(完整版)初中数学《数与式》综合测试卷
初中数学《数与式》综合检测(含答案)

《数与式》综合检测(满分150分,90分钟完卷)班级:_________ 姓名:__________ 学号:________ 得分:________一、选择题(每小题4分,共40分)1.下列说法正确的是()A.-1的倒数是1 B.-1的相反数是-1C.1的算术平方根是1 D.1的立方根是±12.全国中小学危房改造工程实施五年来,已改造农村中小学危房7 800万平方米,如果按一幢教学楼总面积是750平方米计算,那么该工程共修建教学楼大约有().A.10幢B.10万幢C.20万幢D.100万幢3.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.000 •00156m,则这个数用科学记数法表示是().A.0.156×10-5m B.0.156×105mC.1.56×10-6m D.1.56×106m4.下列运算中正确的是().A.-(-x)3·(-x)5=-x8B.x5+x5=2x10C.(-2x22y)3·4x-3=-24x3y3D.(12x-3y)(-12x+3y)=14x2-9y5.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,•东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比().A.减少9m2B.减少6m2C.增加9m2D.保持不变6有意义,那么,直角坐标系中点P(m,n)的位置在().A.第一象限B.第二象限C.第三象限D.第四象限7.已知:a+b=m,ab=-4,化简(a-2)(b-2)的结果是().A.6 B.2m-8 C.2m D.-2m8.如果对于任何实数x,分式22 4x x k-+总有意义,则实数k的值应满足().A.k<4 B.k=4 C.k>4 D.k≥49.某商店的老板销售一种商品,他要以不低于进价20%的价格才能出售,•但为了获取更多的利润.他以高出进价80%的价格标价,你若想买下标价为360元的这种商品,最多降价(),商店老板才能出售.A.80元B.100元C.120元D.160元10.如图,在半圆形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存.现要将所有的产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为2:1:3:4,运费与路程的远近成正比,•为使选定的工厂仓库储存所有产品时的总运费最省,应选工厂( )来储存所有的产品. A .甲 B .乙 C .丙 D .丁二、填空题(每小题4分,共40分) 11.近似数2.0万精确到_____位,有_____个有效数字,用四舍五入法把1.5972精确到0.01约等于_________. 12.实验中学九年级12个班中共有团员a 人,则12a表示的实际意义是______. 13.如果a+b=2007,a -b=1,那么a 2-b 2=_______.14.已知│x -,以x ,y 为两边长的等腰三角形的周长是______.15.将3x 2-3x 3-34x 分解因式为_______. 16.若x -2y=-3,则(x -2y )(3x -4y )+x (2y -x )的值为_______.17.小敏中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;•②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟,以上各道工序外,除④外,一次只能进行一道工序,小敏要将面条煮好,最少用______分钟.18.已知实数m 、n 满足3,则m n =_______.19.某单位一名职工因公受伤住院治疗了一个月(按30天计),用去医疗费5 •000元,伙食费500元,工伤保险基金按规定给他补贴医疗费4 500元,•其单位按因公出差标准(每天30元)的百分之七十补助给他做伙食费,•则在这次工伤治疗中他自己只需支付________. 20.瑞士中学教师巴尔末成功地从光谱数据9162536,,,5122132…,中得到巴尔末公式,•从而打开了光谱奥秒的大门,请你按这种规律写出第七个数据是_______,第n 个数据是______.三、解答题(本大题共70分)21.计算:(每小题5分,共10分)(1)(-13)-2+16÷(-2)3+(2005-3π)0;(2)-.22.(6分)先化简:(2x-1)2-(3x+1)(3x-1)+5x(x-1),•再选取一个你喜欢的数代替x求值.23.(6分)已知y=2221111x x x xx x x-+-÷+-++1,试说明在右边代数式有意义的条件下,不论x为何值,y•值不变.24.(9分)当x2+2y2-时,求22222(2)()2224x y xy xx yx y x xy x y---+---的值.25.(8分)观察图形(每个正方形的边长均为1)和相应等式,•探究其中的规律:…(1)写出第五个等式,并在下图给出的五个正方形上画出与之对应的图示:(2)猜想并写出与第n个图形相对应的等式.26.(8分)设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去……(1)记正方形ABCD的边长为a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4, …,a n,求出a2,a3的值.(2)根据以上规律写出第n个正方形的边长a n的表达式.27.(12分)阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬各60天.原来,学生饮水一般都是购纯净水(其它碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,•夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机.经调查,购买一台功率为500W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,•饮水机每天开10小时,当地民用电价为0.50元/度.请计算:(1)在未购买饮水机之前,全年平均每个学生要花费多少元钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学一年要为全体学生共节约多少元?28.(11分)某企业有九个生产车间,现在每个车间原有的成品一样多,•每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员,•他们先用两天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,•再去检验第三、第四两个车间的所有成品,又用去了三天时间;同时,用这五天时间,B•组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)试用a、b表示B组检验员检验的成品总数;(2)求B组检验员的人数.答案:一、1.C 2.B 3.C 4.A 5.A 6.C 7.D 8.C 9.C 10.C 二、11.千;两;1.60 12.平均每班有团员12a人 13.2007 14.15 15.-3x (x -12)2 •16.18 17.12 18.9 19.370元 20.2281(2),77(2)4n n ++- 三、21.(1)5 (2)-17 22.-9x+2 23.y=124.由(x -3)2+)2=0得x=3,y=22224442122(2)3y y y x y x y x x y x -+===-- 原式25.解:(1)5×56=5-56 (2)n×11n nn n n =-++26.(1)∵四边形ABCD 是正方形,∴AB=BC=1,∠B=90°,,同理AE=2,,即:a 2a 2=2,a 4(2)a n =-1为正整数)27.(1)450 (2)4 830 (3)424 08028.因为检验员的检验速度相同,所以有2(2)2(5)23a b a b ++=,即a=4b , 所以,•一名检验员每天检验的成品数为2(2)3284a b +=⨯b (件).对于B 组检验员,由(1)知,5个车间5天后的成品数为5(a+5b ), 则B 组检验员每天检验的成品数为5(5)5a b +件,即(a+5b )件, 由题意,知a≠0,b≠0, 所以,B •组检验员的人数为593344a b bb b +==12。
数与式测试卷及参考答案

中考数学数与式测试卷时间:50分钟 总分:120分 请在规定时间内完成作答,注意答题规范. 一、选择题(每小题3分,共30分)1. 21-的绝对值是 【 】 (A )21- (B )21(C )2 (D )2-2. 52-的相反数是 【 】 (A )52- (B )52(C )25- (D )253. 下列各数中最大的数是 【 】 (A )5 (B )3 (C )π (D )8-4. 成年人每天维生素D 的摄入量约为0. 000 004 6克.数据“0. 000 004 6”用科学记数法表示为 【 】 (A )71046-⨯ (B )7106.4-⨯ (C )6106.4-⨯ (D )51046.0-⨯5. 今年一季度,河南对“一带一路”沿线国家进出口总额达214. 7亿元.数据“214. 7亿”用科学记数法表示为 【 】 (A )210147.2⨯ (B )3102147.0⨯ (C )1010147.2⨯ (D )11102147.0⨯6. 下列计算正确的是 【 】 (A )a a a 632=+ (B )()2263a a =-(C )()222y x y x -=- (D )22223=-7. 下列运算正确的是 【 】 (A )()532x x -=- (B )532x x x =+(C )743x x x =⋅ (D )1233=-x x8. 下列运算正确的是 【 】 (A )532=+ (B )3218= (C )532=⋅ (D )2212=÷9. 如果32=-b a ,那么代数式ba ab a b a -⋅⎪⎭⎫ ⎝⎛-+222的值为 【 】(A )3 (B )32 (C )33 (D )34 10. 函数xxy -=42中自变量x 的取值范围是 【 】 (A )4-≠x (B )4≠x (C )x ≤4- (D )x ≤4 二、填空题(每小题3分,共30分) 11. 计算:=--124_________. 12. 计算:=--95_________.13. 计算:=-+⎪⎭⎫⎝⎛⨯-22132_________.14. 若12-=x ,则=++122x x _________. 15. 因式分解:=-ab b a 39________________.16. 化简42212---a aa 的结果等于__________. 17. 如果分式432-+x x 有意义,那么x 的取值范围是__________.18. 计算:()()()=-++-323212020_________.19. 如图,数轴上点A 表示的数为a ,化简:=+-+442a a a _________.a2A20. 若153222=-+y x ,则代数式59622-+y x 的值为_________.三、解答题(共60分)21. 计算:(每小题5分,共20分) (1)()102113230sin 2-⎪⎭⎫ ⎝⎛+-+--︒π; (2)()︒+--⎪⎭⎫⎝⎛+--30cos 4123114.320π;(3)()()202021218312-⎪⎭⎫ ⎝⎛+--⨯-+-π; (4)()︒----+⎪⎭⎫⎝⎛-30cos 22314.32102π.22. 先化简,再求值:(每小题8分,共40分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x ;(3)21212--÷⎪⎭⎫ ⎝⎛+-x x x x ,其中x 是方程022=-x x 的根;(4)x x x x x x -+-÷⎪⎭⎫ ⎝⎛+--11441122,其中x 满足022=-+x x ;(5)先化简⎪⎭⎫ ⎝⎛-÷-+-x x x x x x 424422,再从55<<-x 的范围内选取一个合适的正整数作为x 的值代入求值.中考数学数与式测试卷参考答案时间:50分钟 总分:120分 请在规定时间内完成作答,注意答题规范. 一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11.2312. 2 13. 6 14. 2 15. ()()1313-+a a ab 16. 21+-a 17. x ≥23-且4≠x 18. 2 19. 2 20. 13三、解答题(共60分)21. 计算:(每小题5分,共20分)(1)()12113230sin 2-⎪⎭⎫⎝⎛+-+--︒π;解:原式2131212+-+-⨯= 13+= (2)()︒+--⎪⎭⎫⎝⎛+--30cos 4123114.320π;解:原式2343291⨯+-+= 10= (3)()()22021218312-⎪⎭⎫⎝⎛+--⨯-+-π;解:原式42212+--=225-= (4)()︒----+⎪⎭⎫⎝⎛-30cos 22314.32102π.解:原式()2323214⨯---+= 3325-+-= 3=22. 先化简,再求值:(每小题8分,共40分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x . 解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时 原式333=.(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x . 解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()()xx x x x x x x x x x x -=--=-+⋅+-=-+÷+--=1111111111 当12+=x 时 原式2121-=--=.(3)21212--÷⎪⎭⎫ ⎝⎛+-x x x x ,其中x 是方程022=-x x 的根.解:21212--÷⎪⎭⎫ ⎝⎛+-x x x x ()()()()()111122121121222+-=-+-⋅--=--+÷-+-=x x x x x x x x x x x x x 解方程022=-x x 得:2,021==x x ∵02≠-x ∴2≠x ∴当0=x 时原式11010-=+-=. (4)x x x x x x -+-÷⎪⎭⎫ ⎝⎛+--11441122,其中x 满足022=-+x x .解:x x x x x x -+-÷⎪⎭⎫ ⎝⎛+--11441122 ()()()1211211121121112222--=--⋅--=--÷⎥⎦⎤⎢⎣⎡----=x x x x x x x x x x x 解方程022=-+x x 得:2,121-==x x ∵01≠-x ∴1≠x ∴当2-=x 时原式()511221=--⨯-=.(5)先化简⎪⎭⎫⎝⎛-÷-+-x x x x x x 424422,再从55<<-x 的范围内选取一个合适的正整数作为x 的值代入求值.解:⎪⎭⎫⎝⎛-÷-+-x x x x x x 424422 ()()()()2122242222+=-+⋅-=-÷--=x x x xx x xx x x x ∵55<<-x ,且x 为正整数 ∴当1=x 时原式31211=+=.。
通用版中考数学复习《数与式》单元测试(整理含答案)

通用版中考数学复习《数与式》单元测试(时间:45分钟 满分:100分)一、选择题(每小题3分,共24分)1.如果电梯上升5层记为+5.那么电梯下降2层应记为( )A .+2B .-2C .+5D .-5 2.下列四个实数中,绝对值最小的数是( )A .-5B .- 2C .1D .43.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为( )A .81×103B .8.1×104C .8.1×105D .0.81×1054.化简x 2x -1+11-x的结果是( )A .x +1B .x -1C .x 2-1 D.x 2+1x -15.如图,数轴上的点A ,B 分别对应实数a ,b ,下列结论正确的是( )A .a >bB .|a |>|b |C .-a <bD .a +b <0 6.下列运算正确的是( )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b )(a -b )=a 2-b 2D .(a +b )2=a 2+b 2 7.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( )A .3B .-3C .1D .-18.甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客购买这种商品最合算的超市是( )A .甲B .乙C .丙D .一样二、填空题(每小题4分,共16分)9.分解因式:2a2-4a+2=.10.若a+b=3,ab=2,则(a-b)2=.11.代数式x-1x-1中x的取值范围是.12.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=-1,那么(1+i)(1-i)=三、解答题(共60分)13.(6分)计算:(2 019)0×8-(12)-1-|-32|+2cos45°.解:原式=14.(6分)计算:(3+2-1)(3-2+1).解:原式=15.(8分)先化简,再求值:a(a-2b)+2(a+b)(a-b)+(a+b)2,其中a=-12,b=1.解:原式=16.(8分)已知:x=3+1,y=3-1,求x2-2xy+y2x2-y2的值.解:原式=17.(10分)已知P =a 2+b 2a 2-b 2,Q =2aba 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.解:如选P +Q 进行计算:18.(10分)x 2+x x 2-2x +1÷(2x -1-1x).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值.19.(12分)先观察下列等式,然后用你发现的规律解答下列问题.11×2=1-12; 12×3=12-13; 13×4=13-14; …(1)计算:11×2+12×3+13×4+14×5+15×6=56;(2)探究11×2+12×3+13×4+…+1n (n +1)=nn +1;(用含有n 的式子表示)(3)若11×3+13×5+15×7+…+1(2n -1)(2n +1)的值为1735,求n 的值.通用版中考数学复习《数与式》单元测试参考答案一、选择题(每小题3分,共24分)1.如果电梯上升5层记为+5.那么电梯下降2层应记为(B )A .+2B .-2C .+5D .-5 2.下列四个实数中,绝对值最小的数是(C )A .-5B .- 2C .1D .43.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为(B )A .81×103B .8.1×104C .8.1×105D .0.81×1054.化简x 2x -1+11-x的结果是(A )A .x +1B .x -1C .x 2-1 D.x 2+1x -15.如图,数轴上的点A ,B 分别对应实数a ,b ,下列结论正确的是(C )A .a >bB .|a |>|b |C .-a <bD .a +b <0 6.下列运算正确的是(C )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b )(a -b )=a 2-b 2D .(a +b )2=a 2+b 2 7.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于(A )A .3B .-3C .1D .-18.甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客购买这种商品最合算的超市是(C )A .甲B .乙C .丙D .一样二、填空题(每小题4分,共16分) 9.分解因式:2a 2-4a +2=2(a -1)2.10.若a+b=3,ab=2,则(a-b)2=1.11.代数式x-1x-1中x的取值范围是x>1.12.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=-1,那么(1+i)(1-i)=2.三、解答题(共60分)13.(6分)计算:(2 019)0×8-(12)-1-|-32|+2cos45°.解:原式=1×22-2-32+2×2 2=22-2-32+ 2=-2.14.(6分)计算:(3+2-1)(3-2+1).解:原式=[3+(2-1)][3-(2-1)]=3-(2-1)2=3-3+2 2=2 2.15.(8分)先化简,再求值:a(a -2b)+2(a +b)(a -b)+(a +b)2,其中a =-12,b =1.解:原式=a 2-2ab +2a 2-2b 2+a 2+2ab +b 2=4a 2-b 2. 当a =-12,b =1时,原式=4×(-12)2-12=0.16.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.解:原式=(x -y )2(x -y )(x +y )=x -yx +y.当x =3+1,y =3-1时,x -y =2,x +y =2 3. ∴原式=223=33.17.(10分)已知P =a 2+b 2a 2-b 2,Q =2aba 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P+Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.解:如选P +Q 进行计算: P +Q =a 2+b 2a 2-b 2+2aba 2-b 2=a 2+b 2+2ab a 2-b 2=(a +b )2(a +b )(a -b ) =a +b a -b. 当a =3,b =2时,P +Q =3+23-2=5.18.(10分)x 2+x x 2-2x +1÷(2x -1-1x).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.(2)答案不唯一,如:要使上式有意义,则x≠±1且x≠0. ∵-2<x≤2且x 为整数, ∴x =2.将x =2代入x 2x -1中,得原式=222-1=4.19.(12分)先观察下列等式,然后用你发现的规律解答下列问题.11×2=1-12; 12×3=12-13; 13×4=13-14; …(1)计算:11×2+12×3+13×4+14×5+15×6=56;(2)探究11×2+12×3+13×4+…+1n (n +1)=nn +1;(用含有n 的式子表示)(3)若11×3+13×5+15×7+…+1(2n -1)(2n +1)的值为1735,求n 的值.解:11×3+13×5+15×7+…+1(2n -1)(2n +1)=12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1) =12·2n 2n +1 =n2n +1. 由题意知n 2n +1=1735.解得n =17.。
中考数学总复习《数与式》专项检测卷(附带答案)

中考数学总复习《数与式》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(共20小题) 1.(2022•无锡)分式32x-中x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x -D .2x2.(2022•无锡)下列运算正确的是( ) A .2222a a -=B .224()ab ab =C .236a a a ⋅=D .844a a a ÷=3.(2022•钢城区)7-的相反数是( ) A .7-B .17-C .7D .174.(2022•陕西)计算:32(4)(a b -= ) A .538a bB .6216a bC .628a b -D .5216a b5.(2022•陕西)2022年6月5日上午10时44分07秒,熊熊的火焰托举着近500000千克的火箭和飞船冲上云霄,这是我国长征2F 运载火箭将“神舟十四号”载人飞船送入太空的壮观情景.其中,数据500000用科学记数法可以表示为( ) A .60.510⨯B .45010⨯C .4510⨯D .5510⨯6.(2022•陕西)21-的绝对值为( ) A .21B .21-C .121D .121-7.(2022•德州)下列实数为无理数的是( ) A .12B .0.2C .5-D 38.(2022•德州)已知2M a a =-,2(N a a =-为任意实数),则M N -的值( ) A .小于0B .等于0C .大于0D .无法确定9.(2022•德州)下列运算正确的是( ) A .22423a a a +=B .236(2)8a a =C .326a a a ⋅=D .222()a b a b -=-10.(2022•淮安)计算23a a ⋅的结果是( ) A .2aB .3aC .5aD .6a11.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( ) A .80.1110⨯B .71.110⨯C .61110⨯D .61.110⨯12.(2022•攀枝花)2的平方根是( ) A .2B .2±C 2D .213.(2022•攀枝花)下列各式不是单项式的为( ) A .3B .aC .baD .212x y14.(2022•攀枝花)实数a 、b 在数轴上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<15.(2022•内蒙古)下列计算正确的是( ) A .336a a a +=B .1a b a b÷⋅=C .22211a a a -=--D .3325()b b a a=16.(2022•内蒙古)实数a 在数轴上的对应位置如图所示,21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -17.(2022•淄博)计算3262(2)3a b a b --的结果是( ) A .627a b -B .625a b -C .62a bD .627a b18.(2022•淄博)若实数a 的相反数是1-,则1a +等于( ) A .2B .2-C .0D .1219.(2022•淄博)下列分数中,和π最接近的是( ) A .355113B .22371C .15750D .22720.(2022•巴中)下列运算正确的是( ) A 2(2)2-- B .111()33-=- C .236()a a =D .842(0)a a a a ÷=≠二、填空题(共5小题)21.(2022•无锡)我市2021年GDP 总量为14000亿元,14000这个数据用科学记数法可表示为 .22.(2022•038(1)--= .23.(2022•黄石)计算:20(2)(20223)--= . 24.(2022•襄阳)化简分式:ma mba b a b+=++ .25.(2022•菏泽)若22150a a --=,则代数式244()2a a a a a --⋅-的值是 . 三、解答题(共6小题) 26.(2022•无锡)计算: (1)1|5|(2)tan 45--+-+︒; (2)26142m m m----. 27.(2022•陕西)计算:115(2)28()3-⨯-+⨯-.28.(2022•内蒙古)先化简,再求值:2344(1)11x x x x x -+--÷--,其中3x =. 29.(2022•淮安)(1)计算:0|5|(32)2tan 45-+--︒; (2)化简:23(1)93a a a ÷+--. 30.(2022•阜新)先化简,再求值:22691(1)22a a a a a -+÷---,其中4a =.31.(2022•徐州)计算: (1)202211(1)|33|()93--+--+;(2)22244(1)x x x x+++÷.一、选择题(共14小题)1.(2023•绥化一模)2±是4的( )区域模拟A .平方根B .相反数C .绝对值D .倒数2.(2023•达州一模)12023-的倒数的绝对值是( ) A .2023B .12023C .2023-D .12023-3.(2023•汶上县一模)2022年3月11日,新华社发文总结2021年中国取得的科技成?.其中中国高铁运营里程超40000000米.则数据40000000用科学记数法可表示为( ) A .80.410⨯B .7410⨯C .84.010⨯D .6410⨯4.(2023•张家口二模)“中国智造”势在必行.据2023年1月21日消息,英特尔公司定购了一台AML 公司的约23亿元人民币的最先进的EUV 光刻机;据2022年9月8日消息,武汉购买了一台价格约为5亿元人民币的非EUV 光刻机.由于美国的干涉,我国买不到最先进的EUV 光刻机;就连我国购买较低端的DUV 光刻机,美国近期都开始干涉.据2022年8月14日的消息:“中国已经购买了700多台AML 公司的光刻机.”这700台光刻机,按平均每台2亿元人民币计算,总共约合是人民币( ) A .111.410⨯元B .121.410⨯元C .101410⨯元D .120.1410⨯元5.(2023•沭阳县一模)计算33()ab 的结果是( ) A .6abB .36a bC .6a bD .39a b6.(2023•寻乌县一模)下面的计算正确的是( ) A .326a a a ⋅=B .222()a b a b -=-C .326()a a -=D .55a a -=7.(2023•明光市一模)下列运算错误的是( ) A 42=±B .2124-=C .22232a a a -=D .633a a a ÷=8.(2023•明光市一模)把多项式424a a -分解因式,结果正确的是( ) A .22(2)(2)a a a a -+B .22(4)a a -C .2(2)(2)a a a +-D .22(2)a a -9.(2023•张家口二模)下列计算不正确的是( ) A 222+=B 222C 0.452=D 1232=10.(2023•韩城市一模)下列运算正确的是( ) A .3515m m m ⋅= B .235()m m -=- C .23246()m n m n -=D .22321m m -=11.(2023•兴隆台区一模)下列运算正确的是( ) A 255=± B .0.40.2= C .3(1)1--=-D .222(3)6m m n -=-12.(2023•泰山区一模)在实数:(6)--,-5,0,|3|-中,最小的数是( ) A .(6)--B .5-C .0D .|3|-13.(2023•白塔区校级一模)化简 的结果是( ) A .﹣3B .±3C .3D .914.(2023•黄浦区二模)设a 是一个不为零的实数,下列式子中,一定成立的是( ) A .32a a ->-B .32a a >C .32a a ->-D .32aa>二、填空题(共10小题)15.(2023•兴隆台区一模)分解因式:2()9()a x y y x -+-= . 16.(2023•梁园区一模)计算:3|5|8---= .17.(2023•潮南区一模)若与y n +3x 4是同类项,则(m +n )= .18.(2023•海曙区一模)若2(2)30a b -++=,则2023()a b +的值是 . 19.(2023•慈溪市一模)在1-,-2,1,0这四个数中,最小的数是 . 20.(2023•崂山区一模)计算:433(2)x y xy ÷-= . 21.(2023•364 . 22.(2023•1205. 23.(2023•杨浦区二模)如果关于x 的二次三项式25x x k -+在实数范围内不能因式分解,那么k 的取值范围是 .24.(2023•张店区一模)化简22()m n mn n m m m--÷-的结果为 .三、解答题(共7小题)25.(2023•大丰区一模)计算:40218()2sin 453π---︒. 26.(2023•长安区四模)计算:2021(2)3(3)()3--︒+--. 27.(2023•1125()|234cos302-+-︒. 28.(2023•青海一模)先化简,再求值:2221111()()aba b ++-,其中11()2a -= 1b =.29.(2023•齐齐哈尔模拟)(1)计算:202302(1)(2022)(3)12tan 60π-⨯-÷-︒︒; (2)因式分解:22222()4x y x y +-.30.(2023•襄垣县一模)(131148(2)()1224-⨯-(2)下面是小颖对多项式因式分解的过程,请认真阅读并完成相应任务. 分解因式:22(3)(3)x y x y +-+.解:原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步 8()()x y x y =+-⋯⋯第三步 228()x y =- ⋯⋯第四步任务一:以上变形过程中,第一步依据的公式用字母a ,b 表示为 ;任务二:以上分解过程第 步出现错误,具体错误为 ,分解因式的正确结果为 . 31.(2023•官渡区校级模拟)已知:2420a a --=. (1)求2(4)1a a --的值; (2)求证:42204a a -=-;(3)若24251100404a b a a -=-+ 以下结论:0b > 0b = 0b < 你认为哪个正确?请证明你认为正确的那个结论.1.下列实数中 比3-小的数是( ) A .2-B .1C .0D .π-2.太阳的主要成分是氢 氢原子的半径约为0.000000000053m .这个数用科学记数法可以表示为( ) A .100.5310-⨯B .105.310-⨯C .115.310-⨯D .125310-⨯考前押题3.(1)计算:011(32)()4cos30|123-++︒--; (2)因式分解:29x y y -.4.已知2a b += 2ab = 求32231122a b a b ab ++的值.5.如图 约定:上方相邻两整式之和等于这两个整式下方箭头共同指向的整式. (1)求整式M 、P ; (2)将整式P 因式分解; (3)P 的最小值为 .参考答案一、选择题(共20小题)1.【答案】A有意义【解答】解:分式3-2x∴-≠x20解得2x≠故选:A.2.【答案】D【解答】解:222-=故A错误不符合题意;2a a a2224()=故B错误不符合题意;ab a b235⋅=故C错误不符合题意;a a a844÷=故D正确符合题意;a a a故选:D.3.【答案】C【解答】解:7-的相反数为7故选:C.4.【答案】B【解答】解:32-a b(4)2322a b=-(4)()62=;16a b故选:B.5.【答案】D【解答】解:数据500000用科学记数法表示为5⨯.510故选:D.6.【答案】A【解答】解:21-的绝对值为21故选:A.7.【答案】D是分数属于有理数故本选项不合题意;【解答】解:A.12B.0.2是有限小数属于有理数故本选项不合题意;C.5-是整数属于有理数故本选项不合题意;D3故本选项符合题意;故选:D.8.【答案】C【解答】解:M N-2(2)=---a a a222=-+a a2=-+(1)1a2a-(1)02a∴-+(1)11∴-大于0M N故选:C.9.【答案】B【解答】解:A .因为22223a a a += 故A 选项不符合题意; B .因为236(2)8a a = 故B 选项符合题意; C .因为23235a a a a +⋅== 故C 选项不符合题意; D .因为222()2a b a ab b -=-+ 故D 选项不符合题意. 故选:B .10.【答案】C【解答】解:235a a a ⋅=. 故选:C .11.【答案】B【解答】解:711000000 1.110=⨯. 故选:B .12.【答案】D【解答】解:因为2(2)2±= 所以2的平方根是2故选:D .13.【答案】C【解答】解:A 、3是单项式 故本选项不符合题意; B 、a 是单项式 故本选项不符合题意; C 、b a不是单项式 故本选项符合题意; D 、212x y 是单项式 故本选项不符合题意; 故选:C .14.【答案】B【解答】解:由数轴知 12a << 32b -<<- A ∴错误||b a > 即B 正确0a b +< 即C 错误0a b -> 即D 错误.故选:B .15.【答案】C【解答】解:3332a a a += 故A 错误 不符合题意; 2111a a b a b b b b÷⋅=⋅⋅= 故B 错误 不符合题意; 22222(1)21111a a a a a a a ---===---- 故C 正确 符合题意; 3326()b b a a= 故D 错误 不符合题意; 故选:C .16.【答案】B【解答】解:根据数轴得:01a << 0a ∴> 10a -<∴原式||11a a =++-11a a =++-2=.故选:B .17.【答案】C【解答】解:原式62626243a b a b a b =-= 故选:C .18.【答案】A【解答】解:实数a 的相反数是1- 1a ∴=12a ∴+=.故选:A .19.【答案】A【解答】解:355 3.1416113≈; 223 3.140871≈; 157 3.1450=; 22 3.14287≈因为 3.1416π≈所以和π最接近的是355113. 故选:A .20.【答案】C【解答】解:A 2(2)2- 选项错误 不符合题意;B 、11()33-= 选项错误 不符合题意; C 、236()a a = 选项正确 符合题意; D 、844(0)a a a a ÷=≠ 选项错误 不符合题意;故选:C .二、填空题(共5小题)21.【答案】41.410⨯.【解答】解:414000 1.410=⨯ 故答案为:41.410⨯.22.【答案】3-.【解答】解:原式21=-- 3=-.故答案为:3-.23.【答案】3.【解答】解:原式41=- 3=.故答案为:3.24.【答案】m .【解答】解:原式ma mba b +=+()m a b a b +=+m =故答案为:m .25.【答案】15.【解答】解:244()2a a a a a --⋅-22442a a a a a -+=⋅-22(2)2a a a a -=⋅-22a a =-22150a a --=2215a a ∴-=∴原式15=.故答案为:15.三、解答题(共6小题)26.【答案】(1)112;(2)22m +.【解答】解:(1)原式1512=-+112=;(2)原式62(2)(2)(2)(2)m m m m m m -+=++-+-24(2)(2)m m m -=+-22m =+.27.【答案】9-.【解答】解:原式10163=- 1043=-+-9=-.28.【答案】22x x +-- 5-.【解答】解:原式223(1)11(2)x x x x ---=⋅-- 2(2)(2)11(2)x x x x x +--=-⋅-- 22x x +=-- 当3x =时 原式3232+=-- 5=-. 29.【答案】(1)4;(2)13a +. 【解答】解:(1)原式5121=+-⨯ 512=+-4=;(2)原式(3)(3)3a a a a a =÷+-- 3(3)(3)a a a a a-=⨯+- 13a =+. 30.【答案】3a a- 14. 【解答】解:原式2(3)21()(2)22a a a a a a --=÷---- 2(3)3(2)2a a a a a --=÷-- 2(3)2(2)3a a a a a --=⋅-- 3a a -=当4a =时 原式43144-==.31.【答案】(1)43-; (2)2x x +. 【解答】解:(1)202211(1)|33|()93--+--+13333=+--+43=-;(2)22244(1)x x x x +++÷ 222(2)x x x x +=⋅+ 2x x =+.一、选择题(共14小题)1.【答案】A【解答】解:2±是4的平方根. 故选:A .2.【答案】A【解答】解:12023-的倒数是2023- 12023∴-的倒数的绝对值是|2023|2023-=. 故选:A .3.【答案】B区域模拟【解答】解:740000000410=⨯. 故选:B .4.【答案】A【解答】解:11200000000700140000000000 1.410⨯==⨯元. 故选:A .5.【答案】D【解答】解:33()ab333()a b =39a b =.故选:D .6.【答案】C【解答】解:A 、32a a a ⋅= 故原计算错误 不合题意; B 、222()2a b a b ab -=+- 故原计算错误 不合题意; C 、326()a a -= 故原计算正确 符合题意; D 、54a a a -= 故原计算错误 不合题意; 故选:C .7.【答案】A【解答】解:A 42= 故A 符合题意;B 、2124-= 故B 不符合题意; C 、22232a a a -= 故C 不符合题意; D 、633a a a ÷= 故D 不符合题意;故选:A .8.【答案】C【解答】解:原式22(4)a a =- 2(2)(2)a a a =+-. 故选:C .9.【答案】C【解答】解:A 、原式2= 所以A 选项正确 不合题意; B 、原式2= 所以B 选项正确 不合题意; C 、原式10= 所以C 选项错误 符合题意; D 、原式2= 所以D 选项正确 不合题意. 故选:C .10.【答案】C【解答】解:A 、358m m m ⋅= 故A 不符合题意; B 、236()m m -=- 故B 不符合题意; C 、23246()m n m n -= 故C 符合题意; D 、22232m m m -= 故D 不符合题意; 故选:C .11.【答案】C【解答】解:A 255 故A 不符合题意; B 100.4= 故B 不符合题意;C 、3(1)1--=- 故C 符合题意;D 、22(3)9m m -= 故D 不符合题意;故选:C .12.【答案】B【解答】解:(6)6--= |3|3-=50|3|(6)∴-<<-<--.故选:B .13.【答案】C【解答】解:=3.故选:C .14.【答案】A【解答】解:A .32a a ->- 故本选项符合题意;B .若1a =- 则32a a < 故本选项不符合题意;C .若1a = 则32a a -<- 故本选项不符合题意;D .若1a =- 则32a a< 故本选项不符合题意. 故选:A .二、填空题(共10小题)15.【答案】()(3)(3)x y a a -+-.【解答】解:2()9()a x y y x -+-2()(9)x y a =--()(3)(3)x y a a =-+-故答案为:()(3)(3)x y a a -+-16.【答案】3-.【解答】解:3|5|8----5(2)=---52=-+3=-故答案为:3-.17.【答案】﹣1.【解答】解:∵与y n +3x 4是同类项∴m +3=4 n +3=1∴m =1 n =﹣2∴m +n=1+(﹣2)=﹣1.故答案为:﹣1.18.【答案】1-.【解答】解:由题意得 20a -= 30b +=解得2a = 3b =-所以 20232023()(23)1a b +=-=-.故答案为:1-.19.【答案】2-.【解答】解:|1|1-=|2|2-=21> 21∴-<-2101∴-<-<<∴在1-2- 1 0中最小的数为:2-.故答案为:2-.20.【答案】18x-.【解答】解:原式4333(8)x y x y=÷-1 8x=-.故答案为:18x-.21.【答案】4.【解答】3644=.故答案为:4.22.【答案】0.【解答】解:原式52510=2525==.故答案为:0.23.【答案】254k>.【解答】解:关于x的二次三项式25x x k-+在实数范围内不能分解因式就是对应的二次方程250x x k -+=无实数根∴△2(5)42540k k =--=-<254k ∴>. 故答案为:254k >. 24.【答案】1m n-. 【解答】解:原式222m n m mn n m m--+=÷ 2()m n m m m n -=⋅- 1m n=-. 故答案为:1m n -. 三、解答题(共7小题)25.2.【解答】解:40218()2sin 453π---︒212212=-+- 12212=-+2=26.【答案】5-.【解答】解:2021(2)3(3)()3--︒+--34319=+-4119=-+-5=-.27.【答案】533-【解答】1125()|234cos302-+-︒ 352(23)4=-+--522323=-+533=-28.【答案】222a ba b + 32.【解答】解:2221111()()a b a b ++-22222()a b b a ab a b +-=+2222222a ab b b a a b +++-=22222ab b a b +=222a ba b += 当11()22a -== 1b =时 原式2222121⨯+⨯=⨯424+=32=.29.【答案】(1)829;(2)22()()x y x y +-.【解答】解:(1)原式11192332=-⨯÷+139=-+ 829=; (2)原式2222(2)(2)x y xy x y xy =+++-22()()x y x y =+-.30.【答案】22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.【解答】解:(1)原式1143(8)()2324=-⨯--1143238()24=+⨯- 2342=- 232=;(2)原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步8()()x y x y =+-⋯⋯第三步228()x y =-.⋯⋯第四步任务一:以上变形过程中 第一步依据的公式用字母a b 表示为22()()a b a b a b -=+-;任务二:以上分解过程第四步出现错误 具体错误为进行乘法运算 分解因式的正确结果为8()()x y x y +-.故答案为:22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.31.【答案】(1)3;(2)见解答;(3)0b >.【解答】(1)解:2420a a --= 242a a ∴-=2(4)1a a ∴--2281a a =--22(4)1a a =--221=⨯-3=;(2)证明:2420a a --=224a a ∴-=222(2)(4)a a ∴-= 即4224416a a a -+= 42204a a ∴-=-;(3)解:0b > 证明如下: 由(2)知42204a a -=-42204a a ∴=-4222()(204)a a ∴=-84240016016a a a ∴=-+ ∴842110040164a a a =-+由(2)知42204a a -=-42204a a ∴=-∴421514a a =-4242481511411004044a a b a a a a -∴===-+2420a a --=0a '≠40a ∴>0b ∴>.1.【答案】D【解答】解:A 、|2||3|-<- 因此23->- 故A 不符合题意; B 、31-< 故B 不符合题意; C 、30-< 故C 不符合题意; D 、|||3|π->- 因此3π-<- 故D 符合题意. 故选:D .2.【答案】C【解答】解:110.000000000053 5.310-=⨯. 故选:C .3.【解答】解:(1)原式3134232=++⨯- 4=; (2)原式2(9)y x =-考前押题(3)(3)y x x =+-.4.【解答】解:原式32231122a b a b ab =++ 221(2)2ab a ab b =++21()2ab a b =+2a b += 2ab =∴原式12442=⨯⨯=.5.【答案】(1)520x -;(2)4(2)(2)P x x =+-;(3)16-.【解答】解:(1)根据题意得:2(3420)3(3)M x x x x =----22342039x x x x =---+520x =-;223420(2)P x x x =--++ 22342044x x x x =--+++ 2416x =-;(2)2416P x =-24(4)x =-4(2)(2)x x =+-;(3)2416P x =- 20x∴当0x =时,P 的最小值为16-. 故答案为:16-。
初中数学:数与式_整式_整式的混合运算(综合题)

轩爸辅导初中数学:数与式_整式_整式的混合运算初中七年级下学期数学整式的混合运算综合题真题及答案(54题)阴影部分的面积.化.(泰兴2019七下期中) 已知 ,(1) 求2A-B的值,其中 , ;(2) 试比较代数式A、B的大小.(成都2019七下期中) 为了改善小区环境,搞好绿化管理工作,更好地服务于居民,某小区物业绿化工作人员李师傅,规划在 米, 米的长方形的场地上,修建两横一纵三条宽为 米的小路,其余部分铺上地毯草.(2) 所铺地毯草的面积和是多少平方米?(3) 如果 ,并且每平方米地毯草的价格是20元,那么请你帮李师傅计算一下,买地毯草需要多少元?(深圳2018七下期中) 杨辉三角是一个由数字排列成等腰三角形数表,一般形式如图所示,其中每一横行都表示 (此处 , , , , , , )的展开式中的系数,杨辉三角最本质的特征是,它的两条斜边都是由数字 组成的,而其余的数则是等于它“肩”上的两个数之和.(1) 请你直接写出 .杨辉三角还有另一个特征(2) 从第二行到第五行,每一行数字组成的数(如第三行为 )都是上一行的数与积.(3) 由此你可写出 =.(a+b) (此处n=0,1,2,3,4,5..)的计算结果中的各项系数:(1) 请根据上题中的杨辉三角系数集”,仔细观察下列各式中系数的规律,并填空: 各项系数之和各项系数之和各项系数之和⑴ ;⑵ 。
②请写出 各项系数之和:(2) 设 ,求 的值.(3) 你能在(2)的基础上求出 的值吗?若能,请写出过程.(扬州2017七下期中) 对于任何实数,我们规定符号 =ad﹣bc,例如: =1×4﹣2×3=(1) 按照这个规律请你计算 的值;2(2) 按照这个规定请你计算,当a﹣3a+1=0时,求 的值.(4) 用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以为;(5) 已知 , ,利用上面的规律求 的值.要比较代数式A、B的大小,可以作差A-B,比较差的取值,当A-B>0时,有A>B;当A-B=0时,有A=B;当A-B<0时,有A<B.”例如,当a<0时,比较 的大小.可以观察因为当a<0时,-a>0,所以当a<0时,(1) 已知M= ,比较M、N的大小关系.(2) 某种产品的原料提价,因而厂家决定对于产品进行提价,现有三种方案:方案3:第一、二次提价均为(2) 劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d( )根据运算性质,填空: =(a为正数),若d(2)=0.3010,则d(16)=,d(5)=,,其中x=﹣ .①代数式:2x+ 的最小值是;(岱岳2016七下期末) 计算(1) (﹣ ax) •2y(2) (x﹣2)(x+2)﹣(x+1)(x﹣3)+(﹣3)示.根据图中的数据(单位:m),解答下列问题:。
2020中考数学复习数与式综合达标测试题4(附答案)

2020中考数学复习数与式综合达标测试题4(附答案)1.若24(1)25x k x +-+是一个完全平方式,则常数k 的值为( )A .11B .21C .-19D .21或—19 2.下列计算正确的是( )A .3a+4=7abB .7x ﹣3x=4C .3m+m=3m 2D .3x 2y ﹣2x 2y=x 2y 3.下列代数式b ,2ab ,5y ,x y -,22x y +,0,21121ab t ++中,单项式共有( ) A .6个 B .5个C .4个D .3个 4.计算1+2+22+23+…+22010的结果是( )A .22011﹣1B .22011+1C .20111(21)2-D .20111(2+1)25.在数-(-3),0,(-3)2,|-9|,-24中,正数的个数有( )A .1个B .2个C .3个D .4个6. 下列四组选项中,组内两个数都为无理数的是( )A .227 B .5π,1.010010001…(两个“1”之间依次多一个“0”)C ,3.14159D .2π7.已知空气单位体积质量是30.001239g /cm ,将0.001239用科学记数法表示为( )A .212.3910-⨯B .40.123910-⨯C .31.23910-⨯D .31.23910⨯ 8.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积约为250000m 2,则250000用科学记数法表示为( )A .25×104m 2B .0.25×106m 2C .2.5×105m 2D .2.5×106m 29.计算(-27)÷(-514)÷(-56)的结果是( ) A .-23 B .-2425 C .23 D .-64910.如果23x y -=,那么代数式142x y +-的值为A .5B .7C .-5D .7-11.(1)去括号:(m ﹣n )(p ﹣q )=________ .(2)计算:(5a 2+2a )﹣4(2+2a 2)=________ .12.已知多项式 34m a b ﹣2a b+1 是六次三项式,则 m= ____.13.已知:,则代数式的值等于__________.14.10a (a <0)=________;15.若分式22x x +的值为正,则实数x 的取值范围是__________________. 16.已知:25m =,28n =,则2m n +=________.17.我市某日的气温是-2℃~4℃,则该日温差是________℃.18.化简()()200920105252-⋅+ =_____________.19.已知|-x|=|﹣6|,则x 的值为______.20.观察如图图形的构成规律,依照此规律,第100个图形中共有______个“•”.21.观察下列等式,并回答有关问题:3322112234+=⨯⨯; 333221123344++=⨯⨯; 33332211234454+++=⨯⨯; …()1若n 为正整数,猜想3333123...n ++++=________;()2利用上题的结论比较3333123...100++++与25000的大小.22.计算:16-33-3-335⎛⎝. 23.一个底面是正方形的长方体,高为bcm ,底面正方形边长为5cm ,如果它的高不变,底面正方形边长增加了acm ,那么它的体积增加了多少?24.分解因式:x 4﹣81.25.小红爸爸上星期五买进某公司股票1000股,每股28元,星期六和星期天不交易.下表为本周内每日该股票的涨跌情况.(单位:元)(1)通过上表你认为星期五收盘时,每股是多少元?(2)本周内每股最高是多少?最低是多少元?(3)已知股票买入时需交成交额1.5‰的交易费,卖出时需交成交额2.5‰的交易费.若星期五抛出,则小红爸爸这笔股票交易盈亏如何?26.计算:(1()20493 3.144π--;(2233(3)(2)74--. 27.若01x <<,且116,x x x x+=-求的值. 28.已知:644×83=2x ,求x .29.已知水结成冰的温度是0C o ,酒精冻结的温度是117C -o .现有一杯酒精的温度为12C o ,放在一个制冷装置里、每分钟温度可降低1.6C o ,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)30.已知a ,b 互为相反数,c ,d 互为倒数,m 的倒数等于它的本身,求代数式2m ﹣13735a b cd +-的值.参考答案1.D【解析】已知()24125x k x +-+是一个完全平方式,可得k-1=±20,,解得k=21或k=-19,故选D. 2.D【解析】【详解】解:A.3a 与4不是同类项,不能合并,此选项错误;B.7x ﹣3x=4x ,此选项错误;C.3m+m=4m ,此选项错误;D.3x 2y ﹣2x 2y=x 2y ,此选项正确;故选D .3.D【解析】【分析】直接利用单项式的定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式.逐个判断,即可得出结论.【详解】解:代数式b ,2ab ,5y ,x y -,22x y +,0,21121ab t ++中, 单项式有:b ,2ab ,0共3个,故答案为:D.【点睛】本题考查了单项式的定义.解题的关键是理解单项式的定义;分数和常数也是单项式,而分母含有字母的式子不属于单项式.4.A【解析】【分析】可设其和为S ,则2S =2+22+23+24+…+22010+22011,两式相减可得答案.【详解】设S =1+2+22+23+ (22010)则2S =2+22+23+…+22010+22011②②﹣①得:S =22011﹣1.故选A .【点睛】本题考查了整式的混合运算,解答本题的关键是设出和为S ,并求出2S 进行做差求解. 5.C【解析】试题解析:-(-3)=3是正数,0既不是正数也不是负数,(-3)2=9是正数,|-9|=9是正数,-24=-16是负数,所以,正数有-(-3),(-3)2,|-9|共3个.故选C .6.B【解析】分析:根据无理数、有理数的定义即可判定选择项.详解:A. 227是有理数是无理数, 不符合题意;B. 5是无理数,1.010010001…(两个“1”之间依次多一个“0”)是无理数,符合题意;C. 3.14159是有理数;D.2π是有理数,不符合题意.故选B.点睛:本题考查了无理数的定义:无限不循环小数叫无理数.常见形式有:开方开不尽的数,如π等;无限不循环小数,如等;字母表示无理数,如1.010010001…等.7.C【解析】分析:由科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:0.001239=31.23910-⨯.故选C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.C【解析】【分析】科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数. 【详解】解:由科学记数法可知:250000 m 2=2.5×105m 2, 故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.9.B【解析】【分析】有理数除法法则,两数相除,同号得正,异号得负,除以一个数等于乘以这个数的相反数,先将除法转化为有理数乘法,再根据有理数乘法法则进行计算即可.【详解】(-27)÷(-514)÷(-56), =2146755⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭, =4655⎛⎫⨯- ⎪⎝⎭, =2425-, 故选B.【点睛】本题主要考查有理数的乘法和除法法则,解决本题的关键是要熟练掌握有理数乘法和除法法则.【解析】【分析】因为2x-y=3,把2x-y当成一个整体代入1-4x+2y即可求出结果.【详解】∵2x-y=3,∴1+4x+2y=1+2(2x-y)=1+6=7.故选B.【点睛】本题考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取关于2x-y的代数式的值,然后把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.11.mp﹣mq﹣np+nq﹣3a2+2a﹣8【解析】(1)(m﹣n)(p﹣q)=mp﹣mq﹣np+nq,故答案为:mp﹣mq﹣np+nq;(2)(5a2+2a)﹣4(2+2a2)=﹣3a2+2a﹣8,故答案为:﹣3a2+2a﹣8.12.2.【解析】【分析】直接利用多项式的定义分析得出答案.【详解】∵多项式3a4b m-a2b+1是六次三项式,∴4+m=6,解得:m=2.故答案为:2.【点睛】本题考查了多项式,正确把握多项式的定义是解题的关键.13.-2013【分析】将代数式的前两项提取公因式后整体代入即可求解.【详解】解:∵m2+m-1=0,∴m2+m=1,∴原式=m3+m2+m2-2014=m(m2+m)+m2+2014=m2+m+2014=1-2014=-2013,【点睛】本题考查了因式分解的应用、整式的混合运算等知识,考查知识比较多,但相对比较基础,难度不大.14.5a-;【解析】||a=,可由a<0知a5<05a=-.故答案为:-a5.15.x>0【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.【详解】∵分式2xx2+的值为正,∴x与x2+2的符号同号,∵x2+2>0,∴x>0,故答案为x>0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键. 16.40【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】∵25m =,28n =,∴2m n +=2m ×2n =5×8=40.故答案为40.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.17.6【解析】【分析】温差就是最高气温与最低气温的差,列式计算.【详解】依题意,温差=4-(-2)=6+2=6℃,∴该日的温差是6℃.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.182【解析】原式=)))20092009222⋅⋅ =))2009222⎡⎤⋅⎣⎦2.故答案为:2.19.±6【解析】【分析】 根据|﹣6|=6,可知|-x|=6,再根据绝对值的定义可知-x=±6,故x=±6. 【详解】解:∵|﹣6|=6∴|-x|=6,根据6的绝对值是6,-6的绝对值也是6故x 的值为: ±6.【点睛】本题考查了绝对值的性质:绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.20.10101.【解析】解:由图形可知:n =1时,“•”的个数为:1×2+1=3; n =2时,“•”的个数为:2×3+1=7;n =3时,“•”的个数为:3×4+1=13;n =4时,“•”的个数为:4×5+1=21;所以n =n 时,“•”的个数为:n (n +1)+1;当n =100时,“•”的个数为:100×(100+1)+1=10101.故答案为:10101.点睛:本题主要考查了规律型:图形的变化类,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,难度适中.21.(1)221(1)4n n +;(2)> 【解析】【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出13+23+33+…+1003的结果,再与50002进行比较,即可得出答案.【详解】(1)根据所给的数据可得:13+23+33+…+n 3=22114n n +(). 故答案为22114n n +(). (2)13+23+33+…+1003 =2211001014⨯⨯=211001012⨯⨯()=50502>50002则13+23+33+…+1003>50002.【点睛】本题考查了数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.22.-5【解析】【分析】根据二次根式的运算法则进行计算即可.【详解】原式,⎛=- ⎝=-= 【点睛】考查二次根式的混合运算,掌握运算法则是解题的关键.23.210a b ab +【解析】【分析】先分别求出前后两个长方体的体积,再相减便可.【详解】解:根据题目信息可知,长方体的体积增加了:(5+a)(5+a) ·b-5×5b=(25+a²+10a)b-25b=25b+a²b+10ab-25b=2a b 10ab +.【点睛】本题考核知识点:整式运算的应用.解题关键点:根据题意列出式子并正确运算. 24.(x 2+9)(x+3)(x ﹣3)【解析】试题分析:利用平方差公式分解因式.试题解析:x 4﹣81=(x 2+9)(x 2-9)=(x 2+9)(x +3)(x ﹣3).25.(1)33.5;(2)本周内每股最高是31.5元,最低是26.5元;(3)获利263.2元.【解析】试题分析:(1)根据正负数的意义,将涨跌的数相加计算即可得解;(2)分别计算出每天的股价,即可得解;(3)求出周六时的股价,然后求出获得的利润即可判断.试题解析:解:(1)28+3﹣1.5+3.5﹣0.5+1=33.5元;(2)周一:28+3=31(元),周二:28﹣1.5=26.5(元),周三:28+3.5=31.5(元),周四:28﹣0.5=27.5(元),周五:28+1=29(元),所以,本周内每股最高是31.5元,最低是26.5元;(3)最后获利:1000×28×(29﹣28)﹣1000×28×1.5‰﹣1000×28×(29﹣28)×2.5‰=2800×(1﹣1.5‰﹣2.5‰)=2800×94‰=263.2(元).点睛:本题考查了正数和负数,利用有理数的加法运算是解题关键,注意卖出的交易额减去买进的交易额减去手续费、交易费等于收益.26.(1)12-; (2)9 【解析】【分析】(1)原式利用二次根式性质,平方根定义,以及零指数幂法则计算即可得到结果;(2)原式利用二次根式性质,立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【详解】(1)原式=7-3-12=1-2(2)原式=3-(-2)+(=9【点睛】本题考查的知识点是实数的运算, 负整数指数幂,解题关键是按照运算法则依次化简解答.27.-【解析】【分析】 根据116,?1x x x x +=⨯=,利用完全平方公式得出2211()()4x x x x-=+-,再结合01x <<,即可得到答案.【详解】16x x+=Q , 2211()()436432x x x x∴-=+-=-=, 1x x∴-=± 又01x <<Q ,1x x∴-=-故答案为-.28.33【解析】试题分析:根据幂的乘方和积的乘方关系进行运算即可.试题解析:()()4343632493364822222,⨯=⨯=⨯=Q436482,x ⨯=Q3322,33.x x ∴=∴=29.需要80.6分钟.【解析】【分析】先求出酒精下降的温度,再除以每分钟温度可降低的温度解决问题.【详解】[12﹣(﹣117)]÷1.6=129÷1.6≈80.6(分钟).答:需要80.6分钟.【点睛】本题考查了有理数的混合运算的实际运用,注意题目蕴含的数量关系是解决问题的关键.30.145或-215【解析】【分析】利用相反数,倒数的定义,求出a+b,cd及m的值,将各自的值代入计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,m=1或-1,当m=1时,原式=2-0-15=145;当m=-1时,原式=-2-0-15=-215.【点睛】此题考查了代数式求值,相反数,倒数,熟练掌握各自的定义是解本题的关键.。
中考数学数与式真题训练50题含答案

中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列式子中,正确的是( ) A .-57>-79B .-14<-13C .-23<-710 D .37<142 A .-7B .7C .±7D .无意义3.2221121p p p p p p --⋅+-+的结果是( ) A .p B .1pC .11p p -+ D .11p p +- 4.据报道,2021年某市有关部门将在市区完成150万平方米老住宅小区综合整治工作,150万(即1500000)用科学记数法可表示为( ) A .71.510⨯B .61.510⨯C .51.510⨯D ..41510⨯5.今年某市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( ) A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯6.下列各式中,x 可以取一切实数的是( )A B .2C D .x x- 7.某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为( ) A .36.710⨯B .36.710-⨯C .36.710-⨯D .36.710--⨯8.下列运算正确的是( ) A .a 3+a 2=2a 5 B .a 3•(a 2)3=a 9C .a 8÷a 4=a 2D .(a +b )(b -a )=a 2-b 29.下列各式:−15a 2b 2,12x −1, -25,1x,2x y-,a 2-2ab 中单项式的个数有( )A .4个B .3个C .2个D .1个10.下列说法正确的是( )①0是绝对值最小的有理数;①相反数大于本身的数是负数①数轴上原点两侧的数互为相反数;①两个数比较,绝对值大的反而小A .①①B .①①C .①①D .①①11.下列各式从左到右的变形中,是因式分解的为( ) A .21234a b a ab =⋅B .222469(23)x xy y x y -+=-C .22(21)xy xy y y xy x -+-=--+D .2(3)(3)9x x x +-=-12.已知有理数a 、b 、c 满足||||||1a b c a b c++=,则||abc abc =( ) A .3B .3-C .1D .1-130a =,则实数a 在数轴上的对应点一定在( ) A .原点左侧 B .原点右侧C .原点或原点左侧D .原点成原点右侧14.若多项式26x mx +-因式分解成()()32x x +-,则m 的值为( ) A .1B .1-C .5D .5-15.下列各式计算正确的是( ) A .235a a a ⋅=B .32632639x y x y ⎛⎫-=- ⎪⎝⎭C .3162-⎛⎫-= ⎪⎝⎭D .()222x y x y -=-16.已知有理数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .0c a ->B .a b <C .0a b +>D .c b c b -=-17.下列运算正确的是( ) A .236x x x ⋅=B .()32628x x -=-C .632x x x ÷=D .235x x x +=18是同类二次根式的是( )AB CD19.估计2的运算结果应在下列哪两个数之间 ( ). A .4.5和5.0B .5.0和5.5C .5.5和6.0D .6.0和6.520.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;①2a 的算术平根是a ;①8-的立方根是2-;①带根号的数都是无理数;其中,不正确的有( ) A .1个B .2个C .3个D .4个二、填空题 21.若代数式12022x -有意义,则实数x 的取值范围是______.22.若2230x y -=,且5x y +=,则x y -=___________.23.计算:________________.24.0.7096精确到千分位,则0.7096≈__________.25.3649的算术平方根是________________________________.26.函数=y 中自变量x 的取值范围是___________;当x =________时,代数式21x x --的值等于0. 27.如图,半径为3π的圆在数轴上滚动,开始在数轴上点A (称圆与数轴相切)处,向左侧动一周至点B ,若A 所对应的数是3,则点B 所对应的数是__________.281的相反数是_____.29.无锡地表水较丰富,外来水源补给充足.市区储量为6349万立方米,用科学记数法表示为 立方米.3002=__.31.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.32.若a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,则23a b c -+的值是__________.33.计算:(x 2)5=_______.34.若a b <<,且a ,b 是两个连续的整数,则a b +的值为_________.3536a =_____________.37|=_____.38___________(只填写一个即可). 39.化简aa 3-的结果为___________40.比较大小:﹣5_____ 2,﹣45_____﹣56 .三、解答题41.化简:5x 2﹣3y ﹣3(x 2﹣2y ).421=1-,求3x yx y+-的值. 解:根据算术平方根的定义,1=,得2(2)1x y -=,所以21x y -=①……第一步 根据立方根的定义,1-,得121y -=-①……第二步 由①①解得1,1x y ==……第三步 把1,1x y ==代入3x y x y+-中,得30x yx y +=-……第四步 (1)以上解题过程存在错误,请指出错在哪些步骤,并说明错误的原因; (2)把正确解答过程写出来.43.在数轴上把下列各数表示出来,并用“<”连接各数. 5,1-22,|﹣4|,﹣(﹣1),﹣(+3)44.(1)已知2245A x y xy =-,2234B x y xy =-,求2A B -.(2)化简求值:22111122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中1x =,23y =-.45.计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 46.已知:210a =,25b =,280c =.求-22c b a +的值. 47.计算下列各题: (1)()3212282⎛⎫-+-÷-⨯ ⎪⎝⎭(2)1311664124⎛⎫-⨯-+-÷ ⎪⎝⎭48.计算或化简:(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯-(2)221581()()(2)(14)4696--+÷-+-⨯-(3)x 2+5y -4x 2-3y -1 (4) 7x +4(x 2-2)-2(2x 2-x +3)49.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”. (1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)50.已知1x =,求代数式229x x -+的值.参考答案:1.A【分析】根据正数大于负数,两个负数绝对值大的反而小,逐个判断即可求解【详解】解:5545 7763 -==77499963-==5779∴->-故A正确1134412-==1143312-==1143∴->-故B错误22203330-==7721101030-==27310∴->-故C错误312728=17428=3174∴>故D错误故选:A【点睛】本题考查有理数的大小比较,熟记有理数的大小比较法则是解决本题的关键2.A【分析】根据开立方与立方互为逆运算的关系,求解即可.,故本题答案应为:A.【点睛】开立方与立方互为逆运算的关系是本题的考点,熟练掌握其关系是解题的关键.3.A【分析】先将式子中的分子和分母进行因式分解,再进行约分即可. 【详解】2221121p p p p p p --⋅+-+ ()()()()211111p p p p p p --+=⋅+- p =, 故选:A .【点睛】本题主要考查了分式的计算,准确将式子中的分子、分母进行因式分解是解答本题的关键. 4.B【分析】根据科学记数法:把一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,由此问题可求解.【详解】解:把150万(即1500000)用科学记数法可表示为61.510⨯; 故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 5.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将24000用科学记数法表示为:42.410⨯,故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【分析】根据二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0,逐一判断即可.【详解】解:A .x≥0,故本选项不符合题意;B . 2中,-x≥0,解得x≤0,故本选项不符合题意;C .x 可以取一切实数,故本选项符合题意;D.xx-中,x≠0,解得x≠0,故本选项不符合题意.故选C.【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0是解决此题的关键.7.B【分析】根据科学记数法的表示即可求解.【详解】0.0067=36.710-⨯故选B.【点睛】此题主要考查科学记数法的表示,解题的关键是熟知负指数幂的应用.8.B【分析】根据合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式求解判断即可.【详解】解:A.a3+a2≠2a5,故错误,不符合题意;B.a3•(a2)3=a3•a6=a9,故正确,符合题意;C.a8÷a4=a4,故错误,不符合题意;D.(a+b)(b-a)=b2-a2,故错误,不符合题意;故选:B.【点睛】本题主要考查了合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式,熟记相关运算法则是解题的关键.9.C【分析】根据单项式的定义,结合选项找出单项式即可.【详解】解:−15a2b2,-25是单项式,共有2个故选C【点睛】本题考查了单项式的定义:数或字母的积组成的式子叫做单项式,注意单独的一个数或字母也是单项式.10.C【分析】利用有理数的定义,数轴绝对值判定即可.【详解】解:①0是绝对值最小的有理数,此①正确,①相反数大于本身的数是负数,此①正确,①数轴上到原点的距离相等且在原点两侧的数互为相反数,故①不正确, ①两个负数比较,绝对值大的反而小.故①不正确, 综上,①①的说法正确, 故选:C .【点睛】本题主要考查了有理数、数轴、相反数,解题的关键是熟记有理数的定义. 11.C【分析】根据因式分解的定义:把一个多项式化成几个整式的积的形式,逐一进行判定即可.【详解】解:A 、左边不是多项式,因此不是因式分解,故此选项不符合题意; B 、左边与右边不相等,因此不是因式分解,故此选项不符合题意;C 、提取公因式y -后,将多项式化成了两个整式积的形式,是因式分解,故此选项符合题意;D 、左边是积的形式,右边是多项式,因此不是因式分解,故此选项不符合题意; 故选C .【点睛】此题考查了因式分解的概念,正确理解因式分解是将一个多项式化成几个整式积的形式是解答此题的关键. 12.D【分析】此题首先根据已知条件和绝对值的意义得到a ,b ,c 的符号关系,在进一步求解即可.【详解】解:根据绝对值的意义知:一个非零数的绝对值除以这个数等于1或-1, 又||||||1a b c a b c++=,则a ,b ,c 中必有两个1和一个-1, 即a ,b ,c 中两正一负, ①abc <0, 则||abcabc =−1; 故选:D .【点睛】本题主要考查了绝对值的性质应用,掌握绝对值的性质和有理数的乘、除法法则是解决此题的关键. 13.C【分析】根据二次根式的性质,知-a≥0,即a≤0,根据数轴表示数的方法即可求解.【详解】解:0a =,a a =-, ①a≤0,故实数a 在数轴上的对应点一定在原点或原点左侧. 故选:C .【点睛】此题主要考查了二次根式的性质,实数与数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型. 14.A【分析】运用多项式乘多项式的乘法法则解决此题.【详解】解:()()22322366x x x x x x x +-=-+-=+-.由题意得,()()2632x mx x x +-=+-,①2266x x x mx +-=+-, ①1m =. 故选:A .【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键. 15.A【分析】根据各自的运算公式计算判断即可. 【详解】①235a a a ⋅=, ①A 正确;①326328327x y x y ⎛⎫-=- ⎪⎝⎭,①B 不正确; ①3182-⎛⎫-=- ⎪⎝⎭, ①C 不正确;①()2222x y x xy y -=-+, ①D 不正确;故选A .【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键.16.A【分析】根据有理数a ,b ,c 在数轴上的位置,可得0c a b <<<,c a >b >,可对A,B 选项进行判断,根据有理数的加减法法则可判断C,D .【详解】解:根据题意可得0c a b <<<,c a >b >, A. 0c a ->,故该选项正确,符合题意;, B. a b >,故该选项不正确,不符合题意;C. 0a b +<,故该选项不正确,不符合题意;D. 0c b <<,0b -<()0c b c b ∴-=+-< ∴c b b c -=-,故该选项不正确,不符合题意;故选A【点睛】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小;也考查了数轴的认识,以及有理数的加法运算和绝对值的意义.17.B【分析】根据同底数幂乘法、除法、幂的乘方及合并同类项法则逐一计算即可得答案.【详解】A.x 2·x 3=x 2+3=x 5,故该选项计算错误,不符合题意,B.()32628x x -=-,故该选项计算正确,符合题意, C.x 6÷x 3=x 6-3=x 3,故该选项计算错误,不符合题意,D.x 2与x 3不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查同底数幂乘法、除法、幂的乘方及合并同类项,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;熟练掌握运算法则是解题关键.18.B故选B.19.B【分析】先进行二次根式的运算,再估算大小.【详解】解:222==+,≈,3 1.732∴+≈,2 5.464<<,5.0 5.464 5.5故选B.【点睛】此题考查无理数的估算,二次根式的混合运算,先运算,再进行估算即可.20.C【分析】分别根据实数、立方根和算术平方根的定义对各小题进行逐一判断即可.【详解】解:①如果一个实数的立方根等于它本身,这个数有0或1或-1,所以①不正确;①a2的算术平方根是|a|,故①不正确;①-8的立方根是-2,故①正确;,不是无理数,故①不正确;所以不正确的有3个.故选:C.【点睛】本题考查了实数、立方根和算术平方根,熟知算术平方根的定义、立方根的定义及实数的分类是解答此题的关键.21.2022x≠【分析】根据分式有意义的条件:分母≠0即可得出结论.x-≠【详解】解:由题意可得20220x≠解得:2022x≠.故答案为:2022【点睛】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.22.6【分析】根据平方差公式即可求出答案.【详解】解:①x 2-y 2=30,且x +y =5,①(x -y )(x +y )=30,①x -y =6,故答案为:6.【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 23.-x 2y . 【详解】试题解析:21(2)2x xy x y ⋅-=- 考点:单项式乘以单项式.24.0.710【分析】把万分位上的数字6四舍五入即可.【详解】解:0.7096精确到千分位,则0.70960.710≈故答案为:0.710.【点睛】此题考查的是求一个数的近似数,掌握四舍五入法是解决此题的关键. 25. 67-5 【分析】根据算术平方根的定义和立方根的定义即可得出结论.【详解】解:①2636()749=,3(5)125-=-;①3649的算术平方根是675-. 故答案为:67;-5. 【点睛】此题考查的是求一个数的平方根、算术平方根和立方根,掌握平方根的定义、算术平方根的定义和立方根的定义是解决此题的关键.26. 3x ≤ 2【分析】①根据二次根式有意义的条件得出不等式,运算即可;①根据分式的值为零的条件得出不等式,运算即可.【详解】①由题意得:3-x ≥0,解得:3x ≤;①由题意得:x-2=0且x-1≠0,解得:2x =;故答案为:3x ≤;2【点睛】本题考查了二次根式有意义的条件和分式的值为零的条件,掌握知识点是解题关键.27.-3【分析】先求出圆的周长,再用点A 表示的数减去圆周长即可求出B 所对应的数【详解】解:①半径为3π,①圆周长=326ππ⋅= ①A 所对应的数是3,且由A 向左侧动一周至B ,①3-6=-3,①点B 所对应的数是-3故答案为:-3【点睛】本题考查了数轴表示数及有理数的减法,数轴上的数右边的总比左边的大28.【分析】根据只有符号不同的两个数叫做互为相反数解答.1的相反数是1故答案为:1【点睛】本题考查了相反数,是基础题,熟记概念是解题的关键.29.6.349×710【详解】试题解析:将6349万用科学记数法表示为:6.349×107.考点:科学记数法—表示较大的数.30.-4【分析】首先根据5次方根和零指数幂的运算法则计算,然后根据有理数的加减运算法则求解即可.【详解】解:原式31=--4=-.故答案为:4-.【点睛】此题考查了5次方根和零指数幂的运算,解题的关键是熟练掌握5次方根和零指数幂的运算法则.31.6【分析】有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.【详解】解:﹣112,1.2,0,3.14,37,﹣111113是有理数, π不是有理数,故答案为6.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解答本题的关键. 32.-28或0【分析】根据相反数,有理数的大小比较,数轴的性质得到a ,b ,c 的值,再代入计算.【详解】解:a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,①a =0,b =-1,c =-3或1,当c =-3时,23a b c -+=()()23013--+-=28-;当c =1时,23a b c -+=()23011--+=0,故答案为:-28或0.【点睛】本题考查了代数式求值,解题的关键是根据相反数,有理数的大小比较,数轴的性质得到各字母的值.33.x 10【分析】幂的乘方,底数不变,指数相乘,据此计算即可.【详解】解:(x 2)5=x 2×5=x 10.故答案为:x 10.【点睛】本题主要考查了幂的乘方,熟记幂的运算法则是解答本题的关键.34.9a ,b 是两个连续的整数,即可求得,a b 的值,从而求解.【详解】解:①a b <,且a ,b 是两个连续的整数,45<<,①4,5a b ==,∴9a b +=,故答案为:9.35.-1.8【分析】根据根式的性质即可得到答案.【点睛】本题考查的知识点是根式性质,解题的关键是熟练的掌握根式性质.36.-3【分析】根据同类二次根式的定义可得238103a a -=-,由此求解即可【详解】解:①①238103a a -=-,①260+-=a a①3a =-或2a =,①两个根式都是最简根式,①2a =当a =3时,二次根式有意义且符合题意,故答案为-3.【点睛】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式37【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:||【点睛】本题考查绝对值的意义,解题关键是掌握负数的绝对值是它的相反数. 38.2或3..【详解】,,①2,3.故答案为2或3.【点睛】本题主要考查了估算无理数的大小,正确找出符合题意的整数是解题的关键.39.【详解】分析:根据二次根式乘法,可化简二次根式.详解:原式=故选答案为:点睛:本题考查了二次根式的性质与化简,利用了二次根式的乘法.40. < >【分析】根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.【详解】解:﹣5<2, ①424530=<525630=, ①﹣45>﹣56. 故答案为:<,>.【点睛】本题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.41.2x 2+3y .【分析】先去括号,然后合并同类项即可得出答案.【详解】原式=5x 2﹣3y ﹣3x 2+6y=(5x 2﹣3x 2)+(6y ﹣3y )=2x 2+3y .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键. 42.(1)错误在第一步和第四步,理由见解析;(2)当1,1x y ==时,3x y x y +-无解当0,1x y ==时,31x y x y+=-- 【分析】(1)根据算术平方根的定义可知错误步骤及原因;(2)可由算术平方根和立方根的定义求出x,y 的值代入求解即可,其中x 的值有两个.【详解】解:(1)错误在第一步和第四步第一步错误原因:①1的平方根是1±,①21x y -=±第四步错误原因:当1,1x y ==时,3x y x y+-无解(21=,得2(2)1x y -=,所以21x y -=±,1=-,得121y -=-,21121x y y -=⎧⎨-=-⎩,解得11x y =⎧⎨=⎩ 21121x y y -=-⎧⎨-=-⎩,解得01x y =⎧⎨=⎩①当1,1x y ==时,3x y x y +-无解 当0,1x y ==时,31x y x y+=-- 【点睛】本题考查了平方根和立方根,正确理解平方根和立方根的定义和性质是解题的关键.43.数轴见详解,1(3)2(1)452-+<-<--<-<. 【分析】将各数表示在数轴上,再用“<”连接即可.【详解】解:如图所示:①用“<”连接各数为:1(3)2(1)452-+<-<--<-<; 【点睛】此题考查了有理数大小比较,以及数轴,将各数正确表示在数轴上是解本题的关键.44.(1)2256-x y xy ;(2)22x y -+,149- 【分析】(1)根据整式的加减计算法则进行求解即可;(2)先去括号,然后根据整式的加减计算法则进行化简,最后代值计算即可.【详解】解:(1)①2245A x y xy =-,2234B x y xy =-,①()()2222224534A B x y xy x y xy -=---222210348x y xy x y xy --+=2265x y xy -=;(2)2211112()()2323x x y x y --+-+ 22121122323x x y x y =-+-+ 22x y =-+,当1x =,23y =-时, 原式2221()3=-⨯+- 429=-+ 149=-. 【点睛】本题主要考查了整式的加减计算,整式的化简求值,含乘方的有理数混合计算,解题的关键在于能够熟练掌握相关计算法则.45.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;【详解】(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点睛】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.46.32【分析】利用同底数幂的除法法则,同底数幂的乘法法则,幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:当210a =,25b =,280c =时,()2222222222280510802510180102532c b ac b ac b a -+÷⨯÷⨯=÷⨯=÷⨯=⨯⨯===.【点睛】本题考查的是同底数幂的除法,同底数幂的乘法,幂的乘方,熟练掌握相对应的运算法则是解决本题的关键.47.(1)-3.5;(2)-12【分析】(1)根据有理数混合运算的法则,先算乘方,后算乘除,最后算加减,对每一项分别计算,然后求值即可;(2)根据有理数混合运算的法则,除一个数等于乘一个数的倒数,利用乘法交换律先计算-6和4的积,然后利用乘法分配律分别计算即可.【详解】(1)解:原式=114882⎛⎫⎛⎫-+-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=﹣4+12=﹣3.5 (2)原式=131131642441821264126412⎛⎫⎛⎫-⨯⨯-+-=-⨯-+-=-+=- ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了有理数的混合运算,乘法的交换律和分配律,解决本题的关键是熟练掌握整式混合运算的法则.48.(1)34; (2) -63;(3)-3x 2+2y-1; (4) 9x-14.【分析】(1)逆用乘法分配律进行计算即可;(2)先把除法化为乘法, 再用乘法分配律进行计算即可;(3)合并同类项即可;(4)去括号,合并同类项即可.【详解】(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯- =2225373123555⨯-⨯+⨯ =()2357125⨯-+ =34.(2)221581()()(2)(14)4696--+÷-+-⨯-=158()36(14)4694--+⨯+⨯- =-9-30+32-56=-63(3)x 2+5y -4x 2-3y -1=-3x 2+2y-1(4)7x +4(x 2-2)-2(2x 2-x +3)=7x+4x 2-8-4x 2+2x-6=9x-14.【点睛】本题考查了有理数的混合运算,掌握相关法则是解题关键,合理运用运算定律能起到简便计算的目的.49.(1)()()22a b a b -+(2)2700【分析】(1)把()()222a a b b a b -+-用提取公因式法分解,把224a b -用平方差公式分解;(2)把63.5a m =、18.25b m =代入()()22a b a b -+计算即可.【详解】(1)()()222a a b b a b -+-=()()22a b a b -+;224a b -=()()22a b a b -+;(2)把63.5a m =、18.25b m =代入()()22a b a b -+,原式=()()63.5218.2563.5218.25-⨯+⨯=()()63.536.563.536.5-+=27100⨯=2700【点睛】本题主要考查了学生对“代数式应用”知识点的掌握情况,解答本题的关键是由割补思想列代数式求解,然后通过题意列出式子,代入已知数值得到答案,解答本题时要注意:割补思想及代数式应用.50.11.【分析】先将代数式配方,然后再把1x =代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=. 【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.。
中考数学《数与式》专项练习题(含答案)

中考数学《数与式》专项练习题(含答案)一、单选题1.一条河的水流速度是2.5km /h ,某船在静水中的速度是km /h v ,则该船在这条河中逆流行驶的速度是( )A .()2.5km /h v +B .()2.5km /h v -C .()2.5km /h v -D .()5km /h v - 2.-24的相反数是( )A .-24B .24C .124-D .124 3.当2x =时,代数式234(2)(8)x x x x x -+的值是( )A .-4B .-2C . 2D . 44.有理数a ,b ,c 在数轴上对应的点的位置如图所示,有下列式子:①c -a >b -a ;②a +b >a +c ;③bc >ac ;④b a >c a.其中正确的有( )A .1个B .2个C .3个D .4个5.—0.25的相反数是:( )A .14B .4C .-4D .-56.把式子()()()()()2482562121212121++++⋅⋅⋅+化简的结果为()A .102421-B .102421+C .51221-D .51221+ 7.下列各式从左到右的变形,是因式分解的是( )A .()ab ac d a b c d ++=++B .21(1)(1)a a a -=+-C .222()2a b a ab b +=++D .222(2)a a a a --=- 8.下列各式的结果为3-的是( )A .()()()2933---++--B .012345-+-+-C .4.5 2.3 2.5 3.72-+-+D .()()()27603---+-+++ 9.已知a 2+ab=5,ab+b 2=﹣2,那么a 2﹣b 2的值为( )A .3B .7C .10D .﹣1010.实数4的平方根是()A .2B .-2C .2±D .16±11.下面的说法正确的是( )A .正有理数和负有理数统称有理数B .整数和分数统称有理数C .正整数和负整数统称整数D .有理数包括整数、自然数、零、负数和分数12.国家统计局公布的数据显示,经初步核算,2020年尽管受到新冠疫情的影响,前三个季度国内生产总值仍然达到近697800亿元,按可比价格计算,同比增长了6.2%.将数据697800用科学记数法表示为( )A .3697.810⨯B .469.7810⨯C .56.97810⨯D .60.697810⨯二、填空题13.下面给出的五个结论中:①最大的负整数是-1;②数轴上表示数3和-3的点到原点的距离相等;③当a≤0时,|a|=-a 成立;④若a 2=9,则a 一定等于3; ⑤2110a +一定是正数.说法正确的有_________________ 14.现有一列数a 1,a 2,a 3,…,其中a 1=1,a 2=111+a ,a 3=211+a ,…,a n =111+n a -,则a 17的值为________.15.计算21()2-____.16.已知132n xy +-与34y x 是同类项,则n 的值是__________. 17.计算:23÷25=______.18.三个连续奇数,中间一个为2n ﹣1,则这三个连续奇数之和为_____.19.有一列数a 1,a 2,a 3,…,a n ,已知a 1=1,a 2=2,从第三个数开始,每个数都等于它前面的两个数中第二个数除以第一个数所得的商,例a 3=a 2÷a 1=2……,那么a 2018=_____.20.用正负数表示具有相反意义的量:(1)高出海平面342米记为+342米,那么-20米表示的是__________;(2)某工厂增产1 200吨记为+1 200吨,那么减产13吨记为__________.三、解答题21.计算:(1)﹣13+10﹣7 (2)21—41??59÷()()22.计算:(1;(2.23.已知a+b=-8 , ab=10,求22a b +和 2()a b -的值.24.先化简,再求值:2211111a a a a a --÷+--+,其中a=4.25.请回答下列问题:(1介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ;(2)x 2的小数部分,y 1的整数部分,求x = ,y = ;(3)求)yx 的平方根.26.已知在纸面上画一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数 表示的点重合(2)若﹣2表示的点与4表示的点重合,回答以下问题:①数7对应的点与数 对应的点重合;②若数轴上A 、B 两点之间的距离为2020(点A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?(3)点C 在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C 原来表示的数是多少?请列式计算,说明理由.27.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:① 20.2×19.8 ;②()()22m n p m n p +--+.28.在解决数学问题时,我们一般先仔细读题干,找出有用信息作为已知条件,然后用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件,而有的信息不太明显需要结合图形,特殊式子成立的条件,实际问题等发现隐含信息作为条件,这样的条件称为隐含条件,所以我们在做题时更注意发现题目中的隐含条件(阅读理解)读下面的解题过程,体会加何发现隐含条件,并回答. 化简:2(13x)1x ---.解:隐含条件1-3x≥0,解得:x 13≤,∴原式=(1-3x )-(1-x )=1-3x-1+x=-2x(启发应用)已知△ABC 22x 1(5x)4(4x)+---,,,记△ABC 的周长为C △ABC(1)当x=2时,△ABC 的最长边的长度是______(请直接写出答案).(2)请求出C △ABC (用含x 的代数式表示,结果要求化简).29.某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下:(单位:km )+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5(1)请问,收工时检修小组距离A地多远?在A地的那一边?(2)若检修小组所乘汽车的平均油耗是7.5升/100km,则汽车在路上行走大约耗油多少升?(精确到0.1升)参考答案1.B2.B3.A4.C5.A6.C7.B8.B9.B10.C11.B12.C13.①②③⑤14.1597 258415.4 16.317.1 418.6n﹣319.2.20.低于海平面20米, -13吨21.⑴ -10 ⑵ -322.(1)0;(2)423.44,24.24.1 525.(1)4;b=(2−4;3(3)±826.(1)2;(2)①-5;②点A表示的数是-1009、点B表示的数是1011;(3)-1.27.(1)a2−b2;(2)a−b,a+b,(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)①99.96;②4m2−n2+2np−p2.28.(1)3;(229.(1)所以检修小组最后在A地东面36km处;(2)汽车在路上行走大约耗油5.6升.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学《数与式》综合测试
班级_______________ 姓名____________ 成绩__________
一 .填空题:(每题2分,共30分)
1.如果收入350元记作+350元,那么-80元表示 。
如果+7℃表示零上7℃,则零下5℃表示为
2.﹣5的相反数是______,倒数是______
3.如果多项式3x 2+2xy n +y 2是个三次多项式,那么n= 。
4.5x a+2b y 8 与-4x 2y 3a+4b 是同类项,则a+b 的值是________.
5. 多项式2x 4y-x 2y 3+12
x 3y 2+xy 4-1按x 的降幂排列为______. 6. 三个连续整数中,若n 是大小居中的一个,则这三个连续整数的和是______________.
7.99×101=( )( )= .
8.当x_______时,(x -4)0等于______.
9.当x_________时,x -2在实数范围内有意义;当x 时,分式
4
1-x 有意义.
10.若最简二次根式3b b a -和22b a -+是可以合并,则a b =_______
11.不改变分式0.50.20.31x y ++的值,使分式的分子分母各项系数都化为整数,结果是 12.计算1x x y x
÷⨯的结果为 13.水由氢原子和氧原子组成,其中氢原子的直径约为0.0000000001m ,这个数据用科学记数法表示为________
14.6239910≈ (保留四个有效数字)
15.李明的作业本上有六道题:
(1)3322-=-,(2)24-=-(3)2)2(2-=-,(4)=4±2(5)22414m
m =- (6)a a a =-23如果你是他的数学老师,请找出他做对的题是
二、选择题(每小题2分,共22分)
1.下列说法错误的是( )
A 0既不是正数也不是负数
B 整数和分数统称有理数
C 非负数包括正数和0
D 00C 表示没有温度
2.下列语句中错误的是( )
A 、数字0也是单项式
B 、单项式-a 的系数与次数都是 1
C 、21xy 是二次单项式
D 、-3
2ab 的系数是 -32 3.下列各式中,正确的是( )
A 32=3×2
B 32=23
C (﹣3)2=﹣32
D ﹣32=﹣3×3
4.如果222549x kxy y -+是一个完全平方式,那么k 的值是( )
(A )1225. (B )35. (C )70-. (D )70±.
5.下列去括号正确的是( )
(A )x x x x 253)25(3++=-+; (B )6)6(--=--x x .
(C )17)1(7--=+-x x x x ; (D )83)8(3+=+x x .
6.下列各式正确的是( )
A 、 a 4·a 5=a 20
B 、a 2+2a 2=3a 2
C 、(-a 2b 3)2= a 4b 9
D 、a 4÷a= a 2
7.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为 ( )
A 、32
B 、3210
C 、1210
D 、1012
8.分式29(1)(3)
x x x ---的值等于0,则x 的值为( ) A 、3 B 、-3 C 、3或-3 D 、0
9.下列各式中恒等变形正确的是( ) A. 2y y x xy = B. y yz x xz = C. 22y y x x = D. 2y xy x x
= 10.正数n 扩大到原来的100倍,则它的算术平方根( ).
A .扩大到原来的100倍
B .扩大到原来的10倍
C .比原来增加了100倍
D .比原来增加了10倍
n 的最小值是( )。
A .4
B 。
5
C 。
6
D 。
7
三、解答题(分)
1.计算:(每题4分,共20分)
(1)(11312364+-)×(﹣12)+(﹣1)2007
-∣﹣2∣3
(2)()()21
2(2)2x y x y x y y ⎡⎤+--+÷⎣⎦
(3)-24x 2y 4÷(-3x 2y )·3x 33) (4)04
.0103632
97
26+-
(5)
2.因式分解(每题3分,共9分):
(1) 21
222++x x (2) m 3-4m (3) 14-x
3.(7分)请选择你认为合适的x,y 的值,求式子211()()2x y xy x y x y x y x y +⋅÷++++的值
4.(6分)若10m n +=,24mn =,求22m n +的值
5. (621
()0
2y +-=+
附加:
1.计算
2.计算m+2-m -24
3.已知多项式ax 5+bx 3+cx ,当x=1时值为5,求该多项式当x=-1时的值。
4.已知25n a =,求624n a -=的值
5.若,a b 互为相反数,,c d 互为倒数,m =222()(1)a b cd m -+÷+
6.已知m 、n 是实数,且1,m =求23m n -的值(5分)。