芯片制造流程
集成电路制造的五个步骤

集成电路制造的五个步骤集成电路(IC)制造是一项复杂而精密的过程,通常包括以下五个主要步骤:设计、掩膜制造、晶圆制造、芯片加工,以及封装测试。
每个步骤都至关重要,任何一个环节的问题都可能导致整个生产过程的失败。
第一步:设计集成电路的设计是制造过程中最关键的一步。
设计人员使用计算机辅助设计软件(CAD)来创建电路图和布局,以确定电路中各个元件的位置和连接方式。
这一步骤要求设计人员具备深厚的电子学知识和丰富的工程经验。
第二步:掩膜制造在掩膜制造过程中,设计人员根据之前的设计图纸,使用光刻技术将电路图案镀在透明的掩膜玻璃上。
这一过程类似于摄影,在类似相纸的底片上通过光线和化学药液将图像显影出来。
掩膜制造的质量直接影响到后续步骤的成功。
第三步:晶圆制造在晶圆制造过程中,硅片(晶圆)通过化学腐蚀等工艺被加工成平整的表面以及所需的晶格结构。
晶圆通常由高纯度的硅材料制成,然后进行薄化和抛光,以实现更高的电子器件集成度和可靠性。
第四步:芯片加工在芯片加工过程中,晶圆被分割成多个单个的芯片。
这一过程通常包括光刻、薄膜沉积、离子注入、化学蚀刻等工艺步骤。
通过这些工艺步骤,电路图案被转移到晶圆上,并形成电子元件的结构。
各个元件通过金属连接线进行连接,形成功能完整的集成电路芯片。
第五步:封装测试在封装测试中,芯片被封装在塑料或陶瓷封装中,并通过焊接连接到外部引脚。
封装后的芯片被送往测试环节,通过电性能测试等一系列检测来验证产品质量。
这一步骤的目的是确保芯片的性能和可靠性符合设计要求。
需要注意的是,以上仅为集成电路制造的基本步骤,实际生产过程可能因产品类型和制造流程的不同而有所差异。
此外,制造过程中质量控制和设备维护也是至关重要的补充步骤,以确保产品的一致性和可持续性。
芯片制作的7个流程

芯片制作的7个流程芯片制作是一项复杂而精细的过程,通常包括以下七个主要流程:设计、掩膜制作、晶圆制作、晶圆加工、探针测试、封装测试和封装。
1.设计芯片设计是芯片制作的第一步。
设计师利用计算机辅助设计(CAD)软件来绘制芯片的电路图,包括电子器件构造、连接方式和工作原理等。
设计师还需要考虑功耗、性能要求和芯片尺寸等因素,以确保设计的芯片能够满足特定的应用需求。
2.掩膜制作掩膜制作是将芯片设计转化为实际制造的重要步骤。
在这一步骤中,设计师将芯片设计转换为掩膜图案,并使用光刻技术将掩膜图案复制到光刻胶上。
然后,通过光刻和腐蚀等过程,在硅片上创建出掩膜所需要的结构和电路。
3.晶圆制作晶圆制作是在硅片上形成芯片的过程。
这个过程通常包括选择适当的硅片和清洁表面,以及在晶片上应用氧化层等。
晶圆制作还涉及将掩膜图案沉积到晶圆上,生成所需的导电或绝缘材料。
4.晶圆加工晶圆加工是通过使用化学腐蚀、离子注入、物理气相沉积和化学气相沉积等技术,将晶圆上的材料进行加工的过程。
在晶圆加工过程中,可以通过控制加工参数和选择不同的材料,来实现芯片中所需的电路和结构。
5.探针测试探针测试是在晶圆上进行电气测试的过程。
在这个过程中,使用探针接触芯片表面上的电路,并将电压或电流应用到芯片上,以测试其电气性能和功能。
探针测试可以帮助检测芯片制造过程中可能出现的错误和缺陷,并进行必要的修复和调整。
6.封装测试封装测试是将芯片封装为最终产品后进行的一系列测试。
在封装测试中,芯片被安装在封装中,并连接到测试设备进行电气测试。
封装测试可以确保芯片在实际使用中能够正常工作,并符合性能和可靠性要求。
7.封装封装是将芯片封装到外部保护层中,以确保其在使用和环境中的可靠性和耐久性。
在封装过程中,芯片被放置在封装底座上,并用封装材料进行覆盖和固定。
封装材料可以提供保护、散热和连接芯片与其他电路的功能。
芯片制作是一个复杂而精细的过程,需要高度的技术和精确的控制。
芯片制造流程

芯片制造流程
芯片是将不同的原材料经过精密技术和加工,制备出特定功能的一种微型集成电路产品。
芯片是现代电子信息技术的重要基础,在电子设备的设计、制造、分析和应用上起着
至关重要的作用。
芯片制造是一种精密的数控加工工艺,其中基本步骤多达几十个,主要包括材料准备
成形、芯片测试、结构封装和芯片测试等。
下面将详细介绍芯片制造流程。
首先,材料准备成形阶段,主要是确定芯片原料,如微细晶圆、铟金属、抗潮复合材
料等,准备铟金属成型工艺来满足芯片尺寸的要求,精加工表面的形状、开关电脑的形状,以及抗震、耐振等芯片的结构要求等。
其次,芯片装配和测试,把精加工后的芯片放入芯片装配工装上,将其安装在芯片封
装模板上,然后完成测试工序,确认芯片是否符合供应商的要求,及时发现芯片工作存在
问题,及时处理,确保制造过程中质量可控。
结构封装方面,一般采用由合金带或薄带绕制成形封装,将芯片与母卡电路良服务,
确保芯片的特性及工作的稳定性。
最后是芯片的全面测试,根据芯片的功能、特性以及可靠性需求等定义测试项目,采
用计算机模拟及仪器检测监控测试,全面确认芯片性能及芯片制造工艺质量,以确保芯片
优良的性能和稳定的质量。
芯片制造要求高精度,更佳审慎,质量要求高,因此必须严格遵守技术制程标准,不
断改进预防措施,完善质量监控程序,努力提高芯片的整体性能、可靠性和长期可用性。
半导体制造流程及生产工艺流程

半导体制造流程及生产工艺流程半导体是一种电子材料,具有可变电阻和电子传导性的特性,是现代电子器件的基础。
半导体的制造流程分为两个主要阶段:前端工艺(制造芯片)和后端工艺(封装)。
前端工艺负责在硅片上制造原始的电子元件,而后端工艺则将芯片封装为最终的电子器件。
下面是半导体制造流程及封装的主要工艺流程:前端工艺(制造芯片):1.晶片设计:半导体芯片的设计人员根据特定应用的需求,在计算机辅助设计(CAD)软件中进行晶片设计,包括电路结构、布局和路线规划。
2.掩膜制作:根据芯片设计,使用光刻技术将电路结构图转化为光刻掩膜。
掩膜通过特殊化学处理制作成玻璃或石英板。
3.芯片切割:将晶圆切割成单个的芯片,通常使用钻孔机或锯片切割。
4.清洗和化学机械抛光(CMP):芯片表面进行化学清洗,以去除表面杂质和污染物。
然后使用CMP技术平整芯片表面,以消除切割痕迹。
5.纳米技术:在芯片表面制造纳米结构,如纳米线或纳米点。
6.沉积:通过化学气相沉积或物理气相沉积,将不同材料层沉积在芯片表面,如金属、绝缘体或半导体层。
7.重复沉积和刻蚀:通过多次沉积和刻蚀的循环,制造多层电路元件。
8.清洗和干燥:在制造过程的各个阶段,对芯片进行清洗和干燥处理,以去除残留的化学物质。
9.磊晶:通过化学气相沉积,制造晶圆上的单晶层,通常为外延层。
10.接触制作:通过光刻和金属沉积技术,在芯片表面创建电阻或连接电路。
11.温度处理:在高温下对芯片进行退火和焙烧,以改善电子器件的性能。
12.筛选和测试:对芯片进行电学和物理测试,以确认是否符合规格。
后端工艺(封装):1.芯片粘接:将芯片粘接在支架上,通常使用导电粘合剂。
2.导线焊接:使用焊锡或焊金线将芯片上的引脚和触点连接到封装支架上的焊盘。
3.封装材料:将芯片用封装材料进行保护和隔离。
常见的封装材料有塑料、陶瓷和金属。
4.引脚连接:在封装中添加引脚,以便在电子设备中连接芯片。
5.印刷和测量:在封装上印刷标识和芯片参数,然后测量并确认封装后的器件性能。
芯片制造工艺流程解

芯片制造工艺流程解芯片制造工艺是指将硅片或其他基材上的电子器件制作工艺。
芯片是现代电子设备的核心部件,无论是手机、电脑还是其他电子产品,都需要芯片来运行。
芯片制造工艺流程是一个非常复杂的过程,包括晶圆制备、光刻、离子注入、蚀刻、清洗、测试等多个环节。
下面我们将详细介绍芯片制造工艺的流程。
1. 晶圆制备芯片制造的第一步是晶圆制备。
晶圆是指将硅单晶材料切割成薄片,然后进行多道工序的加工制备成圆形的硅片。
晶圆通常是通过切割硅单晶材料得到的,然后经过化学机械抛光等工艺处理,最终得到表面光洁度高、平整度好的硅片。
2. 光刻光刻是芯片制造工艺中非常重要的一步。
光刻技术是利用光刻胶和光刻模板将芯片上的图形转移到光刻胶上,然后通过蚀刻将图形转移到芯片上。
光刻技术的精度和稳定性对芯片的性能有很大影响,因此在芯片制造工艺中占据着非常重要的地位。
3. 离子注入离子注入是将芯片表面注入不同的杂质原子,以改变芯片的导电性能。
离子注入可以通过控制注入深度和注入浓度来改变芯片的电性能,从而实现不同的功能。
4. 蚀刻蚀刻是将芯片上不需要的部分去除,以形成所需的图形和结构。
蚀刻通常使用化学蚀刻或物理蚀刻的方法,通过控制蚀刻液的成分和浓度,以及蚀刻时间和温度等参数来实现对芯片的加工。
5. 清洗清洗是芯片制造工艺中非常重要的一环。
在芯片制造过程中,会产生大量的杂质和污染物,如果不及时清洗,会严重影响芯片的性能和稳定性。
因此,清洗工艺在芯片制造中占据着非常重要的地位。
6. 测试测试是芯片制造工艺中的最后一步。
通过对芯片的电性能、稳定性等进行测试,以确保芯片的质量和性能符合要求。
测试工艺通常包括静态测试和动态测试,通过对芯片进行不同条件下的测试,来评估芯片的性能和可靠性。
总结芯片制造工艺流程是一个非常复杂的过程,包括晶圆制备、光刻、离子注入、蚀刻、清洗、测试等多个环节。
每一个环节都需要精密的设备和严格的工艺控制,以确保芯片的质量和性能。
芯片制作的7个流程

芯片制作的7个流程一、设计芯片制作的第一个流程是设计。
设计师根据芯片的功能需求和规格要求,进行电路设计和布局设计。
电路设计包括选择合适的逻辑门、电源电压、时钟频率等,以及设计电路的连接关系和逻辑功能;布局设计则是将电路设计的各个模块进行布局排列,以便后续的加工和制造。
二、掩膜制作掩膜制作是芯片制作过程中的关键步骤。
掩膜是用于制造芯片的模板,通过光刻技术将电路设计转移到芯片基片上。
首先,设计师将电路设计转化为掩膜图形,然后通过光刻机将掩膜图形转移到光刻胶上,并进行曝光和显影等步骤,最终得到一张包含电路图形的掩膜。
三、芯片制造芯片制造是将掩膜上的电路图形转移到芯片基片上的过程。
首先,将掩膜对准芯片基片,然后通过光刻机将电路图形转移到光刻胶上。
接着,通过蚀刻、沉积、刻蚀等工艺步骤,将电路图形转移到芯片基片上,并形成各个层次的电路结构。
最后,进行清洗和检验等步骤,确保芯片质量符合要求。
四、封装测试芯片制造完成后,需要进行封装和测试。
封装是将芯片连接到封装材料中,以便插入电路板或其他设备中使用。
测试是对封装后的芯片进行功能和性能的测试,确保芯片能够正常工作。
封装和测试是芯片制造中的最后一道工序,也是保证芯片质量的关键环节。
五、质量控制在芯片制作过程中,质量控制是非常重要的。
质量控制包括对原材料的检验、各个制造环节的监控以及最终产品的检测和验证。
通过建立严格的质量控制体系,可以确保芯片的质量稳定可靠。
六、性能调试芯片制作完成后,还需要进行性能调试。
性能调试是对芯片进行功能验证和性能优化的过程。
通过连接芯片到测试设备,对芯片进行各种测试和验证,找出可能存在的问题并进行优化和修复,以确保芯片能够满足设计要求。
七、量产经过设计、制造、封装、测试和调试等流程后,如果芯片的性能和质量都符合要求,就可以进行量产。
量产是将芯片大规模制造的过程,包括原材料的采购、设备的配置和生产线的调试等。
量产后的芯片可以广泛应用于各个领域,如电子产品、通信设备、汽车等。
集成电路制造工艺流程

集成电路制造工艺流程概述集成电路(Integrated Circuit, IC)是由几千个甚至是数十亿个离散电子元件,如晶体管、电容、电阻等构成的电路,在特定的芯片上进行集成制造。
IC制造工艺流程主要包括晶圆制备、晶圆加工、芯片制造、封装测试等几个环节,是一个非常严谨、复杂的过程。
晶圆制备晶圆制备是IC制造的第一步。
晶圆是用硅单晶或其他半导体材料制成的薄片,作为IC芯片的基础材料。
以下是晶圆制备的流程:1.单晶生长:使用气态物质的沉积和结晶方法,使单晶硅的原料在加热、冷却的过程中逐渐成为一整块的单晶硅材料。
2.切片:将生长好的单晶硅棒利用切割机械进行切片,制成形状规整的圆片,称为晶圆。
3.抛光:将晶圆表面进行机械研磨和高温氧化处理,使表面达到极高的光滑度。
4.清洗:用去离子水等高纯度溶剂进行清洗,清除晶圆表面的污染物,确保晶圆的纯度和光洁度。
晶圆加工晶圆加工是IC制造的关键环节之一,也是最为复杂的过程。
在晶圆加工过程中,需要通过一系列的步骤将原始的晶圆加工为完成的IC芯片。
以下为晶圆加工的流程:1.光刻:通过光刻机将芯片图案转移到光刻胶上,然后使用酸洗、去除光刻胶,暴露出芯片的表面。
2.蚀刻:利用化学蚀刻技术,在IC芯片表面形成电路图案。
3.离子注入:向芯片进行掺杂,改变材料的电学性质。
4.热处理:对芯片进行高温、低温处理,使其达到设计要求的电学性能。
5.金属沉积:在芯片表面沉积一层金属,用于连接芯片各个元件。
芯片制造芯片制造是最为核心的IC制造环节,主要将晶圆加工后的芯片进行裁剪、测试、绑定等操作,使其具备实际的电学性能。
以下是IC芯片制造的流程:1.芯片测试:对芯片的性能进行测试,找出不合格的芯片并予以淘汰。
2.芯片切割:将晶圆上的芯片根据需求进行切割。
3.接线:在芯片表面安装金线,用于连接各个器件。
4.包装:将芯片放入封装盒中,并与引线焊接,形成成品IC芯片。
封装测试封装测试是IC制造的最后一步。
半导体制造流程解析详细介绍半导体芯片的制造过程

半导体制造流程解析详细介绍半导体芯片的制造过程半导体制造流程解析:详细介绍半导体芯片的制造过程半导体芯片是现代电子产品中的关键部件,它承载着处理信息的功能。
半导体制造流程的高度复杂性使得其成为一门专门的学科。
本文将详细介绍半导体芯片的制造过程,帮助读者更好地理解半导体工业的基本原理。
第一步:晶圆制备半导体芯片的制造过程始于晶圆的制备。
晶圆是由最纯净的硅材料制成的圆盘,其表面需要经过一系列的化学处理,以达到良好的电学性能。
首先,硅材料经过融解,在高温环境中通过拉伸或浇铸的方式形成晶体。
然后,晶体通过切割和研磨的步骤,得到晶圆的形态。
制备好的晶圆表面必须经过精细的抛光和清洗,以确保表面的平整度和纯净度。
第二步:芯片制作在晶圆上制作芯片是半导体制造流程的核心环节。
主要步骤如下:1. 氧化层的形成:将晶圆放入高温气体中,形成一层氧化硅的绝缘层。
这一步骤非常重要,因为氧化层可以提供电学隔离和保护晶体。
2. 光刻技术:光刻技术通过使用光掩膜和光敏胶,将光线照射在晶圆上,形成芯片上的图形。
光刻技术的精细度决定了芯片的性能和功能。
3. 电子束曝光:电子束曝光是一种类似于光刻的制造方法,但使用电子束来照射光敏材料。
相较于光刻,电子束曝光可以制造更小的结构和更高的分辨率。
4. 刻蚀和沉积:在芯片图形上涂覆一层化学物质,通过化学反应刻蚀或沉积物质,来改变芯片上的结构和性质。
这一步骤可以重复多次,以实现多层次的结构形成。
5. 掺杂和扩散:通过在芯片表面掺入其他元素,使得芯片具有特定的电学行为。
扩散过程会在半导体材料中形成浓度梯度,从而形成不同的电子和空穴浓度。
6. 金属连接:芯片上的电路需要通过金属线进行连接。
金属连接通常使用蒸发、溅射或电镀的方式在芯片上形成金属线。
第三步:封装和测试芯片制作完毕后,需要进行封装和测试。
封装是将芯片放置在一个保护性的外壳中,以保护芯片并方便其与其他电路的连接。
封装可以采用塑料封装、金属封装或陶瓷封装等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
裸芯片制造流程晶圆制造工序(序)半导体的产品很多,应用的场合非常广泛,图一是常见的几种半导体组件外型。
半导体组件一般是以接脚形式或外型来划分类别,图一中不同类别的英文缩写名称原文为PDID:Plastic Dual Inline PackageSOP:Small Outline PackageSOJ:Small Outline J-Lead PackagePLCC:Plastic Leaded Chip CarrierQFP:Quad Flat PackagePGA:Pin Grid ArrayBGA:Ball Grid Array虽然半导体组件的外型种类很多,在电路板上常用的组装方式有二种,一种是插入电路板的焊孔或脚座,如PDIP、PGA,另一种是贴附在电路板表面的焊垫上,如SOP、SOJ、PLCC、QFP、BGA。
从半导体组件的外观,只看到从包覆的胶体或陶瓷中伸出的接脚,而半导体组件真正的核心,是包覆在胶体或陶瓷内一片非常小的芯片,透过伸出的接脚与外部做信息传输。
图二是一片EPROM组件,从上方的玻璃窗可看到内部的芯片,图三是以显微镜将内部的芯片放大,可以看到芯片以多条焊线连接四周的接脚,这些接脚向外延伸并穿出胶体,成为芯片与外界通讯的道路。
请注意图三中有一条焊线从中断裂,那是使用不当引发过电流而烧毁,致使芯片失去功能,这也是一般芯片遭到损毁而失效的原因之一。
图四是常见的LED,也就是发光二极管,其内部也是一颗芯片,图五是以显微镜正视LED的顶端,可从透明的胶体中隐约的看到一片方型的芯片及一条金色的焊线,若以LED二支接脚的极性来做分别,芯片是贴附在负极的脚上,经由焊线连接正极的脚。
当LED通过正向电流时,芯片会发光而使LED发亮,如图六所示。
半导体组件的制作分成两段的制造程序,前一段是先制造组件的核心─芯片,称为晶圆制造;后一段是将晶片加以封装成最后产品,称为IC封装制程,又可细分成晶圆切割、黏晶、焊线、封胶、印字、剪切成型等加工步骤,在本章节中将简介这两段的制造程序。
须经过下列主要制程才能制造出一片可用的芯片,以下是各制程的介绍:(1)长晶(CRYSTAL GROWTH):长晶是从硅沙中(二氧化硅)提炼成单晶硅,制造过程是将硅石(Silica)或硅酸盐 (Silicate) 如同冶金一样,放入炉中熔解提炼,形成冶金级硅。
冶金级硅中尚含有杂质,接下来用分馏及还原的方法将其纯化,形成电子级硅。
虽然电子级硅所含的硅的纯度很高,可达99.9999 99999 %,但是结晶方式杂乱,又称为多晶硅,必需重排成单晶结构,因此将电子级硅置入坩埚内加温融化,先将温度降低至设定点,再以一块单晶硅为晶种,置入坩埚内,让融化的硅沾附在晶种上,再将晶种以边拉边旋转方式抽离坩埚,而沾附在晶种上的硅亦随之冷凝,形成与晶种相同排列的结晶。
随着晶种的旋转上升,沾附的硅愈多,并且被拉引成表面粗糙的圆柱状结晶棒。
拉引及旋转的速度愈慢则沾附的硅结晶时间愈久,结晶棒的直径愈大,反之则愈小。
(2)切片(SLICING):从坩埚中拉出的晶柱,表面并不平整,经过工业级钻石磨具的加工,磨成平滑的圆柱,并切除头尾两端锥状段,形成标准的圆柱,被切除或磨削的部份则回收重新冶炼。
接着以以高硬度锯片或线锯将圆柱切成片状的晶圆(Wafer) (摘自中德公司目录)。
(3)边缘研磨(EDGE-GRINDING):将片状晶圆的圆周边缘以磨具研磨成光滑的圆弧形,如此可:(1)防止边缘崩裂,(2)防止在后续的制程中产生热应力集中,(3)增加未来制程中铺设光阻层或磊晶层的平坦度。
(4)研磨(LAPPING)与蚀刻(ETCHING):由于受过机械的切削,晶圚表面粗糙,凹凸不平,及沾附切屑或污渍,因此先以化学溶液(HF/HNO3)蚀刻(Etching),去除部份切削痕迹,再经去离子纯水冲洗吹干后,进行表面研磨抛光,使晶圆像镜面样平滑,以利后续制程。
研磨抛光是机械与化学加工同时进行,机械加工是将晶圆放置在研磨机内,将加工面压贴在研磨垫(Polishing Pad)磨擦,并同时滴入具腐蚀性的化学溶剂当研磨液,让磨削与腐蚀同时产生。
研磨后的晶圆需用化学溶剂清除表面残留的金属碎屑或有机杂质,再以去离子纯水冲洗吹干,准备进入植入电路制程。
(5)退火(ANNEALING):将芯片在严格控制的条件下退火,以使芯片的阻质稳定。
(6)抛光(POLISHING):芯片小心翼翼地抛光,使芯片表面光滑与平坦,以利将来再加工。
(7)洗净(CLEANING):以多步骤的高度无污染洗净程序-包含各种高度洁净的清洗液与超音动处理-除去芯片表面的所有污染物质,使芯片达到可进行芯片加工的状态。
(8)检验(INSPECTION):芯片在无尘环境中进行严格的检查,包含表面的洁净度、平坦度以及各项规格以确保品质符合顾客的要求。
(9)包装(PACKING):通过检验的芯片以特殊设计的容器包装,使芯片维持无尘及洁净的状态,该容器并确保芯片固定于其中,以预防搬运过程中发生的振动使芯片受损。
经过晶圆制造的步骤后,此时晶圆还没任何的功能,所以必须经过集成电路制程,才可算是一片可用的晶圆。
以下是集成电路制程的流程图:磊晶微影氧化扩散蚀刻金属联机★磊晶(Epitoxy)指基板以外依组件制程需要沉积的薄膜材料,其原理可分为:(1) 液相磊晶 (Liquid Phase Epitoxy,LPE)LPE 的晶体成长是在基板上将熔融态的液体材料直接和芯片接触而沉积晶膜,特别适用于化合物半导体组件,尤其是发光组件。
(2) 气相磊晶 (Vapor Phase Epitoxy,VPE)VPE 的原理是让磊晶原材料以气体或电浆粒子的形式传输至芯片表面,这些粒子在失去部份的动能后被芯片表面晶格吸附 (Adsorb),通常芯片会以热的形式提供能量给粒子,使其游移至晶格位置而凝结 (Condensation)。
在此同时粒子和晶格表面原子因吸收热能而脱离芯片表面称之为解离 (Desorb),因此 VPE 的程序其实是粒子的吸附和解离两种作用的动态平衡结果,如下图所示。
VPE 依反应机构可以分成(a) 化学气相沉积 (Chemical Vapor Deposition,CVD) 和(b)_物理气相沉积 (Physical Vapor Deposition,PVD) 两种技术。
CVD 大致是应用在半导体晶膜和氧化层的成长。
PVD 主要适用于金属接点联机的沉积。
(3) 分子束磊晶 (Molecular Beam Epitoxy,MBE)MBE 是近年来最热门的磊晶技术,无论是 III-V、II-VI 族化合物半导体、Si 或者 SixGe1-x 等材料的薄膜特性,为所有磊晶技术中最佳者。
MBE 的原理基本上和高温蒸镀法相同,操作压力保持在超真空 (Ultra High Vacuum,UHV) 约 10-10 Toor 以下,因此芯片的装载必须经过阀门的控制来维持其真空度。
★微影(Lithography)微影 (Lithography) 技术是将光罩 (Mask) 上的主要图案先转移至感光材料上,利用光线透过光罩照射在感光材料上,再以溶剂浸泡将感光材料受光照射到的部份加以溶解或保留,如此所形成的光阻图案会和光罩完全相同或呈互补。
由于微影制程的环境是采用黄光照明而非一般摄影暗房的红光,所以这一部份的制程常被简称为"黄光"。
为了加强光阻覆盖的特性,使得图转移有更好的精确度与可*度,整个微影制程包含了以下七个细部动作。
(1) 表面清洗:由于芯片表面通常都含有氧化物、杂质、油脂和水分子,因此在进行光阻覆盖之前,必须将它先利用化学溶剂 (甲醇或丙酮) 去除杂质和油脂,再以氢氟酸蚀刻芯片表面的氧化物,经过去离子纯水冲洗后,置于加温的环境下数分钟,以便将这些水分子从芯片表面蒸发,而此步骤则称为去水烘烤 (Dehydration Bake),一般去水烘烤的温度是设定在 100~200 oC 之间进行。
(2)涂底 (Priming):用来增加光阻与芯片表面的附着力,它是在经表面清洗后的芯片表面上涂上一层化合物,英文全名为"Hexamethyldisilizane"(HMDS)。
HMDS 涂布的方式主要有两种,一是以旋转涂盖 (Spin Coating),一是以气相涂盖 (Vapor Coating)。
前者是将HMDS 以液态的型式,滴洒在高速旋转的芯片表面,利用旋转时的离心力,促使 HMDS 均匀涂满整个芯片表面;至于后者则是将 HMDS 以气态的型式,输入放有芯片的容器中,然后喷洒在芯片表面完成 HMDS 的涂布。
(3)光阻覆盖:光阻涂布也是以旋转涂盖或气相涂盖两种的方式来进行,亦即将光阻滴洒在高速旋转的芯片表面,利用旋转时的离心力作用,促使光阻往芯片外围移动,最后形成一层厚度均匀的光阻层;或者是以气相的型式均匀地喷洒在芯片的表面。
(4)软烤 (Soft Bake):软烤也称为曝光前预烤 (Pre-Exposure Bake) 在曝光之前,芯片上的光阻必须先经过烘烤,以便将光阻层中的溶剂去除,使光阻由原先的液态转变成固态的薄膜,并使光阻层对芯片表面的附着力增强。
(5)曝光:利用光源透过光罩图案照射在光阻上,以执行图案的转移。
(6)显影:将曝光后的光阻层以显影剂将光阻层所转移的图案显示出来。
(7)硬烤:将显影制程后光阻内所残余的溶剂加热蒸发而减到最低,其目的也是为了加强光阻的附着力,以便利后续的制程。
★氧化(Oxidation)氧化(Oxidation)是半导体电路制作上的基本热制程。
氧化制程的目的是在芯片表面形成一层氧化层,以保护芯片免于受到化学作用和做为介电层(绝缘材料)。
★扩散(Diffusion)扩散(Diffusion)是半导体电路制作上的基本热制程。
其目的是藉由外来的杂质,使原本单纯的半导体材料的键结型态和能隙产生变化,进而改变它的导电性。
★蚀刻(Etching)泛指将材料使用化学或物理方法移除的意思,以化学方法进行者称之为湿式蚀刻(Wet Etching),是将芯片浸没于化学溶液中,因为化学溶液与芯片表面产生氧化还原作用,而造成表面原子被逐层移除;以物理方法进行蚀刻程序称之为干式蚀刻 (Dry Etching),主要是利用电浆离子来轰击芯片表面原子或是电浆离子与表面原子产生化合反应来达到移除薄膜的目的。
★金属联机金属联机制程是藉由在硅晶块 (Die) 上形成薄金属膜图案,而组成半导体组件间的电性的连接。
以奥姆式接触 (Ohmic Contact) 而言,金属直接和硅表面接触,且在硅表面形成一金属 / 硅的界面,当金属沉积覆盖整个晶圆表面时,藉由蚀刻去掉不需存留的金属,形成组件间彼此的连接。