.第二,学会初步应用,能够选用恰当的诱导公式将任意角的三角函数转化为锐角三角函数问题并求解.第三,领悟思想方法,在诱导公式的学习过程中领悟化归、数形结合等思想方法.第四,积累数学经验,为学生认识任意角的三角函数既是一个起源于圆周运动的周期函数又是研究现实世界中周期变化现象的“最有表现力的函数”做好准备.二、教学设计分析在进行本课教学设计时,有以下两条典型教学路线可供选择:(1)两个角的终边有哪些特殊的对称关系?(2)怎样把非第一象限的角转化为第一象限的角?笔者最终选择了第一条路线,主要基于以下两点考虑.(一)尊重教材的编写方式从对教材的分析来看,北师大版教材将三角函数作为一种数学模型来定位,力图在单位圆中借助对称性来考察对应点的坐标关系,从而统整各组诱导公式.教材的编写处理体现了教材专家的集体智慧和版本教材的一贯特色,教师应该努力体会和把握,不宜轻率抛开教材另搞一套.(二)切合学生的认知水平利用学生熟悉的圆及其对称性研究三角函数的相关性质,符合学生的认知心理.同时,单位圆及其对称性的表象对学生推导诱导公式、理解公式之间的内在联系、形象记忆三角函数诱导公式都将起到事半功倍的效果.三、教学环境分析根据教学内容和学生实际情况,确定选择使用多媒体教室.四、教学目标分析(一)知识与技能1.能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式.2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题.(二)过程与方法1.经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力.2.通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力.(三)情感、态度、价值观1.通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度.2.在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神.五、教学重点与难点教学重点:探求π-α的诱导公式.π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出.教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”.六、教学方法与教学手段问题教学法、合作学习法,结合多媒体课件.七、教学过程角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题.(一)问题提出如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题.【问题1】求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系.即有sin(α+k·360°) = sinα,cos(α+k·360°) = cosα, (k∈Z)tan(α+k·360°) = tanα.这组公式用弧度制可以表示成sin(α+2kπ) = sinα,cos(α+2kπ) = cosα, (k∈Z) (公式一)tan(α+2kπ) = tanα.【设计意图】前面的学习中,已经将角的概念从锐角扩充到了任意角,学习了任意角三角函数的定义,接下来自然地会提出任意角的三角函数值怎么去求.于是,先安排求特殊值再过渡到一般情形比较符合学生的身心特点和认知规律,意在培养学生从特殊到一般归纳问题和抽象问题的能力,引导学生在求三角函数值时抓坐标、抓角终边之间的关系.同时,首先考虑α+2kπ(k∈Z)与α的三角函数值之间的关系,有助于学生理解三角函数被看成刻画现实世界中周期性变化的数学模型的确切含义.(二)尝试推导如何利用对称推导出角π-α与角α的三角函数之间的关系.由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等.反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?角π-α与角α的终边关于y轴对称,有sin(π-α) = sinα,cos(π-α) = -cosα,(公式二)tan(π-α) = -tanα.【设计意图】对问题2的提问方式的设计主要是考虑到我们在研究问题的时候常常会研究它的逆命题、否命题、等价命题等.事实上问题2可以看成是“若两个角的终边相同,则它们的正弦值相同”的逆命题,即“若两个角的正弦值相同,则两个角的终边相同”.但这里是以问题的形式提出的,实际上教会了学生一种自己研究问题的方法.〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?因为与角α终边关于y 轴对称是角π-α,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数.于是,我们就得到了角π-α与角α的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系.【设计意图】阶段小结,让学生将对称作为研究三角函数问题的一种方法使用.将上述研究过程进行梳理,得出“角间关系→对称关系→坐标关系→三角函数值间关系”的研究路线图.(三)自主探究 如何利用对称推导出π+ α,- α与α的三角函数值之间的关系.刚才我们利用单位圆,得到了终边关于y 轴对称的角π-α与角α的三角函数值之间的关系,下面我们还可以研究什么呢?【问题3】两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?角-α与角α的终边关于x 轴对称,有:sin (-α) = -sin α,cos (-α) = cos α,(公式三)tan (-α) = -tan α.角π +α与角α终边关于原点O 对称,有:sin (π +α) = -sin α,cos (π +α) = -cos α,(公式四)tan (π +α) = tan α.上面的公式一到四都称为三角函数的诱导公式.【设计意图】从两个角的终边关于y 轴对称的情况进行自然过渡,给学生留下了自主探究的空间,让他们再次经历公式的研究过程,从而得出公式三和四,并将问题2研究方法一般化.(四)简单应用例:求下列各三角函数值: (1) ; (2) 2cos 3π;(3) . 7sin()6-π31cos 6-π【设计意图】初步熟悉诱导公式的使用,让学生感悟在解决问题的过程中,如何合理地使用这几组公式.此外,引导学生注意同一个三角函数的求值问题可以采用不同的诱导公式,启发学生这些公式的内在关系和联系,体会数学方法的多样性.(五)回顾反思【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系.主要体现了化归和数形结合的数学思想.具体可以表示如下:【设计意图】开放式小结,使得不同的学生有不同的学习体验和收获.这些问题的提出,侧重于诱导公式推导方法的回顾和反思,侧重于个体情感体验的分享和表达,从而区别于侧重公式规律的总结和记忆.(六)分层作业1.阅读课本,体会三角函数诱导公式推导过程中的思想方法;2.必做题:课本20页A组1, 6,21页B组 1;3.选做题:(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?【设计意图】分层作业有利于不同层次的学生巩固知识,提升思维能力.阅读课本旨在引导学生教科书是学习的根本,阅读课本有利于培养学生良好的回归课本的学习习惯.而出现选做题目,目的是提供多元化和挑战性选择,促使学有余力的学生课后思考和自主探究几组公式之间的内在联系.(七)板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的三角函数
一、教学目标
1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。

2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。

3、情感目标:培养数形结合的思想。

二、教材分析
1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。

2、教学难点:从函数角度理解三角函数。

3、教学关键:利用数形结合的思想。

三、教学形式:讲练结合法
四、课时计划:2节课
五、教具:圆规、尺子
六、教学过程
(一)引入
我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗?
设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r
a αcos =
a b αtan =,取r=1,则a
b tan αa,cos αb,αsin ===,引入单位圆概念。

(二)新课
1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么:
(1) y 叫做α的正弦,记作αsin , 即y αsin =;
(2)
x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y
叫做α的正切,记作αtan ,即x
y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。

2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。

通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。

总结出一条法则:一全正,二正弦,三正切,四余弦。

注:这有利于培养学生观察和思考的能力,以方便记忆。

3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π
πα时,有αα
αtan cos sin =。

这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。

4、例题
例1求
3
5π的正弦、余弦和正切值。

解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2
3,21
(-,所以
.33
π5tan ,2
13π5cos ,2
33π5sin -==-= 通过这道例题可以让学生基本上懂得应用三角函数定义解三角函数值。

例2确定下列三角函数值的符号,然后用计算器验证。

(1)°250cos (2));4πsin(-
(3) sin156︒ (4) tan 210︒
解:(1) 因为250°是第三象限角,所以0;°250cos <
(2) 因为-4π是第四象限角,所以;0)4πsin(<-
(3) 因为156︒是第二象限角,所以sin156︒>0
(4) 因为210︒是第三象限角,所以tan 210︒>0
用计算器验证同学们自己完成。

例3已知53sin -=α,求ααtan ,cos 的值。

解:因为,1sin ,0sin -≠<αα所以α是第三或第四象限角,由1cos sin 22=+αα 得2516)53(1sin 1cos 222=
--=-=αα,如果α是第三象限角,那么.0cos <α
于是4cos 5α==-.从而sin 353tan ()()cos 544ααα==-⨯-=,如果α是第四象限角,那么43cos ,tan 54
αα==- 小结:这道例题主要应用同角三角函数的基本关系:22sin cos 1αα+=,sin tan cos ααα
=来解题, 5、课堂练习
(1) 已知角α的终边经过点Q(3,4),求角α的正弦、余弦、正切值。

解:由已知可得: 5OQ ==
设角α的终边与单位圆交于(,)p x y .分别过点P 、Q 作x 轴的垂线MP 、
NQ 则
4NQ =, =y MP , 3ON =, OM x =,
~OMP ONQ ∆∆ ,于是,
4sin 15
MP NQ y y OP OQ α=====; 3cos 15OM ON x
x OP OQ α===
==; sin 4tan cos 3
y x ααα===
(2) 已知tan ϕ=求sin ,cos ϕϕ的值。

解:sin
tan cos ϕϕϕ
==所以sin ϕϕ= ①,又因为sin ²ϕ=1-cos ²ϕ ②,
将式①带入式②中得22()1cos ϕϕ=-,即223cos 1cos ϕϕ=-, 故22114cos 1,cos ,cos 42ϕϕϕ===±,
当1cos 2ϕ=时,sin ϕ=1cos 2ϕ=-时,sin ϕ= (三)课堂小结
通过这节课,我们学习了任意角的三角函数,懂得应用三角函数定义解三角函数值,知道了三角函数值在各象限的符号,掌握了同角三角函数的基本关系。

(四)布置作业
P15 1、2 P20 1、4。

相关文档
最新文档