2016-2017年安徽省宿州市埇桥区时村中学八年级(上)期中数学试卷(解析版)
八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC 的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C 的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC ≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE ﹣S△BOD=1,∴S△ABE =S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).。
八年级(上)期中数学试卷(含解析答案)

八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分)1.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个2.以下列数组作为三角形的三条边长,其中能构成直角三角形的是()A.1,,3 B.,,5 C.1.5,2,2.5 D.,,3.无理数的大小在以下两个整数之间()A.1与2 B.2与3 C.3与4 D.4与54.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+ B.2+C.2﹣1 D.2+15.下列各曲线中表示y是x的函数的是()A.B.C.D.6.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积是()A.8π cm2B.12π cm2C.16π cm2D.18π cm27.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)8.点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为()A.(0,﹣9)B.(﹣6,﹣1)C.(1,﹣2)D.(1,﹣8)9.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是()A.(2,1)B.(1,2) C.(,1 )D.(1,)10.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10二、填空题(共6小题,每小题3分,计18分)11.﹣的相反数是;倒数是;绝对值是.12.若a、b为实数,且b=+4,则a+b的值为.13.已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2015的值为.14.在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为.15.已知A(2,0),B(0,2),在x轴上确定点M,使三角形MAB 是等腰三角形,则M点的坐标为(任写一个).16.如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、解答题:(共8小题,计72分)17.(8分)计算:(1)×(9)(2)﹣×.18.(10分)计算:(1)2×(3﹣4﹣3)(2)(1+)(1﹣)+(+2)0+|2﹣|+.19.(6分)在数轴上画出表示的点.(要画出作图痕迹)20.(8分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(9分)△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.22.(9分)已知,如图在平面直角坐标系中,S△ABO=6,OA=OB,BC=12,求△ABC三个顶点的坐标.23.(10分)如图,D为△ABC的BC边上的一点,AB=10,AD=6,DC=2AD,BD=DC.(1)求BD的长;(2)求△ABC的面积.24.(12分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?参考答案与试题解析一、1.【考点】无理数.【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.【解答】解:根据判断无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,属于π类是无理数,因此无理数有2个.故选:C.【点评】本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻.2.【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+()2≠32,不能构成直角三角形,故选项错误;B、()2+()2≠52,不能构成直角三角形,故选项错误;C、1.52+22=2.52,能构成直角三角形,故选项正确;D、()2+()2≠()2,不能构成直角三角形,故选项错误.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.【考点】估算无理数的大小.【分析】先化简,然后再依据被开方数越大对应的算术平方根越大求解即可.【解答】解: =2=.∵1<3<4,∴1<<2.故选A.【点评】本题主要考查的是估算无理数的大小和二次根式化简与合并,依据夹逼法求得的大致范围是解题的关键.4. A.1+B.2+C.2﹣1 D.2+1【考点】实数与数轴.【分析】根据两点关于中点对称,可得线段的中点,根据线段中点的性质,可得答案.【解答】解:设C点坐标为x,由点B与点C关于点A对称,得AC=AB,即x﹣=+1,解得x=2+1.故选:D.【点评】本题考查了实数与数轴,利用两点关于中点对称得出线段的中点是解题关键.5.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.6.【考点】勾股定理.【分析】先根据已知条件利用勾股定理可得三角形的直角边(即半圆的直径),再得出半径的值,然后求出圆的面积即可得出答案.【解答】解:由勾股定理可得,三角形的直角边(即半圆的直径)为: =12,所以半径r=6,故S半圆=πr2=18π,故选:D.【点评】此题主要考查了学生对勾股定理和圆面积的理解和掌握,解决问题的关键是掌握半圆面积的算法,以及勾股定理的运用.7.【考点】全等三角形的判定与性质;坐标与图形性质;正方形的性质.【分析】过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.【点评】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.8.【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可.【解答】解:点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为(﹣3+3,﹣5﹣4),即(0,﹣9),故选:A.【点评】坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.9.【考点】等边三角形的性质;坐标与图形性质.【分析】过点A做AC⊥x轴于点C,根据等边三角形的性质结合点B的坐标即可找出OA、OC的长度,再利用勾股定理即可求出AC的长度,进而可得出点A的坐标,此题得解.【解答】解:过点A做AC⊥x轴于点C,如图所示.∵△AOB是等边三角形,若B点的坐标是(2,0),∴OA=OB=2,OC=BC=OB=1,在Rt△ACO中,OA=2,OC=1,∴AC==,∴点A的坐标为(1,).故选D.【点评】本题考查了等边三角形的性质.勾股定理以及坐标与图形性质,利用勾股定理求出AC的长度是解题的关键.10.【考点】勾股定理.【分析】分两种情况考虑,如图所示,分别在直角三角形ABC与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.二、11.【考点】分母有理化;实数的性质.【分析】根据相反数、倒数、绝对值的概念列出算式,再进行分母有理化即可得.【解答】解:﹣的相反数是==﹣2(),倒数为﹣=,绝对值为==2(),故答案为:﹣2(),,2().【点评】本题主要考查相反数、倒数、绝对值及分母有理化,熟练掌握相反数、倒数、绝对值的概念和分母有理化的方法是解题的关键.12.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,求出a、b的值,根据平方根的概念解答即可.【解答】解:由题意得,a2﹣1≥0,1﹣a2≥0,a﹣1≠0,解得,a=﹣1,则b=4,则a+b=3,故答案为:3.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.13.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的性质,横坐标相等,纵坐标互为相反数,进而求出即可.【解答】解:∵P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣5,解得:a=3,b=﹣4,∴(a+b)2015=(﹣1)2015=﹣1.故答案为:﹣1.【点评】此题主要考查了关于x轴对称点的性质,得出a,b的值是解题关键.14.【考点】点的坐标.【分析】根据角平分线上的点到脚的两边距离相等以及第一象限内点的横坐标与纵坐标都是正数求出m,第四象限内点的纵坐标是负数求出n,然后相加计算即可得解.【解答】解:∵点P(m,3)在第一象限的角平分线上,∴m=3,∵点Q(2,n)在第四象限角平分线上,∴n=﹣2,∴m+n=3+(﹣2)=1.故答案为:1.【点评】本题考查了各象限内点的坐标的符号特征以及角平分线上的点到脚的两边距离相等的性质,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.【考点】等腰三角形的判定;坐标与图形性质.【分析】①画AB的垂直平分线交x轴于一点;②以A为圆心,AB长为半径交x轴于两点;③以B为圆心,AB长为半径交交x轴于一点,再分别写出坐标即可.【解答】解:如图所示:M1(0,0),M4(﹣2,0),∵A(2,0),B(0,2),∴AB=,∵M2,M3是以A为圆心,AB长为半径交x轴于两点,∴M2(2+2,0),M3(﹣2+2,0).故所有满足条件点M的坐标是:(0,0)(﹣2,0)(2+2,0),(﹣2+2,0).【点评】此题主要考查了等腰三角形的判定与性质.注意分类讨论与数形结合思想的应用是解此题的关键.16.【考点】勾股定理.【分析】根据勾股定理求出AB的长,即可用减法求出阴影部分的面积.【解答】解:由勾股定理AB==13,根据题意得:S阴影=π()2+π()2﹣[π()2﹣×5×12]=30.【点评】观察图形的特点,用各面积相加减,可得出阴影部分的面积.三、17.【考点】二次根式的混合运算.【分析】(1)利用二次根式的乘法法则运算;(2)先把各二次根式化简为最简二次根式,然后进行二次根式的除法和乘法运算.【解答】解:(1)原式=×9×=45;(2)原式=﹣=1﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.【考点】二次根式的混合运算;零指数幂.【分析】先进行二次根式的化简,再根据二次根式混合运算的运算法则进行求解即可.【解答】解:(1)原式=4×(12﹣﹣9)=4×(3﹣)=36﹣4.(2)原式=1﹣2+1+(2﹣)+()=2﹣++=2+.【点评】本题考查了二次根式的混合运算,解答本题的关键在于熟练掌握二次根式的化简及二次根式混合运算的运算法则.19.【考点】勾股定理;实数与数轴.【分析】因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.再以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可.【解答】解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.【点评】考查了勾股定理,实数与数轴.能够正确运用数轴上的点来表示一个无理数.20.【考点】勾股定理的应用;一元一次方程的应用.【分析】根据题意可构造出直角三角形,根据勾股定理列出方程,便可得出答案.【解答】解:设秆长x米,则城门高(x﹣1)米,根据题意得x2=(x﹣1)2+32,解得x=5答:秆长5米.【点评】本题考查的是勾股定理在实际生活中的运用,比较简单.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.21.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)观察平面直角坐标系,根据点与坐标系的关系,即可求得A、B、C的坐标;(2)根据关于y轴对称的图形的特点,首先求得各对称点的坐标,继而画出△A1B1C1;(3)根据关于原点对称的图形的特点,首先求得各对称点的坐标,继而画出△A2B2C2.【解答】解:(1)A(0,3);B(﹣4,4);C(﹣2,1);(2)如图:B1的坐标为:(4,4);(3)如图:A2(0,﹣3).【点评】此题考查了轴对称变换与关于原点对称的图形的性质.此题难度不大,注意掌握数形结合思想的应用.22.【考点】三角形的面积;坐标与图形性质.【分析】先根据三角形面积求出OA的长,再根据OA=OB可得OB,最后由BC=10可得OC,继而可得答案.【解答】解:∵S△ABO=OB•OA=6,OA=OB,∴OA=OB=2,∴A(0,2)、B(﹣2,0).∵BC=12,∴OC=BC﹣OB=12﹣2,∴C(12﹣2,0).综上所述,A(0,2)、B(﹣2,0)、C(12﹣2,0).【点评】此题考查的知识点是三角形的面积、等腰直角三角形,关键是写三角形顶点的坐标时,要特别注意根据点所在的位置来确定坐标正负情况.23.【考点】勾股定理的逆定理.【分析】(1)由DC=2AD,根据AD的长求出DC的长,进而求出BD的长即可;(2)在直角三角形ABD中,由AB,AD以及BD的长,利用勾股定理的逆定理判断得到三角形为直角三角形,即可求出三角形ABC面积.【解答】解:(1)∵AD=6,DC=2AD,∴DC=12,∵BD=DC,∴BD=8;(2)在△ABD中,AB=10,AD=6,BD=8,∵AB2=AD2+BD2,∴△ABD为直角三角形,即AD⊥BC,∵BC=BD+DC=8+12=20,AD=6,∴S△ABC=×20×6=60.【点评】此题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.24.【考点】一次函数的应用.【分析】(1)当0<x≤6时,根据“水费=用水量×2”即可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×5+(用水量﹣6)×3”即可得出y与x的函数关系式;(3)经分析,当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x﹣6中,求出x值,此题得解.【解答】解:(1)根据题意可知:当0<x≤6时,y=2x;(2)根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6;(3)∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据数量关系列出函数关系式;(3)代入y=27求出x值.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.。
安徽省宿州市八年级上学期数学期中考试试卷

安徽省宿州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2018·鼓楼模拟) 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的()A . 三条高线的交点B . 三条中线的交点C . 三个角的角平分线的交点D . 三条边的垂直平分线的交点2. (1分)在π、、﹣、、3.1416中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个3. (1分) (2019八下·黄陂月考) △ABC在下列条件下,不是直角三角形的是()A .B .C .D .4. (1分)的立方根是()A .B .C .D .5. (1分) (2017七下·曲阜期中) 已知|a﹣1|+ =0,则a+b=()A . ﹣8B . ﹣6C . 66. (1分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A . BC=EC,∠B=∠EB . BC=EC,AC=DCC . BC=EC,∠A=∠DD . ∠B=∠E,∠A=∠D7. (1分) (2018八上·大连期末) 如图,等腰△ABC的面积为S,AB=AC=m,点D为BC边上任意一点,DE⊥AB 于E,DF⊥AC于F,则DE+DF=()A .B .C .D .8. (1分) (2018七上·襄州期末) 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()B . 3个C . 4个D . 5个9. (1分)如图,64、400分别为所在正方形的面积,则正方形A的面积是()A . 336B . 164094C . 464D . 15590410. (1分)(2017·邹平模拟) 如图,将矩形ABCD沿对角线BD折叠,使C落在F处,BF交AD于E,则下列结论不一定成立的是()A . AD=BFB . △ABE≌FDEC . sinD . △ABE∽△CBD二、填空题 (共8题;共8分)11. (1分) (2019七下·莆田期中) 已知点A,B,C在数轴上表示的数a、b、c的位置如图所示,化简=________12. (1分) (2020八上·嘉陵期末) 如图,在△ABC中,AB=AC,点D在AC边上,BD=BC,若∠ABD=45°,则∠A的度数是________。
安徽省上学期初中八年级期中考试数学试卷(附解析答案)

安徽省上学期初中八年级期中考试数学试卷考试时间:100分钟 试卷分值:120分一、(本大题共10小题,每小题3分,共30分)1、平面直角坐标系中,点(2,1)-所在象限为 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.下列函数(1)y x π=,(2) 21y x =-+,(3) 1y x=,(4) 123y x -=-,(5) 21y x =-中,是一次函数的有( )A.4个B.3个C.2个D.1个3.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A .50°B .30°C .20°D .15°4. 如果(3,24)P m m ++在y 轴上,那么点P 的坐标是( )A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)5.在下列条件中,①∠A+∠B=∠C ; ②∠A :∠B :∠C=1:2:3; ③∠A=∠B=∠C ;④∠A=∠B=2∠C ; ⑤∠A=2∠B=3∠C ,能确定△ABC 为直角三角形的条件有( )A .2个B .3个C .4个D .5个6、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是y ( )A.203210x y x y +-=⎧⎨--=⎩,B.2103210x y x y --=⎧⎨--=⎩, C.2103250x y x y --=⎧⎨+-=⎩, D.20210x y x y +-=⎧⎨--=⎩, 7、关于函数12+-=x y ,下列结论正确的是 ( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .图象与直线y =-2x +3平行D .y 随x 的增大而增大8.若a 、b 、c 为△ABC 的三边长,且满足420a b -+-=,则c 的值可以为( )A .5B .6C .7D .89.已知一次函数4y ax =+与2y bx =-的图象在x 轴上相交于同一点,则b a的值是( ) A. 4 B. 2- C. 12 D. 12- 10.某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地返回学校用的时间是( )A.45.2分钟B.48分钟C.46分钟D.33分钟二、填空题(本大题共8小题,每小题3分,共24分)11、 函数24x y +=的自变量x 取值范围是 12、点P 在第二象限,到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是13、在△ABC 中,080A ∠=,B C ∠=∠ ,则B ∠=14.点(5,1)P -沿x 轴正方向平移2个单位,再沿y 轴负方向平移4个单位,所得到的点的坐标为__________.15.已知2y -与x 成正比,且当1x =时, 6y =-,则y 与x 的关系式是____________。
安徽省宿州市埇桥区八年级数学上学期期中试卷(含解析)

2016-2017学年安徽省宿州市埇桥区朱仙庄矿中学八年级(上)期中数学试卷一、选择题(每题2分共20分)1.下列数据中,哪一组能构成直角三角形()A.1,2,3 B.5,8,5 C.3,4,5 D.6,8,122.下列函数中,一次函数为()A.y=x3B.y=2x2+1 C.y= D.y=﹣3x3.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.在实数中:,|﹣3|,,,,0.8080080008…(相邻两个8之间0的个数逐次加1),无理数的个数有()A.4个B.3个C.2个D.1个5.若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3 B.x=2,y=3 C.x=﹣2,y=3 D.x=2,y=﹣36.与2﹣相乘,结果是1的数为()A.B.2﹣C.﹣2+D.2+7.下面计算正确的是()A.3+=3B.÷=3 C.•=D. =±28.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.9.过点(﹣2,﹣4)的直线是()A.y=x﹣2 B.y=x+2 C.y=2x+1 D.y=﹣2x+110.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标可能有()个.A.1个B.2个C.3个D.4个二、填空题:(每小题2分,共20分)11.比较大小:35.12.计算:的平方根= .13.图象经过(1,2)的正比例函数的表达式为.14.已知2a﹣1的平方根是±3,则a= .15.将直线y=2x向上平移1个单位,得到的一次函数的解析式是.16.如图,直线a的与坐标轴围成的三形的面积是.17.若点(1,m)和点(n,2)都在直线y=x﹣1上,则m+n的值为.18.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为cm.19.已知点(﹣5,y1),(0,y2)都在直线y=﹣3x+2上,则y1,y2的大小关系是.20.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD 折叠,使它落在斜边AB上,且与AE重合,则CD的长为cm.三、解答题:(共60分)“看准、想清、写明”21.计算题①(+)2﹣②+6﹣③﹣4④+×.22.解方程(1)(x﹣1)3=27(2)2x2﹣50=0.23.如图,圆柱形玻璃容器,高8cm,底面周长为30cm,在外侧下底的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口外侧的点F处有食物,求蚂蚁要吃到食物所走的最短路线长度.(画出侧面展开图并计算)24.写出如图格点△ABC各顶点的坐标,求出此三角形的周长.25.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发与A相距千米.(2)B出发后小时与A相遇.(3)分别求出A、B行走的路程S与时间t的函数关系式.(4)出发2时,A、B之间的距离是多?(5)通过计说明谁到达30千米处?26.某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠,乙旅社提出每人次收350元车费和住宿费,但有3人可享受免费待遇(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式.(2)在同一坐标系内作出它们的图象;(3)如果组织20人的旅行团,选择哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?(4)由于经费紧张,单位领导计划此次旅行费用不超过5000元,选哪一家旅行社去的人多一些?最多去多少人?2016-2017学年安徽省宿州市埇桥区朱仙庄矿中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题2分共20分)1.下列数据中,哪一组能构成直角三角形()A.1,2,3 B.5,8,5 C.3,4,5 D.6,8,12【考点】勾股数.【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.【解答】解:A、12+22≠32,故不是直角三角形,错误;B、52+52≠82,故不是直角三角形,错误;C、32+42=52,故是直角三角形,正确;D、62+82≠122,故不是直角三角形,错误.故选C.2.下列函数中,一次函数为()A.y=x3B.y=2x2+1 C.y= D.y=﹣3x【考点】一次函数的定义.【分析】利用一次函数的意义:一般地,形如y=kx+b(k≠0,k,b是常数),那么y叫做x 的一次函数.当b=0时,y=kx+b即y=kx,即正比例函数,所以说正比例函数是一种特殊的一次函数,由此选择答案即可.【解答】解:A、B、C都不是一次函数;D、是一次函数.故选:D.3.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.4.在实数中:,|﹣3|,,,,0.8080080008…(相邻两个8之间0的个数逐次加1),无理数的个数有()A.4个B.3个C.2个D.1个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣、﹣、0.8080080008…都是无理数,|﹣3|、、是有理数,故选B.5.若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3 B.x=2,y=3 C.x=﹣2,y=3 D.x=2,y=﹣3【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y).【解答】解:根据轴对称的性质,得x=2,y=﹣3.故选D.6.与2﹣相乘,结果是1的数为()A.B.2﹣C.﹣2+D.2+【考点】分母有理化.【分析】用1除以2﹣,得出的结果即为所求的数.【解答】解: ==2+.故选D.7.下面计算正确的是()A.3+=3B.÷=3 C.•=D. =±2【考点】实数的运算.【分析】A、根据合并二次根式的法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的乘法法则即可判定;D、根据二次根式的性质即可判定.【解答】解:A、不能合并,故选项错误;B、÷==3,故选项正确;C、,故选项错误;D、=2,故选项错误.故选B.8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.9.过点(﹣2,﹣4)的直线是()A.y=x﹣2 B.y=x+2 C.y=2x+1 D.y=﹣2x+1【考点】一次函数图象上点的坐标特征.【分析】把点(﹣2,﹣4)分别代入各直线的解析式进行检验即可.【解答】解:A、当x=﹣2时,y=﹣2﹣2=﹣4,故本选项正确;B、当x=﹣2时,y=﹣2+2=0≠﹣4,故本选项错误;C、当x=﹣2时,y=﹣4+1=﹣3≠﹣4,故本选项错误;D、当x=﹣2时,y=4+1=5≠﹣4,故本选项错误.故选A.10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标可能有()个.A.1个B.2个C.3个D.4个【考点】等腰三角形的判定;坐标与图形性质.【分析】分以OA为腰和底边两种情况作出点P的位置,即可得解.【解答】解:点P的位置如图所示共有4种情况,所以点P的坐标可能有4个.故选D.二、填空题:(每小题2分,共20分)11.比较大小:3<5.【考点】实数大小比较.【分析】首先把两个数平方,再根据实数的大小比较方法即可比较大小.【解答】解:∵(3)2=45,(5)2=75,∴3<5.故填空答案:<.12.计算:的平方根= ±2.【考点】算术平方根;平方根.【分析】先求出的值,再根据平方根的定义解答.【解答】解:∵ =8,∴的平方根为,±即±2.故答案为:±2.13.图象经过(1,2)的正比例函数的表达式为y=2x .【考点】待定系数法求正比例函数解析式.【分析】本题中可设图象经过(1,2)的正比例函数的表达式为y=kx,然后结合题意,利用方程解决问题.【解答】解:设该正比例函数的表达式为y=kx∵它的图象经过(1,2)∴2=k∴该正比例函数的表达式为y=2x.14.已知2a﹣1的平方根是±3,则a= 5 .【考点】平方根.【分析】根据平方根的定义列方程求解即可.【解答】解:由题意得,2a﹣1=9,解得a=5.故答案为:5.15.将直线y=2x向上平移1个单位,得到的一次函数的解析式是y=2x+1 .【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.16.如图,直线a的与坐标轴围成的三形的面积是 3 .【考点】一次函数图象上点的坐标特征.【分析】直接根据三角形的面积公式解答即可.【解答】解:∵由图可知,直线与坐标轴的交点分别为(3,0),(0,2),∴直线a的与坐标轴围成的三形的面积=×2×3=3.故答案为:3.17.若点(1,m)和点(n,2)都在直线y=x﹣1上,则m+n的值为 3 .【考点】一次函数图象上点的坐标特征.【分析】先把点(1,m)和点(n,2)代入直线y=x﹣1求出m、n的值,进而可得出结论.【解答】解:∵点(1,m)和点(n,2)都在直线y=x﹣1上,∴m=1﹣1=0,2=n﹣1,解得m=0,n=3,∴m+n=3.故答案为:3.18.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为 4.8 cm.【考点】勾股定理.【分析】设斜边上的高为hcm,由勾股定理求出斜边长,再由直角三角形面积的计算方法即可得出斜边上的高.【解答】解:设斜边上的高为hcm,由勾股定理得: =10cm,直角三角形的面积=×10×h=×6×8,解得:h=4.8.故答案为:4.8cm.19.已知点(﹣5,y1),(0,y2)都在直线y=﹣3x+2上,则y1,y2的大小关系是y1>y2.【考点】一次函数图象上点的坐标特征.【分析】直接把各点代入直线y=﹣3x+2,求出y1,y2的值,再比较出其大小即可.【解答】解:∵点(﹣5,y1),(0,y2)都在直线y=﹣3x+2上,∴y1=﹣3×(﹣5)+2=17,y2=2,∵17>2,∴y1>y2.故答案为:y1>y2.20.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD 折叠,使它落在斜边AB上,且与AE重合,则CD的长为 3 cm.【考点】翻折变换(折叠问题).【分析】由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE.【解答】解:由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2即CD2+42=(8﹣CD)2,解得:CD=3cm.三、解答题:(共60分)“看准、想清、写明”21.计算题①(+)2﹣②+6﹣③﹣4④+×.【考点】实数的运算.【分析】①原式利用完全平方公式及立方根定义计算即可得到结果;②原式各项化简后,合并即可得到结果;③原式利用二次根式的性质化简,计算即可得到结果;④原式利用二次根式的乘除法则计算即可得到结果.【解答】解:①原式=5+2﹣4=1+2;②原式=2+6×﹣3=;③原式=+﹣4=5+4﹣4=5;④原式=+=3+4=7.22.解方程(1)(x﹣1)3=27(2)2x2﹣50=0.【考点】立方根;平方根.【分析】(1)可用直接开立方法进行解答;(2)可用直接开平方法进行解答.【解答】解:(1)∵(x﹣1)3=27,∴x﹣1=3∴x=4;(2)∵2x2﹣50=0,∴x2=25,∴x=±5.23.如图,圆柱形玻璃容器,高8cm,底面周长为30cm,在外侧下底的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口外侧的点F处有食物,求蚂蚁要吃到食物所走的最短路线长度.(画出侧面展开图并计算)【考点】平面展开-最短路径问题.【分析】先将圆柱的侧面展开,再根据勾股定理求解即可.【解答】解:如图所示,∵圆柱形玻璃容器,高8cm,底面周长为30cm,∴SD=15cm,∴SF===17(cm).答:蚂蚁要吃到食物所走的最短路线长度是17cm.24.写出如图格点△ABC各顶点的坐标,求出此三角形的周长.【考点】勾股定理;坐标与图形性质.【分析】根据各点在坐标系中的位置写出各点坐标,再根据勾股定理求出各边的长,进而可得出周长.【解答】解:由图可知,A(2,2),B(﹣2,﹣1),C(3,﹣2).AB==5,AC==,BC==,故周长=5++.25.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发与A相距10 千米.(2)B出发后 1 小时与A相遇.(3)分别求出A、B行走的路程S与时间t的函数关系式.(4)出发2时,A、B之间的距离是多?(5)通过计说明谁到达30千米处?【考点】一次函数的应用.【分析】(1)利用函数图象直接得出答案;(2)利用函数图象直接得出答案;(3)分别利用待定系数法求一次函数解析式和正比例函数解析式即可;(4)将t=2分别代入函数解析式求出即可;(5)利用S=30进而求出答案.【解答】解:(1)由图象可得:B出发时与A相距10千米.故答案为:10;(2)由图象可得出:B出发后1小时与A相遇.故答案为:1;(3)设S A=kt+b,将(0,10),(1,15)代入得出:,解得:故:S A=5t+10;设S B=at,将(1,15)代入得出:a=15,则 S B=15t;(4)由题意可得:S A=5×2+10=20,S B=15×2=30,故30﹣20=10(km);(5)当30=5t+10,解得:t=4,当30=15t,解得:t=2,故2<4,B先到达30km.26.某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠,乙旅社提出每人次收350元车费和住宿费,但有3人可享受免费待遇(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式.(2)在同一坐标系内作出它们的图象;(3)如果组织20人的旅行团,选择哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?(4)由于经费紧张,单位领导计划此次旅行费用不超过5000元,选哪一家旅行社去的人多一些?最多去多少人?【考点】一次函数的应用.【分析】(1)设甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,旅行人数为x人,根据单价乘以数量等于总价就可以表示出y与x之间的函数关系式;(2)根据(1)中解析式进行描点连线即可画出图象;(3)将x=20分别代入y甲与y乙的解析式求出y甲与y乙的大小,进行比较就可以求出结论;(4)将y=5000分别代入两个解析式求出x的值即可求出结论【解答】解:(1)设甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,旅行人数为x人,由题意,得y甲=300x,y乙=350(x﹣3)=350x﹣1050.答:y甲=300x,y乙=350x﹣1050;(2)如图所示:(3)当x=20时,y甲=300×20=6000元,y乙=350×20﹣1050=5950元;∵6000>5950,∴y甲>y乙,∴选择乙旅行社比较合算;(4)当y=5000时,5000=300x,x=≈16人;5000=350x﹣1050,x=≈17人.∵16<17.∴选乙旅行社去的人多些,最多去的人数:17﹣16=1人.答:选乙旅行社去的人多一些,最多去1人.。
安徽省宿州市八年级上学期期中数学试卷

安徽省宿州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的有()A . 4个B . 3个C . 2个D . 1个2. (2分)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A . 16B . 20或16C . 20D . 123. (2分)下列命题是真命题的是()A . 内错角相等B . 同位角相等,两直线平行C . 互补的两个角必有一条公共边D . 相等的角是对顶角4. (2分) (2016高一下·石门期末) 下列说法正确的是()A . 若a2>0,则a>0B . 若a2>a,则a>0C . 若a<0,则a2>aD . 若a<1,则a2<a5. (2分) (2018八上·江北期末) 如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是()A . 120°B . 135°C . 140°D . 150°6. (2分) (2018九上·滨州期中) 如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当DPMN周长取最小值时,则∠MPN的度数为()A . 140°B . 100°C . 50°D . 40°7. (2分)下列条件能判断两个三角形全等的是()①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等A . ①③B . ②④C . ①②④D . ②③④8. (2分)(2016·杭州) 已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A . m2+2mn+n2=0B . m2﹣2mn+n2=0C . m2+2mn﹣n2=0D . m2﹣2mn﹣n2=09. (2分) (2018八上·桥东期中) 如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,连接CF,则下列结论:①BF=AC;②∠FCD=45°;③若BF=2EC,则△FDC周长等于AB的长;其中正确的有()A . 0个B . 1个C . 2个D . 3个10. (2分)(2016·陕西) 如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A . 2对B . 3对C . 4对D . 5对二、填空题 (共10题;共11分)11. (1分) (2019九上·台安月考) 如图已知等边,顶点在双曲线上,点的坐标为.过作交双曲线于点,过作交x轴于点得到第二个等边;过作交双曲线于点,过作交x轴于点,得到第三个等边;以此类推,…,则点的坐标为________.12. (1分) (2017八下·莒县期中) 如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则EF长为________cm.13. (1分) (2017八下·北海期末) 如图,D是Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于点E,若AE=5cm,DC=12 cm,则CE的长为________ cm.14. (2分) (2015九上·宁波月考) 如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠AOB的度数为________;∠A的度数为________.15. (1分) (2020九下·汉中月考) 不等式-2x+1>-5的最大整数解是________。
安徽省宿州市时村中学2016-2017学年八年级(上)期中考试数学试卷(含答案)

5.已知点(-4, y i ) , (2, y 2)都在直线 1y=- 2 x+2 上,贝U y 1 ,y 2的大小关系是 A.y i >y 2B.y i =y 2C.y i <y 2D.不能比较6.已知一次函数y= kx+b 的图象如图所示,则k,b 的符号是(A.k>0, b>0B. k>0, b<0C. k<0, b>0D. k<0, b<07.已知直角三角形两边的长分别为 3和4,则此三角形的周长为A . 12C . 12 或 7 + . 7D .以上都不对 A.x = — 2, y =— 3 B.x =2, y =3 C.x = — 2, y =3 9.下面哪个点在函数1y= x+1的图象上()2A . (2, 1)B . (-2, 1) C. ( 2, 0)D. x =2, y = — 3D. (-2, 0)时村中学2016— 2017学年度第一学期期中考试试卷八年级数学(时间:100分钟分数:100分 )123456789101• A 5B 22•下列各式中计算正确的是()A...(占)2二-9B. 一25 = : 53估计.6 +1的值在()B. 3至U 4之间4 .点P (-3, 5)关于y 轴的对称点P '的坐标是(C . 1D . 4C. .(-1)3=「1 D.(_ . 2)2—2A. ( 3, 5)B. ( 5, -3)C. (3, -5)D. (-3, -5)8若点A (x,3)与点B (2, y )关于x 轴对称,则(10. 在下列长度的各组线段中,能组成直角三角形的是()A.5, 6, 7B.5, 12, 13C.1, 4, 9D.5, 11, 12二、填空题(每小题3分,共24分)11. 如果将电影票上“6排3号”简记为也羽,那么“10排10号”可表示为 _____________ •,絵:;表示的含义是12. _______________________________________________________________ 已知点A ( 3, 2), AC丄x 轴,垂足为C,则C点的坐标为_____________________________________________ .13•点P (- 2, 1)在平面直角坐标系中所在的象限是第_____________ 象限.14•若一个数的立方根就是它本身,则这个数是___________ .15.在厶ABC中,a, b, c为其三边长,匕二3, j二?,错误!未找到引用源。
八年级上册宿州数学期中精选试卷测试卷(含答案解析)

八年级上册宿州数学期中精选试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点(2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ =2 HI.【答案】(1)证明见解析;(2)22(0,)7F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作EG ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.试题解析:(1)过E 点作EG⊥x 轴于G ,∵B (0,-4),E (-6,4),∴OB=EG=4,在△AEG 和△ABO 中,∵90EGA BOAEAG BAOEG BO∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG≌△ABO(AAS),∴AE=AB∴A为BE中点(2)过A作AD⊥AE交EF延长线于D,过D作DK⊥x轴于K,∵∠FEA=45°,∴AE=AD,∴可证△AEG≌△DAK,∴D(1,3),设F(0,y),∵S梯形EGKD=S梯形EGOF+S梯形FOKD,∴()()() 111347463222y y +⨯=+⨯++∴227y=∴220,7F⎛⎫⎪⎝⎭(3)连接MI、NI∵I 为△MON 内角平分线交点,∴NI 平分∠MNO,MI 平分∠OMN,在△MIN 和△MIA 中,∵MN MA NMI AMI MI MI =⎧⎪∠=∠⎨⎪=⎩∴△MIN ≌△MIA (SAS ),∴∠MIN=∠MIA ,同理可得∠MIN=∠NIB,∵NI 平分∠MNO,MI 平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI ,作IS⊥OM 于S, ∵IH⊥ON,OI 平分∠MON,∴IH=IS=OH=OS ,∠HIS=90°,∠HIP+∠QIS=45°,在SM 上截取SC=HP ,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC ,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP ,∴C △POQ =OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.2.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG ,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,∴+=+==BF CD BF BG GF AE=-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年安徽省宿州市埇桥区时村中学八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列四个实数中,绝对值最小的数是()A.﹣5 B.C.1 D.42.(3分)下列各式中计算正确的是()A.B.C. D.3.(3分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.(3分)点P(﹣3,5)关于y轴的对称点P'的坐标是()A.(3,5) B.(5,﹣3)C.(3,﹣5)D.(﹣3,﹣5)5.(3分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.(3分)已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.(3分)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对8.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3 B.x=2,y=3 C.x=﹣2,y=3 D.x=2,y=﹣39.(3分)下面哪个点在函数y=x+1的图象上()A.(2,1) B.(﹣2,1)C.(2,0) D.(﹣2,0)10.(3分)在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7 B.5,12,13 C.1,4,9 D.5,11,12二、填空题(每小题3分,共24分)11.(3分)如果将电影票上“6排3号”简记为(6,3),那么“10排10号”可表示为;(7,1)表示的含义是.12.(3分)已知点A(3,2),AC⊥x轴,垂足为C,则C点的坐标为.13.(3分)点P(﹣2,1)在平面直角坐标系中所在的象限是第象限.14.(3分)若一个数的立方根就是它本身,则这个数是.15.(3分)在△ABC中,a,b,c为其三边长,a=3,b=7,c2=58,则△ABC是.16.(3分)下列函数中,是一次函数的是.①y=8x2,②y=x+1,③y=,④y=.17.(3分)若A(a,b)在第一、三象限的角平分线上,a与b的关系是.18.(3分)已知:m、n为两个连续的整数,且m<<n,则m+n=.三、解答题(共46分)19.(16分)计算:(1);(2);(3);(4).20.(6分)设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,﹣2)两点,试求k,b的值.21.(5分)对于边长为2的正方形,建立适当的直角坐标系,写出各个顶点的坐标.22.(6分)请作出一次函数y=x+1的图象.23.(6分)在等腰△ABC中,AB=AC=10cm,BC=12cm,求BC边上的高AD及△ABC的面积.24.(7分)如图,用(0,0)表示A点的位置,用(3,1)表示B点的位置,那么:(1)画出直角坐标系;(2)写出△DEF的三个顶点的坐标;(3)在图中表示出点M(6,2),N(4,4)的位置.2016-2017学年安徽省宿州市埇桥区时村中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列四个实数中,绝对值最小的数是()A.﹣5 B.C.1 D.4【解答】解:|﹣5|=5;|﹣|=,|1|=1,|4|=4,绝对值最小的是1.故选:C.2.(3分)下列各式中计算正确的是()A.B.C. D.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.3.(3分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵2=<=3,∴3<<4,故选:B.4.(3分)点P(﹣3,5)关于y轴的对称点P'的坐标是()A.(3,5) B.(5,﹣3)C.(3,﹣5)D.(﹣3,﹣5)【解答】解:点P(﹣3,5)关于y轴的对称点P′的坐标是(3,5).故选:A.5.(3分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.6.(3分)已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【解答】解:由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选:D.7.(3分)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选:C.8.(3分)若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3 B.x=2,y=3 C.x=﹣2,y=3 D.x=2,y=﹣3【解答】解:根据轴对称的性质,得x=2,y=﹣3.故选D.9.(3分)下面哪个点在函数y=x+1的图象上()A.(2,1) B.(﹣2,1)C.(2,0) D.(﹣2,0)【解答】解:(1)当x=2时,y=2,(2,1)不在函数y=x+1的图象上,(2,0)不在函数y=x+1的图象上;(2)当x=﹣2时,y=0,(﹣2,1)不在函数y=x+1的图象上,(﹣2,0)在函数y=x+1的图象上.故选:D.10.(3分)在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7 B.5,12,13 C.1,4,9 D.5,11,12【解答】解:A、因为52+62≠72,所以不能组成直角三角形;B、因为52+122=132,所以能组成直角三角形;C、因为12+42≠92,所以不能组成直角三角形;D、因为52+112≠122,所以不能组成直角三角形.故选:B.二、填空题(每小题3分,共24分)11.(3分)如果将电影票上“6排3号”简记为(6,3),那么“10排10号”可表示为(10,10);(7,1)表示的含义是7排1号.【解答】解:由“6排3号”记为(6,3)可知,有序数对与排号对应,∴“10排10号”可表示为(10,10);(7,1)表示的含义是7排1号.故各空依次填:(10,10);7排1号.12.(3分)已知点A(3,2),AC⊥x轴,垂足为C,则C点的坐标为(3,0).【解答】解:∵点A(3,2),AC⊥x轴,∴直线AC的解析式为x=3,∵点C的坐标为(3,0).故答案为:(3,0).13.(3分)点P(﹣2,1)在平面直角坐标系中所在的象限是第二象限.【解答】解:点P(﹣2,1)在平面直角坐标系中所在的象限是第二象限.故答案为:二.14.(3分)若一个数的立方根就是它本身,则这个数是1,﹣1,0.【解答】解:∵立方根是它本身有3个,分别是±1,0.故答案±1,0.15.(3分)在△ABC中,a,b,c为其三边长,a=3,b=7,c2=58,则△ABC是直角三角形.【解答】解:∵32+72=58,∴a2+b2=c2,∴△ABC是直角三角形.故答案为:直角三角形.16.(3分)下列函数中,是一次函数的是②.①y=8x2,②y=x+1,③y=,④y=.【解答】解:①y=8x2是二次函数;②y=x+1是一次函数;③y=是反比例函数;④y=是反比例函数.故答案为:②.17.(3分)若A(a,b)在第一、三象限的角平分线上,a与b的关系是a=b.【解答】解:∵A(a,b)在第一、三象限的角平分线上,∴a=b.故答案为:a=b.18.(3分)已知:m、n为两个连续的整数,且m<<n,则m+n=7.【解答】解:∵9<11<16,∴3<<4,∴m=3,n=4,∴m+n=3+4=7.故答案为:7.三、解答题(共46分)19.(16分)计算:(1);(2);(3);(4).【解答】解:(1)原式=2+4﹣=5;(2)原式=+3×3=;(3)原式=+1=5+1=6;(4)原式=5﹣7+2=0.20.(6分)设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,﹣2)两点,试求k,b的值.【解答】解:把A(1,3)、B(0,﹣2)分别代入y=kx+b,得解得即k,b的值分别为5,﹣2.21.(5分)对于边长为2的正方形,建立适当的直角坐标系,写出各个顶点的坐标.【解答】解:如图,以正方形的两边所在的直线为x轴、y轴建立直角坐标系,则正方形ABCO的四个顶点的坐标分别为:A(0,2),B(2,2),C(2,0),O(0,0).(答案不唯一)22.(6分)请作出一次函数y=x+1的图象.【解答】解:找出函数图象上部分点的坐标,如下表所示:描点、连线,画出函数图象如图所示.23.(6分)在等腰△ABC中,AB=AC=10cm,BC=12cm,求BC边上的高AD及△ABC的面积.【解答】解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm.∴在Rt△ABD中,由勾股定理,得AD===8(cm),S△ABC=12×8÷2=48(cm2).24.(7分)如图,用(0,0)表示A点的位置,用(3,1)表示B点的位置,那么:(1)画出直角坐标系;(2)写出△DEF的三个顶点的坐标;(3)在图中表示出点M(6,2),N(4,4)的位置.【解答】解:(1)以A点为原点,水平向右为正方向画x轴,垂直往上为正方向画y轴,如图所示.(2)点D的坐标为(2,2),点E的坐标为(5,3),点F的坐标为(1,4).(3)将点M(6,2)、N(4,4)标记在图中,如图所示.。