流体力学-流体动力学
合集下载
流体力学 水力学 流体动力学

流体力学、水力学和流 体动力学的关系
汇报人:
目录
添加目录标题
01
流体力学概述
02
流体动力学的基本概 念
04
流体力学、水力学和 流体动力学的关系
05
水力学的基本概念
总结与展望
03
06
添加章节标题
流体力学概述
流体的定义和特性
流体:一种可以流动的物质包括液体和气体 流体的特性:流动性、可压缩性、热传导性、表面张力等 流体力学:研究流体的力学性质和运动规律的学科 流体力学的应用:工程、气象、海洋、航天等领域
流体动力学的研究对象和主要内容
研究对象:流体包括液体和气体
主要内容:流体的流动规律、流体与固体的相互作用、流体与流体之间的相互作用等
研究方法:理论分析、实验研究和数值模拟等 应用领域:航空航天、海洋工程、环境工程、生物医学等
流体动力学的应用领域
航空航天:飞机、火箭、卫星等飞行器 的设计、制造和运行
交叉融合:流体力学、水力学和流体动力学之间的交叉融合将更加紧密共同推动学科 发展。
应用领域:流体力学、水力学和流体动力学将在更多领域得到应用如航空航天、海 洋工程、环境科学等。
计算流体力学:计算流体力学将得到进一步发展提高计算效率和准确性为工程实践提 供更好的支持。
实验研究:实验研究将继续在流体力学、水力学和流体动力学中发挥重要作用为理 论研究和工程实践提供数据支持。
流体力学与水力学的应用领域不同流体力学广泛应用于航空航天、能源、环境等领域而水力学广泛 应用于水利、海洋、环境等领域。
水力学与流体动力学的关系
流体力学是研究 流体(液体和气 体)的力学性质 和运动规律的学 科包括水力学和
流体动力学。
水力学是研究液 体(如水)的力 学性质和运动规 律的学科是流体 力学的一个分支。
汇报人:
目录
添加目录标题
01
流体力学概述
02
流体动力学的基本概 念
04
流体力学、水力学和 流体动力学的关系
05
水力学的基本概念
总结与展望
03
06
添加章节标题
流体力学概述
流体的定义和特性
流体:一种可以流动的物质包括液体和气体 流体的特性:流动性、可压缩性、热传导性、表面张力等 流体力学:研究流体的力学性质和运动规律的学科 流体力学的应用:工程、气象、海洋、航天等领域
流体动力学的研究对象和主要内容
研究对象:流体包括液体和气体
主要内容:流体的流动规律、流体与固体的相互作用、流体与流体之间的相互作用等
研究方法:理论分析、实验研究和数值模拟等 应用领域:航空航天、海洋工程、环境工程、生物医学等
流体动力学的应用领域
航空航天:飞机、火箭、卫星等飞行器 的设计、制造和运行
交叉融合:流体力学、水力学和流体动力学之间的交叉融合将更加紧密共同推动学科 发展。
应用领域:流体力学、水力学和流体动力学将在更多领域得到应用如航空航天、海 洋工程、环境科学等。
计算流体力学:计算流体力学将得到进一步发展提高计算效率和准确性为工程实践提 供更好的支持。
实验研究:实验研究将继续在流体力学、水力学和流体动力学中发挥重要作用为理 论研究和工程实践提供数据支持。
流体力学与水力学的应用领域不同流体力学广泛应用于航空航天、能源、环境等领域而水力学广泛 应用于水利、海洋、环境等领域。
水力学与流体动力学的关系
流体力学是研究 流体(液体和气 体)的力学性质 和运动规律的学 科包括水力学和
流体动力学。
水力学是研究液 体(如水)的力 学性质和运动规 律的学科是流体 力学的一个分支。
流体力学 流体动力学

流体力学流体动力学
流体力学主要分为两个分支:稳态流体力学和非稳态流体力学。
稳态流体力学研究流体在恒定状态下的运动,而非稳态流体力学则研究流体在变化状态下的运动。
流体动力学则是研究流体运动中的力学特性,包括流体的速度、压力、密度等。
它还可以帮助我们理解和解释各种自然现象,例如气旋和洋流等。
流体力学和流体动力学在现代科学中有着广泛的应用,包括工业设计、航空航天、气象预测、海洋科学等。
在各个领域,这两个学科都是非常重要的基础学科。
- 1 -。
4工程流体力学 第四章流体动力学基础

因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
流体力学 4-4流体动力学

面壁的冲力F是多少?
解:设射流的初始速度为v0,因为
Q1,v0
x
壁面光滑,水平射流的速度只改变 方向不改变大小;
光滑壁面对射流的反力R垂直于壁
y
Q0,v0
θ o
面,合外力在x方向上为0,列x方
F =-R
向的动量方程可得
0 ( ρQ1v0 ρQ2v0 ) ρQ0v0 cos θ
ቤተ መጻሕፍቲ ባይዱ
Q2,v0 例4-7图
C 断面形心出的流速 D 断面上压力中心处的流速
§4-4 动量方程及其应用
在工程实际中有时要计算流体与固体相互作用的力,动量 方程提供了流体与固体相互作用的动力学规律。
一、稳定流动量方程 从物理学中的动量定律知道,单位时间内物体的动量变化 等于作用于该物体上外力的总和。
2 2
1
v2 II
1
III
v1 I 1
22
1
图4-15 控制体及系统
如图示是一个稳定流动。首
因此可认为:
(1)控制体内液流的能量损失 hw 0
(2)水平射流与壁面在接触后, 射流只是改变方向,不改变大小;
(3)由于壁面的对称性,水平射 流的反作用力R平行于射流方向。
v
Q/2
Q
θ F=-R
v
θx
Q/2 v
图4-19
例4-6 试求图示的射流对挡板的作用力。
解:设水平射流的流量为Q,因曲面 对称且正迎着射流,则两股流量可 认为相等,都为Q/2,x方向动量方 程为
(4)
考虑到 v1 v1n1及v2 v 2 n2 ,上式可写成
R 1Q1v1n1 2Q2v2n2 p1 A1n1 p2 A2n2 Fb ( p1 A1 1Q1v1 )n1 ( p2 A2 2Q2v2 )n2 Fb
流体力学基础知识

流体力学基础知识 流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
流体力学 4-2流体动力学

问题分析:
A断面:zA =0 m pA =1.96×105Pa vA=? B断面:zB =3 m pB =? C断面:zC =3.2m pC =0 水头损失:hwA-C=0.6m vC=?
d A 0.05m
d C 0.02m
vB=? d B 0.05m
hwA-B=0.5m
hwB-C=0.1m
动能修正系数的物理意义:总流有效断面上的实际动能对按 平均流速算出的假想动能的比值。α是由于断面上速度分 布不均匀引起的,不均匀性愈大,α值越大。 在圆管紊流运动中 α=1.05 ~ 1.10 ,在圆管层流运动中, α=2。在工程实际计算中,由于流速水头本身所占的比例 较小,故一般常取α=1。
2 2 p1 u1 p2 u2 ' z1 z2 h w12 g 2g g 2g
上面计算过程中基准面为A断面,压力为相对压力, 当选取C断面为基准面,压力取绝对压力时: A断面:zA =-3.2m pA =2.97×105Pa vA=?
B断面:zB =-0.2m pB=? C断面:zC = 0m vB=? pC = 1.01×105Pa vC=?
解得:
vA vB 2.89m / s vC 18.06m / s pB 262700Pa (绝对压力) pB 161700Pa (相对压力) Q vC AC 5.68L / s
§4-2 实际流体总流的伯努利方程
一、实际流体总流的伯努利方程
对于实际(粘性)流体,流动时存在
① 流体间的摩擦阻力
② 某些局部管件引起的附加阻力
因而导致实际流体流动过程中,其总机械能沿
流动方向不断减小。如果实际流体从截面1流向截
面2,则截面2处的总机械能必定小于截面1处的总
流体力学 第三章 流体动力学

按周界性质: ①总流四周全部被固体边界限制——有压流。如 自来水管、矿井排水管、液压管道。 ②总流周界一部分为固体限制,一部分与气体接 触——无压流。如河流、明渠。 ③总流四周不与固体接触——射流。如孔口、管 嘴出流。
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2
面
6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2
面
6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
流体力学ppt课件-流体动力学

g
g
2g
水头
,
z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 用直径d=100mm的水管从水箱引水,水管水面与 管道出口断面中心高差H=4m,水位保持恒定,水头 损失hw=3m水柱,试求水管流量,并作出水头线 解:以0-0为基准面,列1-1、2-2断面的伯努利方程
H
0
0
v22 2g
hw
1
1
v2 2gH hw 4.43m / s
Q v2 A2 0.35m3 / s
2 F d v2
p1A1 F Qv2 v1
2
(f)解出F
1
(g)由牛顿第三定律,螺栓组受力F’与F大 小相等、方向相反
例:来自喷嘴的射流垂直射向挡板,射流速度v0, 流量Q,密度ρ,求挡板受射流作用力
解:a.控制体
b.受力图:F 注意:p1=p2=0
c.动量方程(水平方向):
F Q0 v0
例:水从喷嘴喷出流入大气,已知D、d、、v2, 求螺栓组受力
解:(a)取1-1、2-2断面间的水为控制体
(b)受力图p1A1,F
1
注意:(1)p2=0;
D
(2)螺栓是作用在
p1 v1
管壁上,不是作用
在控制体内,千万
不可画!
1
2 F d v2
2
(c)连续性方程
1
(d)能量方程 (e)动量方程
D p1 v1
2
ρa
p2
z1
p1ab
g
v12 2g
z2
p2ab
g
v22 2g
hw
p1
1 v1
ρ v2
2
1
z2
常用压强表示(Pa)
0 z1
0
gz1
p1ab
v12 2
gz2
p2ab
v22 2
pw
(2)用相对压强 p1ab p1 pa1
2
ρa
p2
1 p1 v1
ρ v2
2
1
z2
0 z1
0
p2ab p2 pa2 p2 pa1 a g z2 z1
2.有能量输入(Hi)或输出(H0)的伯努利方程
z1
p1
g
1v12
2g
Hi
z2
p2
g
2v22
2g
H0
hw
3.有分流(或汇流)的伯努利方程
z1
p1
g
v12 2g
z2
p2
g
v22 2g
hw12
1
2
2
z1
p1
g
v12 2g
z3
p3
g
v32 2g
hw13
1
3 3
4.水头线
总水头线 测压管水头线
水流轴线 基准线
2
z1
p1
g
u12 2g
z2
p2
g
u22 2g
c
(3)物理意义
z p
g
——单位重量流体的总势能(m)
——位置水头+压强水头 u2
——单位重量流体的动能(m) 2g
——速度水头
z p u2 c
g 2g
单位重量流体的机械能守恒(总水头不变)
2.粘性流体元流的伯努利方程
z1
p1
g
u12 2g
C
B A
40m
解:(a)管内为空气时,取A、C断面列能量方程
40m
pA
v2 2
9
v2 2
v2
v2
12 9.8 1.2 91.2
2
2
A
C B
v 4.43m/ s
117.6
Q vA 0.0348 m3 / s
作压力线
pA 12 9.8 117 .6Pa
v2 11.7Pa
2
A
9 v2 106 Pa
推导:
元流的伯努利方程
z1
p1
g
u12 2g
z2
p2
g
u22 2g
hw '
两边同乘以ρgdQ,积分
z1
p1
g
u12 2g
g d Q
z2
p2
g
u22 2g
hw 'gdQ
(1)势能积分
z
p
g
gdQ
z
p
g
gdQ
z
p
g
gQ
(2)动能积分
u2 2g
gdQ
u2 2g
gudA
1 2g
g
u 3dA
v3 gA v2 gQ
解:a.取1-1、2-2断面间内的流体为控制体
b.画控制体的受力图: p1A1、p2A2、F→Fx,Fy
2
p2
2
c.连续性方程: v1A1=v2A2
v2 1
d.能量方程(z1=z2=0):
p1 v12 p2 v22
p1 v1
θ α
Fx
F
g 2g g 2g
1
Fy
e.动量方程
x : p1A1 p2 A2 cos Fx Qv2 cos v1
10m
解:水温40℃,汽化压强为7.38kPa 大气压强 pa 97.3103 10m
g 992 .2 9.807
汽化压强 pv 7.38 103 0.76m
g 992 .2 9.807
1
1
10m
3 2
2 3
列1-1、2-2断面的能量方程(必须用绝对压强)
10 10 v22 0.76 v22 19.24m
p1A glAcos p2A
l cos z1 z2
z1
p1
g
z2
p2
g
c
——服从流体静力学规律
ΔA
l
p1
θG p2
z2 0
z1 0
2.例 pB gh ' gh pB ' gh gh
pA pB pC
3.急变流压强的分布
FI
沿惯性力方向,压强增加、流速减小
总流的伯努利方程
1.总流的伯努利方程
u y t
ux
u y x
uy
u y y
uz
u y z
Z
1
p z
2u z
uz t
ux
uz x
uy
uz y
uz
uz z
元流的伯努利方程
1.理想流体元流的伯努利方程
(1)推导方法一
将(1)、(2)、(3)各式分别乘以dx、dy、
dz,并相加
Xdx
Ydy
Zdz
1
p x
dx
p y
dy
p z
dz
注意:
水(ρ)-水银(ρ’) 气(ρ)-液(ρ’)
h ' h
h ' h
关于气蚀: 低压区产生汽化,高压区气泡破灭空化,它造成流 量减小,机械壁面造成疲劳破坏,这种有害作用称 气蚀(空蚀) 关于计算气蚀的例子: 大气压强97.3kPa,粗管径 d=150mm,水温40℃,收 缩管直径应限制在什么条 件下,才能保证不出现空 化?(不考虑损失)
位压线
总压线
B
例:空气由炉口a流入,通过燃烧,经b、c、d后流
出烟囱,空气ρa=1.2kg/m3,烟气ρ=0.6kg/m3,损失
压强pw=29ρv2/2,求出口流速,作出压力线,并标
出c处的各种压强 解:取a、b断面列能量方程
50m d
a
gz2
z1
v2 2
29
v2 2
1.2 0.6 9.8 50 0.6 v2 29 0.6 v2 c
z2=z1或ρa=ρ——位压为零
(ρa-ρ)g(z2-z1)——位压
2.压力线
v 2
2 动压
p 静压
a gz2 z1 位压
总压线
势压线 位压线
零压线
静压+动压=全压 静压+动压+位压=总压
3.例:气体由压强为12mmH2O的静压箱A经过直径 为10cm、长为100m的管子流出大气中,高差为 40m,沿管子均匀作用的压强损失为pw=9ρv2/2,大 气密度ρa=1.2kg/m3,(a)当管内气体为与大气温 度相同的空气时;(b)当管内为ρ=0.8kg/m3燃气 时,分别求管中流量,作出压力线,标出管中点B 的压强
2g
2g
列1-1、3-3断面的能量方程(可用相对压强)
10 v32 2g
连续性方程 d2 127 mm
v2 v3
1502
d
2 2
例:定性作水头线
总水头线
总水头线 测压管水头线
p
测压管水头线
p
总水头线
测压管水头线 p
p
总水头线 测压管水头线
气体的伯努利方程
1.气体的伯努利方程
(1)用绝对压强(m)
只有重力 gdz
不可压缩恒定流
1
dp
d
p
dux dx duy dy duz dz
dt
dt
dt
d
ux2
u
2 y
2
u
2 z
d
u2 2
Xdx
Ydy
Zdz
1
p x
dx
p y
dy
p z
dz
dux dx duy dy duz dz
dt
dt
dt
积分
gdz
d
p
d
u2 2
0
gz p u2 c
2
2
v2 294 0.6 284.2
2
5m b a 0m