概率-讲义版

合集下载

《概率》 讲义

《概率》 讲义

《概率》讲义一、什么是概率在我们的日常生活中,经常会听到“可能”“也许”“大概”这样的词汇,这些词所表达的不确定性,在数学中就可以用概率来描述。

概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛一枚硬币,正面朝上和反面朝上的可能性各占一半,我们就说抛硬币正面朝上的概率是 05 。

概率的取值范围在 0 到 1 之间。

如果一个事件完全不可能发生,那么它的概率就是0 ;如果一个事件肯定会发生,那么它的概率就是1 。

而大部分事件发生的概率则介于 0 和 1 之间。

二、概率的计算方法计算概率有多种方法,其中最基本的就是古典概型和几何概型。

古典概型适用于试验结果有限且等可能的情况。

例如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

因为总共有 8 个球,取出每个球的可能性相等,而红球有 5 个,所以取出红球的概率就是 5÷8 = 0625 。

几何概型则适用于试验结果是无限的情况。

比如在一个单位圆中随机取一点,求这个点落在圆的某个扇形区域内的概率,这时就需要通过计算扇形区域的面积与整个圆的面积之比来得到概率。

除了这两种基本的概型,还有一些更复杂的概率计算方法,比如条件概率和全概率公式。

条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

例如,已知今天下雨,明天也下雨的概率就是一个条件概率。

全概率公式则是将一个复杂的事件分解为多个简单的互斥事件,然后通过这些简单事件的概率来计算复杂事件的概率。

三、概率在生活中的应用概率在我们的生活中有着广泛的应用,从简单的游戏到复杂的决策都离不开它。

在彩票中,虽然中奖的概率极低,但仍然吸引着很多人购买,这是因为人们总是抱着一丝侥幸心理,希望自己成为那个幸运儿。

但从概率的角度来看,购买彩票中大奖更多的是一种娱乐,而不是可靠的致富方式。

在保险行业,保险公司通过对各种风险发生的概率进行计算和评估,来确定保险的费率和赔偿金额。

概率论讲义_带作业

概率论讲义_带作业

例 已知某类产品的次品率为0. 2 ,现从一大批这类产品中随机抽查2 0 件. 问恰好 有 件次品的概率是多少?
3) 泊松分布
概率论的基本概念 样本空间
样本点
事件
事件的概率
练习 1. 抛一枚骰子,观察向上一面的点数;事件表示“出现偶数点”
2. 对目标进行射击,击中后便停止射击,观察射击的次数;事件表示“射击次数不超 过5 次”
事件之间的关系与运算
事件语言
集合语言
样本空间
事件
的对立事件
事件 或者
分布律:如果记离散型随机变量 所有可能的取值为
值的概率,即事件
的概率为
, 取各个可能
上式称为离散型随机变量 的分布律. 分布律也可以直观的表示成下列表格:
根据概率的性质,分布律中的 应该满足下列条件: 1. 2. 例 某系统有两台机器独立运转. 设第一台与第二台机器发生故障的概率分别是 0. 1 ,0. 2. 以 表示系统中发生故障的机器数,求 的分布律.
随机变量的例子
掷一枚色子,用 记点数;
掷三枚色子,用 记点数之和;
掷一枚硬币,记
为“出现正面”,
为“出现反面”;
变量的取值是随机的,依赖于随机试验的结果
用随机变量来表示事件
设 为一个实数集合,则用
表示一个事件 ,即
例如,某射手射击某个目标,击中计1 分,未中计0 分,则计分 表示一个随机
变量,且“击中”这个事件可以表示为
第二章 随机变量及其分布
Hale Waihona Puke 第六讲 随机变量 离散随机变量
概率论的另一个重要概念是随机变量. 随机变量的引入, 使概率论的研究由个别的 随机事件扩大为随机变量所表征的随机现象的研究.

《概率》 讲义

《概率》 讲义

《概率》讲义一、什么是概率在我们的日常生活中,经常会听到“可能”“也许”“大概”这样的词汇,而这些词所表达的不确定性,在数学中可以用“概率”来进行量化和研究。

概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。

这个数值在 0 到 1 之间。

如果一个事件发生的概率是 0,那就意味着这个事件几乎不可能发生;如果概率是 1,那就表示这个事件肯定会发生;而如果概率在 0 和 1 之间,比如 05,那就说明这个事件有一半的可能性会发生。

举个例子,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。

因为硬币只有正反两面,而且在理想情况下,硬币正反面出现的机会是均等的。

再比如,从一个装有 5 个红球和 5 个白球的袋子中随机摸出一个球是红球的概率,就是 05。

二、概率的计算方法1、古典概型古典概型是一种最简单的概率模型。

在古典概型中,如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,那么事件 A 发生的概率 P(A) = m / n 。

例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球是红球的概率,总共有 5 个球,其中红球有 3 个,所以取出红球的概率就是 3/5 。

2、几何概型几何概型是另一种常见的概率模型。

当试验的结果是无限个,且每个结果出现的可能性相等时,我们常常使用几何概型来计算概率。

比如说,在一个时间段内等待公交车,假设公交车在这段时间内任何时刻到达的可能性相等,那么我们计算在某一特定时间段内等到公交车的概率时,就可以使用几何概型。

3、条件概率条件概率是指在某个条件下,某个事件发生的概率。

假设事件 A 和事件 B,在事件 B 已经发生的条件下,事件 A 发生的概率,记作 P(A|B) 。

例如,已知一个家庭有两个孩子,其中一个是女孩,那么另一个孩子也是女孩的概率就是一个条件概率。

三、概率在实际生活中的应用1、保险行业保险公司在制定保险政策和计算保费时,会大量使用概率知识。

《概率的概念》 讲义

《概率的概念》 讲义

《概率的概念》讲义一、什么是概率在我们的日常生活中,常常会听到“可能”“也许”“大概”这样的词汇,而这些表述其实都与概率有着千丝万缕的联系。

那么,究竟什么是概率呢?概率,简单来说,就是用来衡量某个事件发生的可能性大小的一个数值。

它的取值范围在 0 到 1 之间。

如果一个事件发生的概率为 0,那就意味着这个事件几乎不可能发生,是一种极其罕见的情况;而如果一个事件发生的概率为 1,那就表示这个事件肯定会发生,没有任何意外。

举个例子,比如说抛硬币。

当我们抛一枚质地均匀的硬币时,出现正面朝上和反面朝上的可能性是相等的。

所以,抛硬币正面朝上的概率就是 05,反面朝上的概率也是 05。

再比如,从一副完整的扑克牌(除去大小王)中随机抽取一张牌,抽到红桃的概率是 1/4,因为扑克牌一共有四种花色,每种花色的牌数量相等。

二、概率的计算方法计算概率的方法主要有两种:古典概型和几何概型。

古典概型是指在一个试验中,所有可能的结果是有限的,并且每个结果出现的可能性相等。

计算古典概型的概率,我们通常使用公式:P(A) =事件 A 包含的基本事件数/基本事件总数。

还是以抛硬币为例,抛硬币这个试验中,基本事件只有两个,即正面朝上和反面朝上。

所以,抛硬币正面朝上的概率 P(正面朝上) = 1 /2 = 05。

几何概型则是在一个试验中,每个事件发生的概率只与构成该事件区域的长度、面积或体积成比例。

比如说,在一个数轴上的区间 0, 10内随机取一个点,取到 5 到 8 之间的点的概率,就可以通过计算区间 5,8 的长度与区间 0, 10 的长度之比来得到。

三、概率的性质概率具有一些重要的性质,理解这些性质有助于我们更好地运用概率解决问题。

首先,概率的值永远在 0 到 1 之间,包括 0 和 1。

这是因为概率是用来衡量可能性大小的,不可能出现小于 0 或者大于 1 的情况。

其次,必然事件的概率为 1,不可能事件的概率为 0。

必然事件是指一定会发生的事件,比如“太阳从东方升起”,其概率就是 1;不可能事件是指绝对不会发生的事件,比如“月亮变成正方形”,其概率就是0。

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

高三总复习讲义概率

高三总复习讲义概率

高三数学总复习讲义--概率第一讲:随机事件的概率随机事件:在一定条件下可能发生也可能不发生的事件。

必然事件:在一定条件必然要发生的事件。

不可能事件:在一定条件下不可能发生的事件。

事件A的概率:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。

由定义可知,必然事件的概率是1,不可能事件的概率是0。

等可能事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成。

如果试验中可能出现的结果有n个(即此试验由n个基本事件组成,而且所有结果出现的可能性相等,那么每个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率。

在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素,从集合的角度看,事件A的概率是子集A的元素个数与集合I的元素个数的比值:(古典概型)这样就建立了事件与集合的联系,从排列组合的角度看,m,n实际上就是事件的排列数或组合数。

题型一:与排列组合综合例1.某班委会由4名男生和3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是____________________;练习1.将7人(含甲、乙两人)分成三组,一组3人,另两组各2人,不同的分组数为________________;甲、乙分在同一组的概率P=________________。

题型二:与两个计数原理综合例2.先将一个棱长为3的正方体木块的六个面分别涂上六种颜色,再将正方体均匀切割成棱长为1的小正方体,从切好的小正方体中任选一个,所得正方体的六个面均没有涂色的概率是________________;练习2.由数字0、1、2、3、4、5组成没有重复数字的五位数,所得数是大于20000的偶数的概率是________________;题型三:有、无放回抽样问题例3.从含有两件正品和一件次品的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有1件次品的概率。

《概率的概念》 讲义

《概率的概念》讲义在我们的日常生活中,很多事情的结果是不确定的。

比如明天是否会下雨,买彩票是否能中奖,考试是否能取得好成绩等等。

而概率,就是用来衡量这些不确定事件发生可能性大小的工具。

那到底什么是概率呢?简单来说,概率就是对随机事件发生可能性大小的一个数值度量。

如果一个事件发生的可能性越大,那么它的概率就越大;反之,如果一个事件发生的可能性越小,它的概率就越小。

为了更好地理解概率,我们先来看一个简单的例子。

假设一个盒子里有 5 个红球和 3 个白球,我们从中随机取出一个球,那么取出红球的概率是多少呢?要计算这个概率,我们首先需要知道总的可能性有多少种。

在这个例子中,从 8 个球中取出任意一个球,总共有 8 种可能性。

而取出红球的可能性有 5 种。

所以取出红球的概率就是 5÷8 = 5/8。

概率的取值范围在 0 到 1 之间。

如果一个事件的概率为 0,那就意味着这个事件几乎不可能发生;如果概率为 1,就表示这个事件肯定会发生;而当概率在0 到1 之间时,说明这个事件有一定的可能性发生。

比如,太阳从西边升起这个事件的概率就是 0,因为这在我们的认知中是不可能发生的;而抛硬币正面朝上的概率是 05,因为抛硬币只有正面和反面两种可能,且出现正面和反面的可能性是相等的。

在实际生活中,概率有着广泛的应用。

比如在保险行业,保险公司会根据各种风险事件发生的概率来计算保险费用。

如果某种疾病发生的概率较高,那么针对这种疾病的保险费用就会相对较高。

在天气预报中,气象学家会根据各种气象数据和模型来预测明天降雨的概率。

如果降雨的概率较大,人们就会提前做好相应的准备,比如携带雨具。

在统计学中,概率也是非常重要的。

通过对大量数据的分析和计算概率,可以帮助我们得出一些有用的结论和决策。

再来说说概率的计算方法。

除了像前面提到的通过计算事件可能出现的结果数来计算概率外,还有一些常见的概率计算规则。

比如加法规则,如果事件 A 和事件 B 是互斥的(也就是说两个事件不能同时发生),那么事件 A 或者事件 B 发生的概率就等于事件 A发生的概率加上事件 B 发生的概率。

高中数学必修2《概率》知识点讲义

高中数学必修2《概率》知识点讲义Chapter 3 Probabilityn 1 Probability of Random Events1.Basic Concepts:Impossible eventCertain eventEvent (includes certain and impossible events)Random eventProbability (P(A)) of an event A2.Probability。

Frequency。

and Frequency :Frequency (nA) of an event A in n trials under the same nsFrequency。

(fn(A)) of an event A in n trials under the same nsProbability (P(A)) of an event A as the stable frequency。

as the number of trials increasesXXXn 2 Basic Properties of Probability1.XXX:n (sum) eventn (product) eventXXXXXX2.Basic Properties of Probability:Probability of certain event is 1.probability of impossible event is 0.and 0 ≤ P(A) ≤ 1XXX 1XXX 0XXX: P(A∪B)= P(A)+ P(B)XXX: P(A)+P(B)=1 if A and B are complementaryn 3 Classical Probability1.XXX: XXX2.XXX:XXX the total number of possible esXXX AUse formula P(A)= number of es in A/ total number of es3.XXX:XXXXXXXXXNote: The original text had formatting errors and some unclear sentences。

《概率论讲义》课件


线性回归
介绍线性回归模型的基本原理和应用案例。
多元非线性回归
探讨多元非线性回归分析的方法和实际应用。
蒙特卡罗方法
1
简介和基本概念
介绍蒙特卡罗方法的基本思想和使用领域。
2
模拟方法
说明蒙特卡罗方法的模拟过程和实际应用。
3
抽样方法
讨论蒙特卡罗方法中的抽样技术和抽样步骤。
应用案例
金融风险管理
探讨概率论在金融风险管理中的应用和重要性。
2
弱大数定律
探讨具体的弱大数定律和其适用性。
3

中心极限定理
详细解释中心极限定理及其在概率论中的重要性。
统计推断
1 点估计
介绍点估计的概念和方法,以及其在概率论中的应用。
2 区间估计
说明区间估计的原理和步骤,并讨论其实际应用。
3 假设检验
讲解假设检验的基本思想和步骤,以及其在统计学中的作用。
回归分析
《概率论讲义》PPT课件
概率论讲义PPT课件大纲
简介
介绍概率论的基本概念和应 用领域,初步了解概率论的 历史和发展。
随机变量
定义随机变量,离散型和连 续型随机变量及其概率分布。
概率分布
二项分布,泊松分布和正态 分布。
大数定律与中心极限定理
1
定义大数定律和中心极限定理
深入了解大数定律和中心极限定理的概念和应用。
人口统计学
展示概率论如何应用于人口统计学数据的分析和预测。
物理学和天文学
介绍概率论在物理学和天文学研究中的关键作用。
结论
总结所学内容,展望概率论的未来发展和应用前景。
参考文献
推荐阅读经典著作和相关文献
提供经典著作和相关文献,供学习和研究参考。

概率论基础讲义全

概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。

例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。

每次试验都不可能发生的事情称为不可能事件,记为①。

例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。

例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。

在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。

例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。

试验中所有样本点构成的集合称为样本空间。

记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程主题:概率【知识点】一、事件的概念定义:在一定的条件下所出现的某种结果叫做事件来表示事件一般用大写字母生的事件不可能事件:一定不发事件必然事件:一定发生的确定事件也可能不发生的事件随机事件:可能发生,事件C B A ,,⎪⎩⎪⎨⎧⎩⎨⎧ ➢ 无论是那种事件,都是在一定条件或相对某一条件下的某种结果二、随机事件的概率及其意义大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作)(A P .➢ 概率是固定的,频率是不固定的,随着试验次数的增加,频率接近于概率. ➢ 概率表示事件发生的可能性大小,是大量随机事件现象的客观规律.三、事件间的关系及概率的基本性质 1. 事件的关系——对应集合间的关系包含、相等、并事件(和事件)、交事件(积事件)、互斥事件、对立事件(1)互斥事件:若=)(B A P I 0)(=AB P ,即事件A 与事件B 不可能在任一次试验中同时发生,满足)()()(B P A P B A P +=Y .(2)对立事件:若=)(B A P I 0)(=AB P ,=)(B A P Y 1)(=+B A P ,即事件A 与事件B 不可能在任一次试验中发生同时发生,但必有一个发生. 记作--==B A A B ,,满足1)()()()(=+=+-A P A PB P A P . 2. 概率()A P 的取值范围 (1)1)(0≤≤A P ;课程类型:☑ 1对1课程 ☐ Mini 课程 ☐ MVP 课程(2)必然事件的概率1)(=ΩP ,不可能事件的概率0)(=∅P ,随机事件的概率在)1,0(之间; (3)若B A ⊆,则()()B P A P ≤. 四、古典概型1. 基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件.基本事件是试验中不能再分的最简单的随机事件,其他事件可以用它们来表示. ➢ 任何两个基本事件都是互斥的;➢ 任何事件(除不可能事件)都可以表示成基本事件的和. 2. 计算公式:=)(A P =总的基本事件个数包含的基本事件个数A步骤:① 判断该概率模型是否为古典概型; ② 算出基本事件的总个数n ;③ 算出事件A 中包含的基本事件的个数m ; ④ 应用等可能性事件概率公式()mP A n=计算. 五、几何概型1. 定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型 为几何概率模型,简称几何概型2. 特点:(1)无限性:在一次试验中,基本事件的个数可以是无限的;(2)等可能性:每个时间发生的概率只与构成该事件区域的长度(面积、体积)成比例.3. 计算公式:=)(A P 积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A步骤:① 判断该概率模型是否为几何概型,或选择适当的观察角度,转化为几何概型; ② 把事件的全部结果转化为与之对应区域的长度(面积或体积); ③ 把随机事件A 转化为与之对应区域的长度(面积或体积); ④ 利用几何概率公式求解. 六、条件概率(*理科内容)概念:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=()()A P AB P . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=()()A n AB n . 性质:①0≤P (B |A )≤1;②如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).【课堂演练】题型一概念区分例1指出下列事件是必然事件、不可能事件还是随机事件(1)天上有云,下雨;(2)在标准大气压且温度高于0度时,冰融化;(3)某人射击一次,不中靶;(4)同时抛两枚硬币一次,都出现正面朝上;(5)没有水分,种子能发芽;(6)从3个次品,1个正品中抽2个产品,抽到的都是正品;(7)从标有1、2、3、4、5的5张标签中任取一张,得到4号签.练1下面语句可成为事件的是()A.抛一只钢笔B.中靶C.这是一本书吗D.数学测试,某同学两次都是优秀练2从100件同类产品中(其中有2个次品),任取3个,则以下几种,那些是必然事件、不可能事件和随机事件(1)三个正品;(2)两个正品,一个次品;(3)一个正品,两个次品;(4)三个次品;(5)至少一个次品;(6)至少一个正品.例2下列说法正确的是()A.任何事件的概率总是在)1,0(之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会非常接近概率D.概率是随机的,在试验前不能确定例3从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()A.A与C互斥B.任何两个均互斥C.B与C互斥D.任何两个均不互斥练3 从装有2个红球和2个白球的口袋里任取2个球,则互斥而不对立的两个事件是( ) A .至少1个白球,都是白球 B .至少1个白球,至少1个红球 C .至少1个白球,都是红球 D .恰好1个白球,恰好2个白球练4 下列几对事件中是对立事件的是( ) A .1>a 与1≥a B .1<a 与1>aC .10<<a 与30<<aD .1<a 与1≥a练5 将一枚硬币抛掷三次,有如下事件:①至少有一次正面和至多有一次正面②至多有一次正面和恰有两次正面③至多有一次正面和至少有两次正面④至少有一次正面和至多有两次正面.则其中互斥事件有 ,互为对立的事件有 .练6 若)(A B P +1=,则事件A 与B 的关系是( ) A .A 、B 是互斥事件 B .A 、B 是对立事件C .A 、B 不是互斥事件D .以上都不对题型二 古典概型例4 下列实验中是古典概型的有( ) A .种下一粒大豆观察它是否发芽B .从规格直径为mm )6.0250(±的一批合格产品中任意抽一件,测量其直径dC .抛一枚硬币,观察其出现正面或反面的情况D .某人射击中靶或不中靶例5 某人射击的命中率为0.3,则在连续的3次射击中,恰好命中两次的概率大概是多少?练7 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ). A.23B.25C.35D.910练8 集合{}32,=A ,{}321,,=B ,从B A ,中各取一个数,则这两数之和等于4的概率是( ) A .32B .21C .31D .61练9 从}5,4,3,2,1{中随机选取一个数为a ,从}3,2,1{中随机选取一个数为b ,则a b >的概率是( ) A .45 B .35 C .25D .15练10 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数为3”为事件B ,则事件A , B 中至少有一件发生的概率为( ) A .125B .21C .127D .43练11 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2p ,点数之和为偶数的概率记为3p ,则( ) A .321p p p << B .312p p p <<C .231p p p <<D .213p p p <<练12 设{}3,2,1∈b a ,,那么函数()a bx x x f ++=2无零点的概率为( ) A .31B .21 C .32 D .95练13 记a ,b 分别是投掷两次骰子所得的数字,则方程022=+-b ax x 有两个不同实根的概率为( ) A .185 B .41 C .103 D .109例6将骰子先后抛掷两次,求:(1)向上的点数之和为几的概率最大,最大值是多少.(2)向上的点数之和是5的倍数的概率;(3)向上的点数中至少有一个是6点的概率;(4)两个点数中有2或3的的概率;(5)第一次得到的点数比第二次的点数大的概率.练14袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球,求:(1)一共有多少种不同的结果?请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.练15某班数学兴趣小组有男生和女生各3名,现从中任选3名学生去参加校数学竞赛,求:(1)恰有一名参赛学生是男生的概率;(2)至少有一名参赛学生是男生的概率;(3)至多有一名参赛学生是男生的概率.题型三 几何概型例7 某人向正方形的外接圆内投标,如果他每次都投入圆内,那么他投中正方形区域的概率为 .例8 利用计算机产生0-1之间的均匀随机数a ,则事件“013<-a ”发生的概率为 .例9 已知公共汽车每15分钟1个班次,每班车到站后停留2分钟,则乘客到达站台后立即乘上车的概率为( ) A .213 B .215 C .1315 D .216练16 在区间[-2,4]上随机地取一个数x ,则x 满足m x ≤||的概率为65,则=m .练17 甲乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,则两人能会面的概率为 .练18 函数2()2,[5,5]f x x x x =--∈-,那么任意0[5,5]x ∈-,使0()0f x ≤的概率为( ) A .0.1 B .23C .0.3D .0.4练19 已知集合{}|28M x x =-≤≤,{}2|320N x x x =-+≤,在集合M 中任取一个元素x ,则“x M N ∈I ”的概率是( ) A .110 B .16 C .310 D .12练20 如图,在边长为25cm 的正方形中挖去边长为23cm 的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在 中间带行区域的概率为多少?练21 下图的矩形,长为5,宽为2.在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗.则可以估计出阴影部分的面积约为(B ) A .2310 B .235 C .236 D .2311练22 已知函数R b a b ax x x f ∈+-=,,2)(22,若a 从区间]2,0[中任取一个数,b 从区间]3,0[中任取一个数,求方程0)(=x f 没有实根的概率.练23 甲乙两人相约12:00~13:00在某地会面,假定每人在这段时间的每个时刻到达会面地点的可能性是相同的,先到者等20分钟后便离去,试求两人能会面的概率.练24假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.练25在400毫升自来水中有一个大肠杆菌,从中随机取出2毫升水样到显微镜下观察,求发现大肠杆菌的概率.练26如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,假如在这海领域里随意选定一点钻探,问钻到石油的概率是多少.题型四条件概率(*理科内容)例10如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则P(A)=;P(B|A)=.练27 一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A .12B .14C .16D .18练28 从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ) A .18B .14C .25D .12练29 将三个骰子各掷一次,设事件=A “三个点数都不相同”,=B “至少出现一个3点”,则()B A P 和()A B P 分别是( ) A .9160,21 B .21,9160 C .185,9160 D .21691,21【课后巩固】 练习11.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,M I N ,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A .815B .18C .115D .1302.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A .710B .58C .38D .3103.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .564.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13B .12C .23D .345.甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( ) A .65B .52 C .61 D .316.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n mB .2n mC .4mnD .2m n7.同时掷两颗骰子,下列命题正确的个数是( )①“两颗点数都是6”比“两颗点数都是4”的可能性小;②“两颗点数相同的概率”是61; ③“两颗点数都是6”的概率最大;④“两颗点数之和为奇数”的概率与“两颗点数之和为偶数”的概率相等。

相关文档
最新文档