温度的测量实验报告资料

合集下载

(四年级上册)科学实验报告单

(四年级上册)科学实验报告单

白土岗小学科学实验报告单(一)
白土岗小学科学实验报告单(二)
1、取半烧杯水用药匙往水中加一匙面粉。

白土岗小学科学实验报告单(十五)
白土岗小学科学实验报告单(十六)
白土岗小学科学实验报告单(十七)
白土岗小学科学实验报告单(十八)
白土岗小学科学实验报告单(十九)
白土岗小学科学实验报告单(二十)
白土岗小学科学实验报告单(二十一)
白土岗小学科学实验报告单(二十二)
白土岗小学科学实验报告单(二十三)
白土岗小学科学实验报告单(二十四)
1、在装有三分之二水的水槽里用敲击过的音叉马上触及水面观察水面有什么
白土岗小学科学实验报告单(二十七)
白土岗小学科学实验报告单(二十八)
白土岗小学科学实验报告单(二十九)
白土岗小学科学实验报告单(三十)。

苏教版小学科学3-6年级实验精选

苏教版小学科学3-6年级实验精选

苏教版小学科学3-6年级实验精选本文档旨在为小学科学3-6年级的教师和学生提供一些实验精选,以帮助他们更好地理解科学知识和培养科学实验能力。

3年级实验精选实验一:测量温度实验目的:通过测量不同物体的温度,了解温度的概念和如何使用温度计。

通过测量不同物体的温度,了解温度的概念和如何使用温度计。

实验材料:温度计、水、冰块、杯子、温水、热水。

温度计、水、冰块、杯子、温水、热水。

实验步骤:1. 将温度计置于室温下,观察温度计的读数。

2. 将温度计放入冰水中,观察温度计的读数。

3. 将温度计放入温水中,观察温度计的读数。

4. 将温度计放入热水中,观察温度计的读数。

实验结果:记录每次测量的温度读数,并观察不同物体的温度差异。

记录每次测量的温度读数,并观察不同物体的温度差异。

实验结论:温度计可以用来测量物体的温度,温度较低时,温度计的读数较低;温度较高时,温度计的读数较高。

温度计可以用来测量物体的温度,温度较低时,温度计的读数较低;温度较高时,温度计的读数较高。

实验二:测量物体的长度实验目的:通过测量不同物体的长度,了解长度的概念和如何使用尺子进行测量。

通过测量不同物体的长度,了解长度的概念和如何使用尺子进行测量。

实验材料:尺子、书、铅笔、橡皮、手表等物体。

尺子、书、铅笔、橡皮、手表等物体。

实验步骤:1. 选择一个物体,使用尺子测量其长度,并记录结果。

2. 重复上述步骤,测量其他物体的长度。

实验结果:记录每个物体的长度测量结果,并观察不同物体的长度差异。

记录每个物体的长度测量结果,并观察不同物体的长度差异。

实验结论:尺子可以用来测量物体的长度,不同物体的长度有所差异。

尺子可以用来测量物体的长度,不同物体的长度有所差异。

4年级实验精选实验三:水的沸腾温度实验目的:通过观察水的沸腾过程,了解水的沸腾温度。

通过观察水的沸腾过程,了解水的沸腾温度。

实验材料:水、烧杯、温度计、火源。

水、烧杯、温度计、火源。

实验步骤:1. 在烧杯中倒入适量的水。

温度及其测量实验报告

温度及其测量实验报告

一、实验目的1. 了解温度及其测量在科学研究、工业生产和日常生活中的重要性。

2. 掌握温度测量的基本原理和方法。

3. 熟悉常用温度测量仪器的使用和操作。

4. 分析温度测量误差,提高实验数据处理能力。

二、实验原理温度是表征物体冷热程度的一个物理量,常用单位有摄氏度(℃)和开尔文(K)。

温度测量方法主要有接触式测量和非接触式测量两种。

1. 接触式测量接触式测量是将温度传感器直接与被测物体接触,通过测量传感器内部温度变化来反映被测物体的温度。

常用的接触式温度传感器有热电偶、热电阻、热敏电阻等。

2. 非接触式测量非接触式测量是利用红外线、微波、超声波等手段,在不接触被测物体的情况下测量其温度。

常用的非接触式温度传感器有红外测温仪、微波测温仪、超声波测温仪等。

三、实验仪器与设备1. 热电偶温度计2. 铂电阻温度计3. 热敏电阻温度计4. 数字温度计5. 恒温水浴锅6. 温度计校准仪7. 数据采集器四、实验步骤1. 热电偶温度计测量(1)将热电偶温度计的冷端与恒温水浴锅的液体接触,确保冷端温度稳定。

(2)将热电偶温度计的热端插入恒温水浴锅的液体中,观察温度计示数。

(3)重复上述步骤,记录不同深度处的温度值。

2. 铂电阻温度计测量(1)将铂电阻温度计的冷端与恒温水浴锅的液体接触,确保冷端温度稳定。

(2)将铂电阻温度计的热端插入恒温水浴锅的液体中,观察温度计示数。

(3)重复上述步骤,记录不同深度处的温度值。

3. 热敏电阻温度计测量(1)将热敏电阻温度计的冷端与恒温水浴锅的液体接触,确保冷端温度稳定。

(2)将热敏电阻温度计的热端插入恒温水浴锅的液体中,观察温度计示数。

(3)重复上述步骤,记录不同深度处的温度值。

4. 数字温度计测量(1)将数字温度计的探头插入恒温水浴锅的液体中。

(2)观察数字温度计示数,记录温度值。

5. 温度计校准(1)将温度计校准仪的探头插入恒温水浴锅的液体中。

(2)观察温度计校准仪示数,记录温度值。

常见温度测量实验报告

常见温度测量实验报告

一、实验目的1. 了解常用温度测量方法的基本原理。

2. 掌握温度计的使用方法及注意事项。

3. 通过实验,提高对温度测量仪器的操作技能和数据分析能力。

二、实验原理温度是表征物体冷热程度的一个物理量,温度测量是科学研究、工业生产及日常生活中不可或缺的一部分。

本实验主要涉及以下几种温度测量方法:1. 液体膨胀法:利用液体受热膨胀、冷却收缩的性质来测量温度。

2. 热电偶法:利用两种不同金属导线在温度梯度作用下产生电动势(热电势)的性质来测量温度。

3. 半导体热敏电阻法:利用半导体材料的电阻值随温度变化的特性来测量温度。

三、实验器材1. 恒温水浴锅2. 比重瓶3. 温度计(液体膨胀式、热电偶式、热敏电阻式)4. 数据采集器5. 计算机软件6. 烧杯、玻璃棒、温度计夹具等四、实验步骤1. 液体膨胀法测量温度(1)将比重瓶放入恒温水浴锅中,调整水浴锅温度至预定值,保持一段时间。

(2)用温度计测量水浴锅内的水温,记录数据。

(3)将比重瓶取出,立即用温度计测量比重瓶内的液体温度,记录数据。

(4)计算液体膨胀引起的体积变化,根据液体膨胀系数计算温度变化。

2. 热电偶法测量温度(1)将热电偶插入恒温水浴锅中,调整水浴锅温度至预定值,保持一段时间。

(2)用温度计测量水浴锅内的水温,记录数据。

(3)读取热电偶的电动势值,根据热电偶分度表计算温度值。

3. 热敏电阻法测量温度(1)将热敏电阻传感器插入恒温水浴锅中,调整水浴锅温度至预定值,保持一段时间。

(2)用温度计测量水浴锅内的水温,记录数据。

(3)读取热敏电阻的电阻值,根据热敏电阻的温度特性曲线计算温度值。

五、数据处理1. 将实验数据整理成表格,包括实验条件、测量值、计算结果等。

2. 对实验数据进行误差分析,计算实验误差和相对误差。

3. 分析实验结果,总结温度测量方法的特点和适用范围。

六、实验结果与分析1. 通过实验,验证了液体膨胀法、热电偶法和热敏电阻法在温度测量中的可靠性。

温度技术测量实验报告(3篇)

温度技术测量实验报告(3篇)

第1篇一、实验目的1. 了解温度测量的基本原理和方法;2. 掌握常用温度传感器的性能特点及适用范围;3. 学会使用温度传感器进行实际测量;4. 分析实验数据,提高对温度测量技术的理解。

二、实验仪器与材料1. 温度传感器:热电偶、热敏电阻、PT100等;2. 温度测量仪器:数字温度计、温度测试仪等;3. 实验装置:电加热炉、万用表、连接电缆等;4. 待测物体:不同材质、不同形状的物体。

三、实验原理1. 热电偶测温原理:利用两种不同金属导体的热电效应,即当两种导体在两端接触时,若两端温度不同,则会在回路中产生电动势。

通过测量电动势的大小,可以计算出温度。

2. 热敏电阻测温原理:热敏电阻的电阻值随温度变化而变化,根据电阻值的变化,可以计算出温度。

3. PT100测温原理:PT100是一种铂电阻温度传感器,其电阻值随温度变化而线性变化,通过测量电阻值,可以计算出温度。

四、实验步骤1. 实验一:热电偶测温实验(1)将热电偶插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量热电偶冷端温度;(3)根据热电偶分度表,计算热电偶热端温度;(4)比较实验数据与实际温度,分析误差。

2. 实验二:热敏电阻测温实验(1)将热敏电阻插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量热敏电阻温度;(3)根据热敏电阻温度-电阻关系曲线,计算热敏电阻温度;(4)比较实验数据与实际温度,分析误差。

3. 实验三:PT100测温实验(1)将PT100插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量PT100温度;(3)根据PT100温度-电阻关系曲线,计算PT100温度;(4)比较实验数据与实际温度,分析误差。

五、实验结果与分析1. 实验一:热电偶测温实验实验结果显示,热电偶测温具有较高的准确性,误差在±0.5℃以内。

分析误差原因,可能包括热电偶冷端补偿不准确、热电偶分度表误差等。

2. 实验二:热敏电阻测温实验实验结果显示,热敏电阻测温具有较高的准确性,误差在±1℃以内。

主轴温度测量实验报告

主轴温度测量实验报告

一、实验目的1. 了解主轴温度测量的基本原理和方法。

2. 熟悉常用温度测量仪器的操作与使用。

3. 通过实验,掌握主轴温度测量的数据处理和分析方法。

4. 分析主轴温度对加工精度的影响,为实际生产提供理论依据。

二、实验原理主轴温度是机床加工过程中重要的工艺参数之一,它直接影响到加工精度和表面质量。

本实验采用热电偶作为温度测量传感器,通过测量主轴的温度变化,分析温度对加工精度的影响。

三、实验仪器与材料1. 主轴温度测量仪2. 热电偶3. 热电偶延长线4. 加工中心5. 待加工工件6. 数据采集系统四、实验步骤1. 将热电偶固定在主轴上,确保其与主轴表面紧密接触。

2. 将热电偶延长线连接到主轴温度测量仪上。

3. 启动加工中心,使主轴运转至正常工作温度。

4. 打开数据采集系统,记录主轴温度随时间的变化曲线。

5. 在不同加工阶段,如切削、冷却等,记录主轴温度变化情况。

6. 关闭加工中心,停止实验。

五、实验数据与分析1. 实验数据| 时间(min) | 主轴温度(℃) || ----------- | -------------- || 0 | 25 || 5 | 40 || 10 | 45 || 15 | 50 || 20 | 55 || 25 | 60 || 30 | 65 |2. 数据分析从实验数据可以看出,随着加工时间的推移,主轴温度逐渐升高。

在加工初期,主轴温度上升较快,这是因为加工过程中摩擦和切削热的影响。

在加工后期,主轴温度趋于稳定,说明主轴已达到热平衡状态。

通过分析不同加工阶段的温度变化,可以发现:(1)切削阶段:主轴温度上升较快,这是因为切削过程中产生的热量较大。

(2)冷却阶段:主轴温度下降较快,这是因为冷却液带走部分热量。

(3)空转阶段:主轴温度波动较小,说明此时主轴的热稳定性较好。

六、实验结论1. 主轴温度对加工精度有显著影响,过高或过低的主轴温度都会导致加工误差。

2. 在实际生产中,应合理控制主轴温度,确保加工精度和表面质量。

实验报告:测量温度

实验报告:测量温度
实验目的
本实验旨在研究并掌握测量温度的方法和技巧,以及使用温度
计测量温度的步骤和注意事项。

实验材料与仪器
- 温度计
- 温水、冷水
- 实验
实验步骤
1. 准备实验材料与仪器。

2. 在实验中倒入适量的温水。

3. 将温度计放入温水中,确保温度计的测量刻度完全浸入水中,不接触底部或侧壁。

4. 等待一段时间,直到温度计的指示稳定在一个数值上。

5. 记录温度计上的温度读数。

6. 将温度计取出并清洁干净,备用。

7. 重复步骤2至6,使用冷水测量温度。

8. 完成所有实验后,关掉水源,清理实验。

实验结果与分析
根据实验步骤中测量得到的温度读数,可以得出温水和冷水的温度。

根据温度计的刻度,可以确定温度的单位。

实验注意事项
1. 在进行实验前,确保温度计刻度清晰可读。

2. 使用温水和冷水时,注意安全,避免烫伤或冻伤。

3. 操作温度计时,避免碰撞或摔落,以免损坏。

4. 温度计读数应准确记录,避免误差。

5. 实验完成后,注意清理实验,关闭水源。

结论
通过本实验的操作,我们学会了使用温度计测量温度的方法和技巧,并获得了温水和冷水的温度读数。

这将有助于我们在日常生活和科学研究中准确测量温度的需求。

温度测量实验实验报告

温度测量实验一、实验目的:1、了解铜-康铜热电偶的测温原理;2、掌握利用铜-康铜热电偶测量温度的方法;3、了解温度信号(电压)的传送及转换原理。

二、实验原理:热电偶测温原理:热电偶测量温度的基本原理是热电效应,将两种不同成份的金属导体首尾相连接成闭合回路,如两接点的温度不等,则在回路中就会产生热电动势,形成热电流,这就是热电效应。

热电偶就是将两种不同的金属材料一端焊接而成,焊接的一端叫做测量端,未焊接的一端叫做参考端,参考端在使用时通常恒定在一定的温度(如00C)当对测量端加热时,在接点处有热电势产生。

如参考端温度恒定,其热电势的大小和方向只与两种金属材料的特性和测量端的温度有关,而与势电偶的精细和长短无关。

当测量端的温度改变后,势电势也随之改变,并且温度和热电势之间有一固定的函数关系,利用这个关系就可以测量温度。

铜-康铜热电偶:由铜和康铜(铜60%,镍40%)丝作成。

特点是热电势大,价钱便宜,易于制作。

但其再现性不佳,只能在低于350℃使用。

铜-康铜热电偶热电势与温度的关系在0-1000C的范围内可以近似表示为下述公式:T(0C)=1.2705+23.518XE(mv)镍铬-镍硅热电偶:由镍铬(镍90%,铬10%)和镍硅(镍95%,硅、铝、锰5%)丝作成。

有良好的复制性,热电势大,线性好,价格便宜,但测量精度较低。

三、装置和流程实验装置:实验桌(袈)恒温器,冰水保温桶,(1)-(8)号热电偶测温线路(),数字式毫伏计。

图1:温度测量实验面板图其中(1)-(7)号用铜-康铜作热电偶材料,(8)号由镍铬-镍硅作热电偶材料,铜-康铜作为补偿导线。

四、操作步骤1、检查恒温器中的水位是否合理,保温桶里的冰水是否足够;2、将热端置于室温空气中,将冷端置于冰水保温桶中,进行充分的热平衡(约需5-10分钟);3、将数字式毫伏计的输入夹“短路”并接通电源预热3-5分钟后,观察数字式毫伏计的“零点”示值;4、分别测量热端温度为34、65、850C左右时的各号线路的热电势,对所测结果作简要说明;对所列实验数据说明:(8)号线路补偿导线使用正确的输出端测量值从理论上讲也应该比实验值更高些。

温度测量实验报告分析

一、实验目的本次实验旨在通过实践操作,了解温度测量原理,掌握温度传感器的使用方法,并对不同类型温度传感器的性能进行比较分析。

通过实验,加深对温度测量基础知识的理解,提高实际操作能力。

二、实验原理温度测量是科学研究、工程应用和日常生活中不可或缺的环节。

本实验采用多种温度传感器进行温度测量,主要包括热电偶、热电阻和热敏电阻等。

1. 热电偶测温原理:热电偶由两种不同材料的导体组成,当其两端处于不同温度时,会产生热电势。

根据热电势与温度之间的关系,可测量温度。

2. 热电阻测温原理:热电阻的电阻值随温度变化而变化,通过测量电阻值,可得到温度值。

3. 热敏电阻测温原理:热敏电阻的电阻值随温度变化而变化,通过测量电阻值,可得到温度值。

三、实验器材1. 热电偶(K型、E型)2. 热电阻(铂电阻、镍电阻)3. 热敏电阻(NTC、PTC)4. 温度传感器实验模块5. CSY2001B型传感器系统综合实验台6. 温控电加热炉7. 连接电缆8. 万用表:VC9804A、VC9806四、实验步骤1. 将实验模块连接到CSY2001B型传感器系统综合实验台上。

2. 将热电偶、热电阻和热敏电阻分别接入实验模块。

3. 打开实验台,设置实验参数,如温度范围、采样时间等。

4. 启动实验,观察温度传感器的输出信号。

5. 记录实验数据,包括温度值、电阻值等。

6. 分析实验数据,比较不同温度传感器的性能。

五、实验结果与分析1. 热电偶测温实验结果:K型热电偶和E型热电偶在实验温度范围内具有较好的线性度,测量误差较小。

2. 热电阻测温实验结果:铂电阻和镍电阻在实验温度范围内具有较好的线性度,测量误差较小。

3. 热敏电阻测温实验结果:NTC热敏电阻和PTC热敏电阻在实验温度范围内具有较好的线性度,测量误差较小。

4. 性能比较分析:(1)热电偶具有较宽的测量范围,但价格较高,安装和维护较为复杂。

(2)热电阻具有较好的精度和稳定性,但测量范围相对较窄。

温度测量实验报告

温度测量实验报告温度测量实验报告引言:温度是我们日常生活中十分重要的物理量之一。

无论是烹饪、天气预报还是科学研究,我们都需要准确地测量温度。

本实验旨在通过使用不同的温度测量设备,比较它们的准确性和可靠性,探究温度测量的原理和方法。

实验材料和方法:1. 温度计:我们选用了普通水银温度计、电子温度计和红外线温度计作为实验材料。

2. 校准器:为了确保测量的准确性,我们使用了校准器对温度计进行了校准。

3. 实验环境:为了保证实验的可比性,我们在同一实验室中进行了实验,并控制了室内的温度和湿度。

实验过程:1. 水银温度计:我们首先使用水银温度计对实验室的温度进行测量。

将温度计插入温度计槽中,等待一段时间,直到水银柱稳定在一个温度上。

然后,读取温度计上的刻度,记录下来。

2. 电子温度计:接下来,我们使用电子温度计对实验室的温度进行测量。

将电子温度计放置在实验室中,等待一段时间,直到显示屏上的温度稳定。

然后,记录下电子温度计上显示的温度数值。

3. 红外线温度计:最后,我们使用红外线温度计对实验室的温度进行测量。

将红外线温度计对准实验室中的物体,按下测量按钮,等待一段时间,直到红外线温度计显示出稳定的温度数值。

然后,记录下该数值。

实验结果:根据我们的实验数据,我们得到了以下结果:1. 水银温度计:水银温度计的测量结果相对准确,但需要一段时间来达到稳定状态。

它是一种传统的温度测量设备,可以在各种环境下使用。

2. 电子温度计:电子温度计的测量结果准确且响应速度较快。

它可以直接显示温度数值,非常方便使用。

然而,它对环境的湿度和电磁干扰比较敏感,需要定期校准。

3. 红外线温度计:红外线温度计可以远距离测量物体的温度,非接触式测量使其在特定场景下非常有用。

然而,它对物体表面的反射和发射率有一定的要求,需要注意使用条件。

讨论与结论:通过本实验,我们发现不同的温度测量设备在准确性、响应速度和使用便捷性方面存在差异。

水银温度计在准确性方面表现良好,但需要较长的时间来达到稳定状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度测量及热传导
主要内容
实验收获及建议 D
C
实验问题
实验数据及分析 B
A
实验介绍
q grad (T )
图2 TC-3B型稳态法固体导热系数测定仪
实验数据:
物品参数直径及厚度
测量次数 散热铜盘C d(cm)
h(cm) 硅橡胶盘 d(cm)
h(cm) 环氧树脂 d(cm)
h(cm) 铝棒 d(cm)
6 37.5 15 47.2
7 39.4 16 47.6
8 41.1 17 48
9 42.2 18 48.3
Δt=5min 测量次数 T1(℃) T2(℃)
1 58.2 48.8
2 58.2 49.2
3 58.1 49.5
4 58.1 49.6
5 58.1 49.6
3.铝棒: Δt=2min T1=45.3℃
10.0472
2.7724
h(cm)(平均值) T1(℃) T2(℃) λ测量值
0.978 49.5 41.8
0.8996 58.1 44.8 0.154
0.8032 58.1 49.6 0.208
6.39 45.3
43 80.688
实验问题及分析:
为什么要在稳态温度附近取值测量以及如何得出铜盘c的散热速率: 1.因为铜盘c的散热并非是线性的,它的冷却速率因为温度不同而不 同。2.在实验中当系统处于稳态时,通过待测样品的传热率与散热盘 向侧面和下面的散热率相同,所以测冷却速率要在稳态温度。 3.但我们只能测得某时间段内的温度变化,无法得出某时刻温度变 化,所以我们应在稳态温度附近测量冷却速率。 4.也正因为无法得出某时刻的冷却速率,我们只能通过测量极小温度 变化来近似得出冷却速率。
8 33.6
17 43.3
9 35.2
18 43.5
2.环氧树脂: Δt=2min T1=58.1℃ T2=49.6℃
测量次数 1 T2(℃) 23.4 测量次数 10
T2(℃) 43.6
2 26.5 11 44.6
3 29.5 12 45.4
4 32.6 13 46.1
5 35.3 14 46.7
实验收获及建议:
4 45.3 42.9
5 45.3 43
6 45.3 43
7
33.6 17
40.8
8
34.8 18
41.2
9
35.9 19
41.5
铜盘C的散热温度记录表: Δt=30s
测量 1 次数
2 3 4 5 6 7 8 9 10 11
T(℃) 49.5 49 48.6 48.1 47.7 47.4 47 46.6 46.3 45.9 45.6
12 13 14 15 16 17 18 19 20 21 22 23
45.3 44.9 44.6 44.3 44 43.7 43.3 43 42.6 42.4 42.1 41.8
50 49 48 47 温 46 度 45 44 43 42
铜盘c散热曲线
49.5 49 48.6 48.1 47.747.4 47 46.646.3 45.9 45.645.3 44.944.6 44.34443.7 43.3 43 42.642.4 42.141.8
为什么只需考虑冷却速率的误差: 通过对导热系数分析可知,质量的数量级相对温度变化
导热系数偏小原因: 1. 样品表面老化,影响传热。 2.加热板、样品、散热板之间有缝隙,影响传热。 3. 传感器与发热盘和散热盘接触不良。
样品盘是厚一些好还是薄一些好: 个人认为过厚或者过薄都不会太好,因为太厚的话,热量传递并达到 平衡需要的时间就会更长;太薄的话,厚度测量的相对偏差占比就会 偏大,从而造成的测量误差更大;
41 0
5
10
15
20
25
测量次数
数据处理:
对散热铜盘: Δt=660s ,T1 T2指温度变化量
处理公式:
mc
T t
RC 2RC
2hC
2hC
hB T1
T2
1
R2 B
Vc=ΔT/Δt=7.7/660= 0.0117
测量物品
散热铜盘C
硅橡胶盘
环氧树脂
铝棒
d(cm)(平均值) 9.8412
9.9152
h(cm)
1 9.844 0.98 9.912 0.902 10.05 0.804 2.772 6.39
2 9.84 0.974 9.916 0.9 10.05 0.804 2.77 6.394
3 9.842 0.978 9.92 0.902 10.048 0.806 2.774 6.39
4 9.84 0.98 9.916 0.896 10.046 0.804 2.772 6.39
3 24.7
12 40.4
4 26.6
13 41.4
5 28.4
14 42
6 30.2
15 42.5
Δt=5min 测量次数 1 T1(℃) 58.1 T2(℃) 43.8
2 58.1 44.1
3 58.1 44.4
4 58.Leabharlann 44.65 58.1 44.8
6 58.1 44.8
7 32 16 42.9
mc=654g
5
平均值
9.84 9.8412
0.978 0.978
9.912 9.9152
0.898 0.8996
10.042 10.0472
0.798 0.8032
2.774 2.7724
6.386
6.39
测量次数 1 T2(℃) 22.5 测量次数 10 T2(℃) 36.8
2 23.2
11 38.6
T2=43.0℃
测量次数 1
2
3
4
5
6
T2(℃) 10
36.8
23.7 11
37.6
25.3 12
38.3
27.2 13
38.9
29.1 14
39.5
30.8 15 40
32.3 16
40.4
Δt=5min
测量次数1 T1(℃) 44.2 T2(℃) 42
2 45.1 42.4
3 45.3 42.7
相关文档
最新文档