模式识别-聚类分析
模式识别聚类分析

x1 ,
(
( x1
x2旳值。可用下列递推
k ) xi ) /( N1(k ) 1)
x(k 1) 2
(k)
x2
(k)
(x2
xi
)
/(
N
(k 2
)
1)
x1 (k ) , x2 (k )是第k步对分时两类均值,
x1(k 1) , x2(k 1)是下一次对分时把xi从G1(k )
划到G2(k)时的两类均值
所以x1 Z1(1)
再继续进行第二,第三次迭代… 计算出 E(2) , E(3) , …
次数 1 2 3 4 5 6 7 8 9
10 11
G1 G2
x21 x20 x18 x14 x15 x19
x11 x13 x12 x17 x16
E值 56.6 79.16 90.90 102.61 120.11 137.15 154.10 176.15 195.26 213.07 212.01
Ni为第i类的样本数.
离差平方和增量:设样本已提成ωp,ωq两类, 若把ωp,ωq合为ωr类,则定义离差平方:
Dp2q Sr (S p Sq )
其中S p , Sq分别为 p类于q类的离差平方和, S r为 r 类的离差平方和
增量愈小,合并愈合理。
聚类准则
Jw Min
类内距离越小越好 类间距离越大越好
体积与长,宽,高有关;比重与材料,纹理,颜 色有关。这里低、中、高三层特征都有了。
措施旳有效性
特征选用不当 特征过少 特征过多 量纲问题
主要聚类分析技术
谱系法(系统聚类,层次聚类法) 基于目旳函数旳聚类法(动态聚类) 图论聚类法 模糊聚类分析法
2.2模式相同度度量
模式识别10第十章 聚类 2014 tt

补充参考内容
10.1 引言 10.2 基于模型的方法 10.3 混合模型的估计 10.4 动态聚类算法 10.5 模糊聚类方法 10.6 分级聚类方法 10.7 自组织映射神经网络
本页课件内容源自清华张学工教授《模式识别》
混合密度及可辨识性
• 从理论上讲,非监督学习可以看作是 一个混合密度的估计问题:
p x 1, s1,t1 U s1,t1
p x 2, s2,t2 U s2,t2
• 如果训练样本是0-1之间的均匀分布:
px U 0,1
• 则对任意的0<t<1,只要:
P 1 t, p x 1, s1,t1
U
0, t
1 t ,
0,
0 xt otherwise
P 2 1 t, p x 2, s2,t2
散布准则
• 基于行列式的散布准则:
Jd Sw
• 基于不变量的散布准则:
J f tr ST1SW
准则函数的优化
• 穷举法优化:聚类准则函数的优化是组合 最优问题,是一个NP难题,将n个样本分到 c个类别有cn/c!种分法,穷举计算是不现实 的,只能寻找次优方法解决;
• 迭代最优化:随机设置初始聚类,计算将 样本x从Di聚类移到Dj聚类是否能够使准则 函数减小,减小则做此修改,否则不修改。
样本; • 但知道它们是从若干个服从不同分布的
聚类中独立抽取出来的; • 要根据这些样本同时估计出各个聚类的
概率密度函数。
10.3 混合模型的估计
• 3. 非监督参数估计问题中 • 非监督最大似然估计法的基本思想与
3.2节(P45)中的最大似然估计方法相 同。
五 模式识别——聚类

——聚类分析
田玉刚
信息工程学院
主要内容
数据预处理 距离与相似系数
算法分析
实例分析
2018年12月10日
第2页
聚类分析又称群分析,它是研究(样本/样品/模式)分类问题的一
种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。严格的 数学定义是较麻烦的,在不同问题中类的定义是不同的。
2018年12月10日
第10
数据预处理
5、中心标准化
中心标准化是将原始数据矩阵中的元素减去该列的的平 均值,其商即为标准化数据矩阵的元素
6、对数标准化 对数标准化是将原始数据矩阵中的元素取常用对数后作 为标准化数据矩阵的元素
2018年12月10日
第11
数据预处理
由上述标准化方法可知,中心标准化法(方法 5 )和对数标准化法 (方法6)达不到无量纲目的。一个好的变换方法,应在实现无量纲的同 时,保持原有各指标的分辨率,即变异性的大小。现将方法1(标准差)、 方法2 (极大值) 、方法3 (极差)和方法4 (均值)变换后数据的特 征列于表1。
要求一个向量的n个分量是不相关的且具有相同的方差,或者说各坐标对
欧氏距离的贡献是同等的且变差大小也是相同的,这时使用欧氏距离才 合适,效果也较好,否则就有可能不能如实反映情况,甚至导致错误结
论。因ቤተ መጻሕፍቲ ባይዱ一个合理的做法,就是对坐标加权,这就产生了“统计距离”。
2018年12月10日
第18
距离与相似系数
比如设
2018年12月10日
第30
算法分析-层次聚类
2018年12月10日
第31
算法分析-层次聚类
模式识别第二章ppt课件

• 试探方法
凭直观感觉或经验,针对实际问题定义一种 相似性测度的阈值,然后按最近邻规则指定 某些模式样本属于某一个聚类类别。
– 例如对欧氏距离,它反映了样本间的近邻性,但 将一个样本分到不同类别中的哪一个时,还必须 规定一个距离测度的阈值作为聚类的判别准则。
精选ppt课件2021
• 特征选择的维数
在特征选择中往往会选择一些多余的特征,它增加了 维数,从而增加了聚类分析的复杂度,但对模式分类 却没有提供多少有用的信息。在这种情况下,需要去 掉相关程度过高的特征(进行降维处理)。
• 降维方法
– 结论:若rij->1,则表明第i维特征与第j维特征所反 映的特征规律接近,因此可以略去其中的一个特
– 距离阈值T对聚类结果的影响
精选ppt课件2021
17
2.3 基于试探的聚类搜索算法
2.3.2 最大最小距离算法
• 基本思想:以试探类间欧氏距离为最大 作为预选出聚类中心的条件。
• 病人的病程
– 名义尺度:指定性的指标,即特征度量时没有数量
关系,也没有明显的次序关系,如黑色和白色的关
系,男性和女性的关系等,都可将它们分别用“0”
和“1”来表示。
• 超过2个状态时,可精选用pp多t课个件2数021值表示。
8
2.2 模式相似性的测度和
聚类准则
2.2.1 相似Βιβλιοθήκη 测度• 目的:为了能将模式集划分成不同的类别,必须定义 一种相似性的测度,来度量同一类样本间的类似性和 不属于同一类样本间的差异性。
12
2.2 模式相似性的测度和
聚类准则
2.2.2 聚类准则
• 聚类准则函数法
– 依据:由于聚类是将样本进行分类以使类别间可 分离性为最大,因此聚类准则应是反映类别间相 似性或分离性的函数;
无监督学习的实际应用方法(十)

无监督学习的实际应用方法无监督学习是一种机器学习的方法,它的目标是通过对数据进行模式识别和分类,而无需人为地进行标记或指导。
相比于监督学习和强化学习,无监督学习更加自主和灵活,能够在处理大量未标记数据时发挥重要作用。
在实际应用中,无监督学习的方法有很多,下面将就其中一些常见的实际应用方法进行介绍。
一、聚类分析聚类分析是无监督学习中的一种常见方法,它的目标是根据数据中的相似性将数据进行分组。
在实际应用中,聚类分析可以用来对客户进行分群,以便于进行定向营销;也可以用来对文档进行主题建模,帮助用户更快地找到自己感兴趣的内容。
此外,聚类分析还可以用来对图像和视频进行内容分析,从而实现图像检索和视频推荐等功能。
二、关联规则挖掘关联规则挖掘是另一种常见的无监督学习方法,它的目标是寻找数据中的频繁模式和关联规则。
在实际应用中,关联规则挖掘可以被用来进行市场篮分析,以帮助商家发现商品之间的关联和交叉销售的机会;也可以用来进行网络流量分析,发现网络中出现的异常行为和攻击。
三、降维和特征学习在实际应用中,数据往往是高维的,而且可能包含大量的冗余信息。
为了更好地进行数据分析和可视化,降维和特征学习是非常重要的无监督学习方法。
降维和特征学习可以帮助我们在保留数据重要特征的同时,减少数据的维度和复杂度。
在实际应用中,降维和特征学习可以被用来进行图像和音频的压缩和去噪,以及进行文本和图像的情感分析。
四、异常检测异常检测是无监督学习中的另一种重要方法,它的目标是发现数据中的异常值和离群点。
在实际应用中,异常检测可以被用来进行金融欺诈检测,检测信用卡交易中的异常行为;也可以被用来进行工业生产中的质量控制,发现产品中的缺陷和故障。
五、生成模型生成模型是无监督学习中的一种重要方法,它的目标是学习数据的分布和生成数据的过程。
在实际应用中,生成模型可以被用来进行图像和音频的生成,产生逼真的人工图像和音频;也可以被用来进行自然语言处理,生成自然语言文本和对话内容。
聚类分析的统计原理

聚类分析的统计原理聚类分析是一种常用的数据分析方法,它通过将相似的数据点分组,将数据集划分为不同的类别或簇。
聚类分析的统计原理是基于数据点之间的相似性或距离来进行分类。
本文将介绍聚类分析的统计原理及其应用。
一、聚类分析的基本概念聚类分析是一种无监督学习方法,它不需要事先标记好的训练样本,而是根据数据点之间的相似性进行分类。
聚类分析的目标是将数据集中的数据点划分为不同的类别,使得同一类别内的数据点相似度较高,不同类别之间的相似度较低。
在聚类分析中,数据点可以是任意形式的对象,如文本、图像、音频等。
聚类分析的结果是一个或多个簇,每个簇包含一组相似的数据点。
聚类分析的结果可以用于数据的分类、模式识别、异常检测等应用。
二、聚类分析的统计原理聚类分析的统计原理基于数据点之间的相似性或距离来进行分类。
常用的聚类分析方法包括层次聚类、K均值聚类、密度聚类等。
1. 层次聚类层次聚类是一种自底向上的聚类方法,它从每个数据点作为一个簇开始,然后逐步合并相似的簇,直到所有数据点都被合并为一个簇或达到预设的聚类数目。
层次聚类的相似性度量可以使用欧氏距离、曼哈顿距离、相关系数等。
2. K均值聚类K均值聚类是一种迭代的聚类方法,它将数据点划分为K个簇,每个簇由一个质心代表。
K均值聚类的过程包括初始化质心、计算每个数据点与质心的距离、将数据点分配到最近的质心所在的簇、更新质心的位置等。
K均值聚类的相似性度量通常使用欧氏距离。
3. 密度聚类密度聚类是一种基于数据点密度的聚类方法,它将数据点划分为高密度区域和低密度区域。
密度聚类的核心思想是通过计算每个数据点周围的密度来确定簇的边界。
常用的密度聚类方法包括DBSCAN、OPTICS 等。
三、聚类分析的应用聚类分析在各个领域都有广泛的应用。
以下是一些常见的应用领域: 1. 市场分析聚类分析可以用于市场细分,将消费者划分为不同的群体,以便针对不同群体制定不同的营销策略。
2. 图像处理聚类分析可以用于图像分割,将图像中的像素点划分为不同的区域,以便进行图像处理和分析。
信息融合的分类方法
多源信息融合技术分为假设检验型信息融合技术、滤波跟踪型信息融合技术、聚类分析型信息融合技术、模式识别型信息融合技术、人工智能型信息融合技术等。
1、假设检验型信息融合技术假设检验型信息融合技术是以统计假设检验原理为基础,信息融合中心选择某种最优化假设检验判决准则执行多传感器数据假设检验处理,获取综合相关结论。
2、滤波跟踪型信息融合技术滤波跟踪型信息融合技术是将卡尔曼滤波(或其他滤波)航迹相关技术由单一传感器扩展到多个传感器组成的探测网,用联合卡尔曼滤波相关算法执行多传感器滤波跟踪相关处理。
3、聚类分析型信息融合技术聚类分析型信息融合技术是以统计聚类分析或模糊聚类分析原理为基础,在多目标、多传感器大量观测数据样本的情况下,使来自同一目标的数据样本自然聚集、来自不同目标的数据样本自然隔离,从而实现多目标信息融合。
4、模式识别型信息融合技术模式识别型信息融合技术是以统计模式识别或模糊模式识别原理为基础,在通常的单一传感器模式识别准则基础上建立最小风险多目标多传感器模式识别判决准则,通过信息融合处理自然实现目标分类和识别。
5、人工智能信息融合技术人工智能信息融合技术将人工智能技术应用于多传感器信息融合,对于解决信息融合中的不精确、不确定信息有着很大优势,因此成为信息融合的发展方向。
智能融合方法可分为:基于专家系统的融合方法;基于神经网络的融合方法;基于生物基础的融合方法;基于模糊逻辑的融合方法等。
多源信息融合的融合判决方式分为硬判决方式和软判决方式。
所谓硬判决或软判决指的是数据处理活动中用于信号检测、目标识别的判决方式。
每个传感器内部或信息融合中心都既可选用硬判决方式,也可选用软判决方式。
1、硬判决方式硬判决方式设置有确定的预置判决门限。
只有当数据样本特征量达到或超过预置门限时,系统才做出判决断言;只有当系统做出了确定的断言时,系统才向更高层次系统传送”确定无疑”的判决结论。
这种判决方式以经典的数理逻辑为基础,是确定性的。
大数据常见的9种数据分析手段
大数据常见的9种数据分析手段一、数据清洗与预处理数据清洗与预处理是大数据分析的第一步,它涉及到对原始数据进行筛选、去除噪声、填充缺失值等操作,以保证数据的质量和准确性。
常见的数据清洗与预处理手段包括:1. 数据去重:通过识别和删除重复的数据记录,避免重复计算和分析。
2. 缺失值处理:对于存在缺失值的数据,可以使用插补法(如均值、中位数、众数插补)或删除缺失值的方法进行处理。
3. 异常值检测与处理:通过统计分析和可视化方法,识别和处理数据中的异常值,避免对分析结果的影响。
4. 数据转换与归一化:对数据进行统一的转换和归一化处理,使得数据在同一尺度上进行分析。
5. 数据集成与重构:将多个数据源的数据进行整合和重构,以便后续的分析和挖掘。
二、数据探索与可视化数据探索与可视化是通过统计分析和可视化手段,对数据进行探索和发现潜在的规律和关联。
常见的数据探索与可视化手段包括:1. 描述性统计分析:对数据进行基本的统计描述,包括均值、中位数、标准差等指标,以了解数据的分布和特征。
2. 相关性分析:通过计算相关系数或绘制散点图等方式,分析变量之间的相关性和相关程度。
3. 数据可视化:利用图表、图形和地图等方式,将数据以可视化的形式展现,帮助用户更直观地理解数据。
4. 聚类分析:通过将数据分成若干个类别,发现数据中的内在结构和相似性。
5. 关联规则挖掘:通过挖掘数据中的关联规则,发现数据中的频繁项集和关联规则,用于市场篮子分析等领域。
三、数据挖掘与机器学习数据挖掘与机器学习是利用算法和模型,从大数据中发现隐藏的模式和知识。
常见的数据挖掘与机器学习手段包括:1. 分类与回归:通过训练模型,将数据分为不同的类别或预测数值型变量。
2. 聚类与关联:通过挖掘数据中的相似性和关联规则,发现数据中的潜在结构和关联关系。
3. 预测与时间序列分析:通过建立时间序列模型,预测未来的趋势和变化。
4. 强化学习:通过与环境的交互,通过试错学习的方式,优化决策和策略。
如何进行分类与聚类分析
如何进行分类与聚类分析分类与聚类分析是数据挖掘中常用的技术手段,通过对数据进行不同属性的划分和聚合,能够帮助我们洞察数据的内部规律和特征。
本文将介绍分类与聚类分析的基本概念和方法,并提供一些实际案例进行说明。
I. 分类分析分类分析是对数据进行归类的过程,将具有相似性质的数据归为一类。
分类分析的基本思想是通过特征提取和模式识别,将数据分为预先定义的类别,以便进一步理解和解释数据。
1. 数据准备在进行分类分析前,需要准备好适合分析的数据集。
数据集一般包含多个样本和多个属性,其中样本是指具体的数据实例,属性是指样本所具有的特征。
2. 特征选择特征选择是分类分析的重要步骤,其目的是从给定的属性中选择出最能代表数据特征的属性。
特征选择需要根据实际问题和数据集的特点来进行,通常可以采用统计学方法或信息论方法来评估属性的重要性。
3. 模型构建在分类分析中,需要选择适当的分类模型来对数据进行分类。
常见的分类模型包括决策树、朴素贝叶斯、支持向量机等。
模型的选择需要考虑数据的性质和问题的要求。
4. 分类效果评估在进行分类分析后,需要对分类结果进行评估。
常用的评估指标有准确率、召回率、精确率等。
评估结果可以反映分类模型的性能,并帮助我们判断模型的优劣。
II. 聚类分析聚类分析是对数据进行聚合的过程,将具有相似性质的数据聚为一类。
聚类分析的目的是发现数据的内部结构,揭示数据的潜在规律和关系。
1. 数据准备聚类分析前,需要准备好适合分析的数据集。
数据集包含多个样本和多个属性,其中样本是指具体的数据实例,属性是指样本所具有的特征。
2. 相似性度量在聚类分析中,需要选择合适的相似性度量来衡量数据之间的相似程度。
常用的相似性度量有欧氏距离、余弦相似度等。
3. 聚类算法聚类分析需要选择合适的聚类算法来对数据进行聚类。
常见的聚类算法有K均值聚类、层次聚类、密度聚类等。
选择聚类算法需要考虑数据的性质和问题的要求。
4. 聚类结果评估在进行聚类分析后,需要对聚类结果进行评估。
模式识别
模式识别摘要:本文简单介绍了模式识别,主要讲述了模式识别常用的方法:神经网络、模糊诊断、支持向量机、聚类分析的定义及各自有缺点。
关键字:模式识别;神经网络;模糊诊;、支持向量机;聚类分析ABSTRACT:This paper briefly introduced the pattern recognition, mainly tells the story of pattern recognition commonly used method: neural network and fuzzy diagnosis, support vector machine, clustering analysis of the definition and have their own shortcomings.Key words: Pattern recognition; Neural network; Fuzzy diagnosis; And support vector machine (SVM); Clustering analysis一、模式识别我们知道,被识对象都具有一些属性、状态或者特征。
而对象之间的差异也就表现在这些特征的差异上。
因此可以用对象的特征来表征对象。
另一方面,从结构来看,有些被识对象可以看作是由若干基本成分按一定的规则组合而成。
因此,可以用一些基本元素的某种组合来刻画对象。
广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相似,都可以称之为模式。
模式所指的不是事物本身,而是从事物获得的信息,能够表征或刻画被识对象类属特征的信息模型成为对象的模式。
有了模式,对实体对象的识别就转化为对其模式的识别。
识别其实就是分类,即辨识或判别被识对象的类属。
模式识别就是确定一个样本的类别属性(模式类)的过程,即把某一样本归属于多个类型中的某个类型。
模式识别的三大任务:模式采集、特征提取和特征选择、类型判别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
1 故 d ( yi , y j ) ( yi y j ) 'Vy ( yi y j ) 1 ( Axi Ax j ) 'Vy ( Axi Ax j ) 1 ( xi x j ) ' A 'Vy A( xi x j ) 1 ( xi x j ) ' A '( AVx A ') A( xi x j ) { ( AB) 1 1 1 ( xi x j ) ' A ' A ' Vx A A( xi x j ) 1 ( xi x j ) 'Vx ( xi x j ) 2 d x ( xi , x j )
聚类分析
2.1 聚类分析的概念 一、聚类分析的基本思想 根据各个待分类的模式特征相似程度进行分类,相似的归为 一类,不相似的归为另一类。 模式相似性度量
基本内容
聚类算法
聚类分析的概念
聚类分析的基本思想
根据各个待分类的模式特征相似程度进行分类,相似的归为 一类,不相似的归为另一类。 模式相似性度量
2 y
2018/10/26
1
B1 A1}
19
例
已知一个二维正态母体G的分布为
1 求点 A : 和 B : 1
1 0 至均值点 M : 的距离。 1 0 0.9 1 0.9 1 1 1 解:由题设,可得 0.9 1 0.9 1 0.19
性质:对一切非奇异线性变换都是不变的。 即,具有坐标系比例、旋转、平移不变性, 并且从统计意义上尽量去掉了分量间的相关性。
马氏距离具有线性变换不变性 y Ax 证明:设,有非奇异线性变换:
n 1 n 1 n 1 则 y yi Axi A xi Ax m i 1 m i 1 m i 1
基本内容
聚类算法
特征量的类型
物理量:直接反映特征的实际物理意义 如:长度、重量、速度等。处理前需要离散化。 次序量:按某种规则确定的只反映特征的次序关系或等级 如:产品的等级、病症的级或期。已是离散量。
名义量:非数值的特征数值化标识, 如男性与女性、事物的状态、种类等。需要数值化。这些特 征的数值指标既无数量含义,也无次序关系,只是用数字代 表各种状态。
0 1 0.9 N , 0 0.9 1
n d ( x , y ) | xi yi | i 1
3. 切氏(Chebyshev)距离:
d ( x, y) max | xi yi |
i
4. 明氏(Minkowski)距离:
2018/10/26
n d ( x , y ) [ ( xi yi ) m ]1/ m i 1
羊,狗,猫,蜥 蜴,蛇,麻雀, 海鸥,青蛙
羊 ,狗,猫, 蜥蜴,蛇,麻 雀,海鸥,
金鱼 , 鲨鱼 青蛙
(c) 生存环境
2018/10/26
(d)繁衍后代的方式和是否存在肺
13
13
距离测度对聚类结果的影响
数据的粗聚类是2类,细聚类为4类
2018/10/26 14
模式相似性测度
距离测度 相似测度 匹配测度
2018/10/26
15
距离测度
设
x (x1,x 2 , x n )',y (y1,y 2 , y n )'
n d ( x, y ) || x y || [ ( xi yi ) 2 ]1/ 2 i 1
1. 欧氏(EuΒιβλιοθήκη lidean)距离:2. 绝对值距离(街区距离,Manhattan距离):
设n维矢量 xi , x j 是矢量集 {x1 , x2 ,, xm } 中的两
d ( xi , x j ) ( xi x j )'V 1 ( xi x j ) 1 m V ( xi x )(xi x )' m 1 i 1 1 m x xi m i 1
16
5. Camberra距离:
n | xi yi | d ( x, y) i 1 | xi yi |
该距离能克服量纲的影响, 但不能克服分量间的相关性。
( xi , yi 0, xi yi 0)
5. 马氏(Mahalanobis)距离: 个矢量
x2
1
2 3 (b) 特征选取不足 x1
(a) 特征选取不当
2018/10/26
11
量纲不同对聚类的影响
2018/10/26 12
聚类准则对聚类结果的影响
蜥蜴,蛇, 羊,狗,猫, 麻雀,海鸥 鲨鱼 , 金鱼,青蛙 (a)繁衍后代的方式 金鱼 , 鲨鱼 (b) 肺的存在 蜥蜴,蛇, 金鱼 麻雀,海 鸥,青蛙 羊,狗 鲨鱼 ,猫 ,
2018/10/26
9
方法的有效性 本质上 模式特征点在特征空间中的分布情况,同 类的模式特征点密集,不同类的相距较远
技术上
取决于分类算法和特征点分布情况的 匹配
1,特征选取不当使分类无效
2,特征选取不足可能使不同类别的模式判为一类 3,特征选取过多可能有害无益,增加分析负担
4,量纲选取不当
x2 2 1 x1
1 m Vy ( yi y )( yi y ) ' m 1 i 1 1 m ( Axi Ax )( Axi Ax ) ' m 1 i 1 1 m A( xi x )( xi x ) ' A ' m 1 i 1 1 m A[ ( xi x )( xi x ) '] A ' AVx A ' m 1 i 1