图解芯片制作工艺流程图ppt课件
图解芯片制作工艺流程图

33
34
放置晶圆的黑盒子
35
36
单个内核:内核级别。从晶圆上切割下来的单个内核,这 里展示的是Core i7的核心。
37
封装:封装级别,20毫米/1英寸。衬底(基片)、内核、散 热片堆叠在一起,就形成了我们看到的处理器的样子。衬 底(绿色)相当于一个底座,并为处理器内核提供电气与机 械界面,便于与PC系统的其它部分交互。散热片(银色)就 是负责内核散热的了。
的硅,学名电
子级硅(EGS),
平均每一百万
个硅原子中最
多只有一个杂
质原子。此图
展示了是如何
通过硅净化熔
炼得到大晶体
的,最后得到
的就是硅锭
(Ingot)。
8
单晶硅锭:整体基本呈圆柱形,重 约100千克,硅纯度99.9999%。
9
10
处 理 晶 圆 的 机 器
11
硅锭切割:横向切割成圆形的单个硅片,也就是我们常说 的晶圆(Wafer)。顺便说,这下知道为什么晶圆都是圆形 的了吧?
25
铜层:电镀完成后,铜离子沉积在晶圆表面,形 成一个薄薄的铜层。
26
抛光:将多余的铜抛光掉,也就是磨光晶圆表面。
27
金属层:晶体管级别,六个晶体管的组合,大约500纳米。在不同晶 体管之间形成复合互连金属层,具体布局取决于相应处理器所需要的 不同功能性。芯片表面看起来异常平滑,但事实上可能包含20多层复 杂的电路,放大之后可以看到极其复杂的电路网络,形如未来派的多 层高速公路系统
20
光刻胶:再次浇上光刻胶(蓝色部分),然后光刻, 并洗掉曝光的部分,剩下的光刻胶还是用来保护 不会离子注入的那部分材料。
21
离子注入(Ion Implantation):在真空系统中,用经过加 速的、要掺杂的原子的离子照射(注入)固体材料,从而在 被注入的区域形成特殊的注入层,并改变这些区域的硅的 导电性。经过电场加速后,注入的离子流的速度可以超过 30万千米每小时。
集成电路制造工艺课件——芯片制造流程课件PPT

• 反应离子刻蚀(Reactive Ion Etching,简称为 RIE):通过活性离子对衬底的物理轰击和化学 反应双重作用刻蚀。具有溅射刻蚀和等离子 刻蚀两者的优点,同时兼有各向异性和选择 性好的优点。目前,RIE已成为VLSI工艺中应 用最广泛的主流刻蚀技术
N+
P+
有源区
集成电路的内部单元(俯视图)
晶体管光学照片
8mm低噪声放大器版图
晶体管SEM照片
沟道长度为0.15微米的晶体管 栅长为90纳米的栅图形照片
100 m 头发丝粗细
30m
50m 30~50m (皮肤细胞的大小)
1m 1m (晶体管的大小)
90年代生产的集成电路中晶体管大小与人 类头发丝粗细、皮肤细胞大小的比较
N沟道MOS晶体管
CMOS集成电路(互补型MOS集成电路): 目前应用最为广泛的一种集成电路,约占 集成电路总数的95%以上。
集成电路制造工艺
• 图形转换:将设计在掩膜版(类似于照相
底片)上的图形转移到半导体单晶片上
• 掺杂:根据设计的需要,将各种杂质掺杂
在需要的位置上,形成晶体管、接触等
• 制膜:制作各种材料的薄膜
杂质掺杂
• 掺杂:将需要的杂质掺入特定的半 导体区域中,以达到改变半导体电 学性质,形成PN结、电阻、欧姆接 触
行为仿真
是
综合、优化——网表
否 时序仿真
是 布局布线——版图
—设计业—
后仿真 是
Sing off
集成电路芯片设计过程框架
否
From 吉利久教授
芯片制造过程 —制造业—
芯片工艺流程

离子注入
基区扩散
发射区光刻
发射区预淀积
发射区扩散(*)
发射区低温氧化(*)
氢气处理
N+光刻(适用于P型片)
N+淀积扩散(适用P型片)
N+低温氧化(适用P型片)
氢气处理(适用P型片)
3B光刻
铝蒸发
四次光刻
氮氢合金
AL上CVD
2
氮气烘焙(适用N型片)
2
五次光刻
2
中测抽测
单项工艺-CVD(4)
玻璃的解吸
单项工艺-CVD(5)
单相工艺-离子注入(1)
单相工艺-离子注入(2)
单相工艺-离子注入(3)
单相工艺-蒸发(1)
蒸发原理示意图
单相工艺-蒸发(2)
溅射原理示意图
单相工艺-蒸发(3)
单相工艺-清洗
基础认知
衬底材料
外延层
扩散层
一次氧化
基区光刻
干氧氧化
单项工艺-光刻(6)
显影/漂洗
-将圆片进行显影/漂洗,不需要的 的光刻胶溶解到有机溶剂。
坚
膜
-硬化光刻胶。 -增加与硅片的附着性。
腐蚀
-干法腐蚀/湿法腐蚀
去胶
单项工艺-光刻(7)
光刻工艺过程
单项工艺-CVD(1)
单项工艺-CVD(2)
初级离子气体被吸收到硅片表面
单项工艺-CVD(3)
初级离子气体在硅片表面分解
2
测试系统
减薄、抛光
2 减薄和抛光部分
蒸金/银
2
背金合金
2
芯片测试
2
测试系统
N型片制造(一般)工艺流程
P型片制造(一般)工艺流程
图解芯片制造工艺流程(全图片注解,清晰明了)

图解芯片制造工艺流程(全图片注解,清晰明了)该资料简洁明了,配图生动,非常适合普通工程师、入门级工程师或行业菜鸟,帮助你了解芯片制造的基本工艺流程。
首先,在制造芯片之前,晶圆厂得先有硅晶圆材料。
从硅晶棒上切割出超薄的硅晶圆,然后就可以进行芯片制造的流程了。
1、湿洗 (用各种试剂保持硅晶圆表面没有杂质)2、光刻 (用紫外线透过蒙版照射硅晶圆, 被照到的地方就会容易被洗掉, 没被照到的地方就保持原样. 于是就可以在硅晶圆上面刻出想要的图案. 注意, 此时还没有加入杂质, 依然是一个硅晶圆. )3、离子注入 (在硅晶圆不同的位置加入不同的杂质, 不同杂质根据浓度/位置的不同就组成了场效应管.) 4.1、干蚀刻(之前用光刻出来的形状有许多其实不是我们需要的,而是为了离子注入而蚀刻的。
现在就要用等离子体把他们洗掉,或者是一些第一步光刻先不需要刻出来的结构,这一步进行蚀刻).4.2、湿蚀刻 (进一步洗掉,但是用的是试剂,所以叫湿蚀刻)——以上步骤完成后, 场效应管就已经被做出来啦,但是以上步骤一般都不止做一次, 很可能需要反反复复的做,以达到要求。
5、等离子冲洗 (用较弱的等离子束轰击整个芯片) 6、热处理,其中又分为: 6.1 快速热退火 (就是瞬间把整个片子通过大功率灯啥的照到1200摄氏度以上, 然后慢慢地冷却下来, 为了使得注入的离子能更好的被启动以及热氧化)6.2 退火 6.3 热氧化 (制造出二氧化硅, 也即场效应管的栅极(gate) ) 7、化学气相淀积(CVD),进一步精细处理表面的各种物质 8、物理气相淀积 (PVD),类似,而且可以给敏感部件加coating 9、分子束外延 (MBE) 如果需要长单晶的话就需要。
10、电镀处理 11、化学/机械表面处理 12、晶圆测试13、晶圆打磨就可以出厂封装了。
版权:本素材由用户提供并上传,仅用于学习交流;如内容侵权,请举报或联系我们删除。
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页。
图解芯片制作工艺流程..

• 铜层:电镀完成后,铜离子沉积在晶圆表面,形 成一个薄薄的铜层。
25
• 抛光:将多余的铜抛光掉,也就是磨光晶 圆表面。
26
• 金属层:晶体管级别,六个晶体管的组合,大约500纳米。在不同晶 体管之间形成复合互连金属层,具体布局取决于相应处理器所需要的 不同功能性。芯片表面看起来异常平滑,但事实上可能包含20多层复 杂的电路,放大之后可以看到极其复杂的电路网络,形如未来派的多 层高速公路系统
17
• 光刻:由此进入50-200纳米尺寸的晶体管级别。一块晶圆 上可以切割出数百个处理器,不过从这里开始把视野缩小 到其中一个上,展示如何制作晶体管等部件。晶体管相当 于开关,控制着电流的方向。现在的晶体管已经如此之小, 一个针头上就能放下大约3000万个。
18
• 溶解光刻胶:光刻过程中曝光在紫外线下的光刻 胶被溶解掉,清除后留下的图案和掩模上的一致。
39
• 零售包装:制造、测试完毕的处理器要么 批量交付给OEM厂商,要么放在包装盒里 进入零售市场。这里还是以Core i7为例。
40
32
33
核级别。从晶圆上切割下来 的单个内核,这里展示的是Core i7的核心。
36
• 封装:封装级别,20毫米/1英寸。衬底(基片)、内核、散 热片堆叠在一起,就形成了我们看到的处理器的样子。衬 底(绿色)相当于一个底座,并为处理器内核提供电气与机 械界面,便于与PC系统的其它部分交互。散热片(银色)就 是负责内核散热的了。
27
28
29
• 晶圆测试:内核级别,大约10毫米/0.5英寸。图 中是晶圆的局部,正在接受第一次功能性测试, 使用参考电路图案和每一块芯片进行对比。
30
• 晶圆切片(Slicing):晶圆级别,300毫米 /12英寸。将晶圆切割成块,每一块就是一 个处理器的内核(Die)。
芯片工艺流程ppt课件

52
中测抽测
2
测试系统
精选课件
53
减薄、抛光
2
减薄和抛光部分
精选课件
54
蒸金/银
2
精选课件
55
背金合金
2
精选课件
56
芯片测试
2
测试系统
精选课件
57
N型片制造(一般)工艺流程
精选课件
58
P型片制造(一般)工艺流程
精选课件
59
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
-匀光刻胶
精选课件
14
单项工艺-光刻(5)
前烘
-增加黏附作用 -促进有机溶剂挥发
对版
-对每个圆片必须按要求对版
匀胶
-用弧光灯将光刻版上的图案转 移到光刻胶上。
精选课件
15
单项工艺-光刻(6)
显影/漂洗
-将圆片进行显影/漂洗,不需要的 的光刻胶溶解到有机溶剂。
坚
膜
-硬化光刻胶。 -增加与硅片的附着性。
30
衬底材料
外延层
扩散层
精选课件
31
一次氧化
精选课件
32
基区光刻
精选课件
33
干氧氧化
精选课件
34
离子注入
精选课件
35
基区扩散
精选课件36Fra bibliotek发射区光刻
精选课件
37
发射区预淀积
精选课件
38
发射区扩散(*)
精选课件
39
发射区低温氧化(*)
精选课件
40
氢气处理
精选课件
41
图解芯片制作工艺流程

2
INTEL 图解芯片制作工艺流程
共九个步骤
3
4
• 沙子:硅是地壳内第二丰富的元素,而脱氧后的沙子(尤 其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的 形式存在,这也是半导体制造产业的基础。
5
6
• 硅熔炼:12 英寸/300毫米 晶圆级,下同。 通过多步净化 得到可用于半 导体制造质量 的硅,学名电 子级硅(EGS), 平均每一百万 个硅原子中最 多只有一个杂 质原子。此图 展示了是如何 通过硅净化熔 炼得到大晶体 的,最后得到 的就是硅锭 (Ingot)。
17
• 光刻:由此进入50-200纳米尺寸的晶体管级别。一块晶圆 上可以切割出数百个处理器,不过从这里开始把视野缩小 到其中一个上,展示如何制作晶体管等部件。晶体管相当 于开关,控制着电流的方向。现在的晶体管已经如此之小, 一个针头上就能放下大约3000万个。
18
• 溶解光刻胶:光刻过程中曝光在紫外线下的光刻 胶被溶解掉,清除后留下的图案和掩模上的一致。
27
28
29
• 晶圆测试:内核级别,大约10毫米/0.5英寸。图 中是晶圆的局部,正在接受第一次功能性测试, 使用参考电路图案和每一块芯片进行对比。
30
• 晶圆切片(Slicing):晶圆级别,300毫米 /12英寸。将晶圆切割成块,每一块就是一 个处理器的内核(Die)。
31
• 丢弃瑕疵内核:晶圆级别。测试过程中发 现的有瑕疵的内核被抛弃,留下完好的准 备进入下一步。
39
• 零售包装:制造、测试完毕的处理器要么 批量交付给OEM厂商,要么放在包装盒里 进入零售市场。这里还是以Core i7为例。
40
32
33
• 放置晶圆的黑盒子
图解芯片制作工艺流程PPT学习教案

光刻:由此进入50-200纳米尺寸的晶体管级别。一块晶圆 上可以切割出数百个处理器,不过从这里开始把视野缩 小到其中一个上,展示如何制作晶体管等部件。晶体管 相当于开关,控制着电流的方向。现在的晶体管已经如 此之小,一个针头上就能放下大约3000万个。
第17页/共40页
17
溶解光刻胶:光刻过程中曝光在紫外线下的光刻 胶被溶解掉,清除后留下的图案和掩模上的一致。
第18页/共40页
18
光刻胶:再次浇上光刻胶(蓝色部分),然后光刻, 并洗掉曝光的部分,剩下的光刻胶还是用来保护 不会离子注入的那部分材料。
第19页/共40页
19
离子注入(Ion Implantation):在真空系统中,用经过加 速的、要掺杂的原子的离子照射(注入)固体材料,从而在 被注入的区域形成特殊的注入层,并改变这些区域的硅 的导电性。经过电场加速后,注入的离子流的速度可以 超过30万千米每小时。
第20页/共4刻胶也被清除,而注入区域 (绿色部分)也已掺杂,注入了不 同的原子。注意这时候的绿色 和之前已经有第21所页/共4不0页 同。
21
晶体管就绪:至此,晶体管已 经基本完成。在绝缘材(品红色) 上蚀刻出三个孔洞,并填充铜, 以便和其它晶第22体页/共4管0页 互连。
第26页/共40页
26
第27页/共40页
27
第28页/共40页
28
晶圆测试:内核级别,大约10毫米/0.5英寸。图 中是晶圆的局部,正在接受第一次功能性测试, 使用参考电路图案和每一块芯片进行对比。
第29页/共40页
29
晶圆切片(Slicing):晶圆级别, 300毫米/12英寸。将晶圆切割成 块,每一块就是一个处理器的 内核(Die)。 第30页/共40页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
27
.
28
.
29
• 晶圆测试:内核级别,大约10毫米/0.5英寸。图 中是晶圆的局部,正在接受第一次功能性测试, 使用参考电路图案和每一块芯片进行对比。
.
30
• 晶圆切片(Slicing):晶 Nhomakorabea级别,300毫米
/12英寸。将晶圆切割成块,每一块就是一
个处理器的内核(Die)。
.
31
• 丢弃瑕疵内核:晶圆级别。测试过程中发
.
1
.
2
INTEL 图解芯片制作工艺流程
共九个步骤
.
3
.
4
• 沙子:硅是地壳内第二丰富的元素,而脱氧后的沙子(尤 其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的 形式存在,这也是半导体制造产业的基础。
.
5
.
6
• 硅熔炼:12 英寸/300毫米 晶圆级,下同。 通过多步净化 得到可用于半 导体制造质量 的硅,学名电 子级硅(EGS), 平均每一百万 个硅原子中最 多只有一个杂 质原子。此图 展示了是如何 通过硅净化熔 炼得到大晶体 的,最后得到 的就是硅锭 (Ingot)。
.
37
• 处理器:至此就得到完整的处理器了(这里是一颗 Core i7)。这种在世界上最干净的房间里制造出来 的最复杂的产品实际上是经过数百个步骤得来的, 这里只是展示了其中的一些关键步骤。
.
38
• 等级测试:最后一次测试,可以鉴别出每一颗处理器的关 键特性,比如最高频率、功耗、发热量等,并决定处理器 的等级,比如适合做成最高端的Core i7-975 Extreme,还 是低端型号Core i7-920。
.
7
单晶硅锭:整体基本呈圆柱形,重
约100千克,硅纯度99.9999%。
.
8
.
9
处 理 晶 圆 的 机 器
.
10
• 硅锭切割:横向切割成圆形的单个硅片,也就是我们常说 的晶圆(Wafer)。顺便说,这下知道为什么晶圆都是圆形 的了吧?
.
11
• 晶圆:切割出的晶圆经过抛光后变得几乎完美无瑕,表面甚至可以当 镜子。事实上,Intel自己并不生产这种晶圆,而是从第三方半导体企 业那里直接购买成品,然后利用自己的生产线进一步加工,比如现在 主流的45nm HKMG(高K金属栅极)。值得一提的是,Intel公司创立之 初使用的晶圆尺寸只有2英寸/50毫米。
.
39
• 零售包装:制造、测试完毕的处理器要么
批量交付给OEM厂商,要么放在包装盒里
进入零售市场。这里还是以Core i7为例。
.
40
汇报完毕
谢谢指导!
.
.
12
•芯 片 加 工 无 尘 车 间
.
13
.
14
• 光刻胶(Photo Resist):图中蓝色部分就是在晶圆旋转过 程中浇上去的光刻胶液体,类似制作传统胶片的那种。晶 圆旋转可以让光刻胶铺的非常薄、非常平。
.
15
.
16
• 光刻:光刻胶层随后透过掩模(Mask)被曝光在紫外线(UV)之下,变得 可溶,期间发生的化学反应类似按下机械相机快门那一刻胶片的变化。 掩模上印着预先设计好的电路图案,紫外线透过它照在光刻胶层上, 就会形成微处理器的每一层电路图案。一般来说,在晶圆上得到的电 路图案是掩模上图案的四分之一。
.
24
• 铜层:电镀完成后,铜离子沉积在晶圆表面,形 成一个薄薄的铜层。
.
25
• 抛光:将多余的铜抛光掉,也就是磨光晶 圆表面。
.
26
• 金属层:晶体管级别,六个晶体管的组合,大约500纳米。在不同晶 体管之间形成复合互连金属层,具体布局取决于相应处理器所需要的 不同功能性。芯片表面看起来异常平滑,但事实上可能包含20多层复 杂的电路,放大之后可以看到极其复杂的电路网络,形如未来派的多 层高速公路系统
现的有瑕疵的内核被抛弃,留下完好的准
备进入下一步。
.
32
.
33
• 放置晶圆的黑盒子
.
34
.
35
• 单个内核:内核级别。从晶圆上切割下来 的单个内核,这里展示的是Core i7的核心。
.
36
• 封装:封装级别,20毫米/1英寸。衬底(基片)、内核、散 热片堆叠在一起,就形成了我们看到的处理器的样子。衬 底(绿色)相当于一个底座,并为处理器内核提供电气与机 械界面,便于与PC系统的其它部分交互。散热片(银色)就 是负责内核散热的了。
.
17
• 光刻:由此进入50-200纳米尺寸的晶体管级别。一块晶圆
上可以切割出数百个处理器,不过从这里开始把视野缩小
到其中一个上,展示如何制作晶体管等部件。晶体管相当
于开关,控制着电流的方向。现在的晶体管已经如此之小,
一个针头上就能放下大约3000万个。
.
18
• 溶解光刻胶:光刻过程中曝光在紫外线下的光刻 胶被溶解掉,清除后留下的图案和掩模上的一致。
.
19
• 光刻胶:再次浇上光刻胶(蓝色部分),然后光刻, 并洗掉曝光的部分,剩下的光刻胶还是用来保护 不会离子注入的那部分材料。
.
20
• 离子注入(Ion Implantation):在真空系统中,用经过加 速的、要掺杂的原子的离子照射(注入)固体材料,从而在 被注入的区域形成特殊的注入层,并改变这些区域的硅的 导电性。经过电场加速后,注入的离子流的速度可以超过 30万千米每小时。
.
21
• 清除光刻胶:离子注入完成后,光刻胶也 被清除,而注入区域(绿色部分)也已掺杂, 注入了不同的原子。注意这时候的绿色和 之前已经有所不同。
.
22
• 晶体管就绪:至此,晶体管已经基本完成。 在绝缘材(品红色)上蚀刻出三个孔洞,并填 充铜,以便和其它晶体管互连。
.
23
• 电镀:在晶圆上电镀一层硫酸铜,将铜离子沉淀 到晶体管上。铜离子会从正极(阳极)走向负极(阴 极)。