CRH2型动车组牵引系统电机控制策略的研究.

合集下载

CRH2型动车组制动系统分析

CRH2型动车组制动系统分析

CRH2型动车组制动系统分析自从1825年世界上第一条铁路建成并通车开始,铁路逐渐成为了交通运输中的重要运输方式之一。

快速、可靠、舒适、经济和环保是铁路在与其他运输方式的竞争中取胜的先决条件,许多国家都在通过新建或改建既有线发展高速铁路。

国际上一般认为,高速铁路动车组是最高运行时速在200公里以上的铁路运输系统。

所谓动车组就是由若干动力车和拖车或全部由动力车长期固定连挂在一起组成的车组。

高速动车组的牵引动力配置基本上有两种型式,即集中配置型和分散配置型。

传统的机车牵引形式就是牵引动力集中配置,列车由一台或几台机车集中于一端牵引。

由于机车总功率受到限制,难以满足进一步提高速度的要求。

动车组编组中的车辆全部为动力车,或大部分为动力车,即牵引动力分散配置。

由于动车组可以根据某条线路的客流量变化进行灵活编组,可以实现高密度小编组发车以及具有安全性能好、运量大、往返不需掉转车头、污染小、节能、自带动力等优点,受到国内外市场的青睐,应用也越来越广泛,被称为铁路旅客运输的生力军第六次铁路大提速,以“和谐号”为代表的高速动车组,如梭箭般穿行于大江南北,将中国铁路带入高速时代,我国既有线路列车运行速度也一举达到世界先进水平,铁路运输事业呈现飞速发展全新局面,高速动车组以其安全,准时,快速,舒适,节能,环保,等诸多优点,高速动车组是在现代科学技术的基础上发展起来,同时也带动并促进了科学技术发展,高速动车组有别于现在运用的内燃,电力机车。

其区别在于动车组各部件大量运用高新技术,特别是在转向架结构,车体轻量化,列车动力分配,电传动控制技术,列车信息网络及制动系统都具有各自的高科技含量。

高速动车组制动系统具有先进科技技术,其中以CRH2型动车组最为出名。

CRH2型高速动车组制动系统采用电气指令是微机控制直通式电控制动,制动指令的接收,处理和电气制动与空气制动协调配合等,一般都是有微机来完成,动车组各车辆上的制动控制装臵由制动控制单元,EP阀,中继阀,空重调整阀,紧急制动电磁阀等组成,载荷调压装臵直接来自空气簧空气压力,空气弹簧压力通过传感器转化为与车重相应的电信号,制动控制单元根据制动指令及车重信号计算出所需的制动力,并向电气制动控制装臵发出制动信号,电气制动控制装臵控制电气制动产生作用,并将实际制动力的等值信号反馈到制动控制器,制动控制器进行计算,并把与计算结果相应的电信号送到中继阀,中继阀进行流量放大后,使制动缸获得相应的压力,拖车常用制动时,制动控制装臵的动作过程与动车的基本相同,但是因为没有电气制动,所有不必进行电气制动与空气制动的协调,所需制动力全部通过EP阀转化为相应的空气压力信号,然后由中继阀使制动缸产生相应的制动力。

CRH动车组驱动装置的控制策略与参数调整

CRH动车组驱动装置的控制策略与参数调整

CRH动车组驱动装置的控制策略与参数调整CRH动车组是中国铁路高速动车组的代表,具有高速、节能、安全等优势。

而驱动装置作为CRH动车组的核心组成部分,其控制策略和参数调整对于车辆的性能和运行效率至关重要。

本文将就CRH动车组驱动装置的控制策略与参数调整进行探讨。

一、控制策略在CRH动车组的驱动装置控制中,采用了先进的逆变器技术,优化了电机控制算法,以实现对电机转矩和速度的精准控制。

控制策略主要包括以下几个方面:1.转矩控制:通过控制电机的电流和电压,实现对电机输出转矩的调节。

在启动加速和制动减速时,需要根据列车的运行状态和线路特性,动态调整转矩控制策略,以确保车辆平稳运行。

2.速度控制:根据列车的运行速度和目标速度,调整电机的输出功率,实现对列车速度的稳定控制。

在高速行驶和进出站台时,需要对速度控制策略进行优化,以提高车辆的运行效率和安全性。

3.能量回馈控制:利用制动过程中的惯性能量和电动制动能量,实现对列车动能的回馈控制,提高整车系统的能量利用率。

通过逆变器和超级电容等设备的协同作用,实现能量的高效储存和回馈利用。

二、参数调整在CRH动车组的驱动装置参数调整中,需根据列车的运行状态和线路特性,动态调整电机参数和控制参数,以确保车辆的性能和安全。

参数调整主要包括以下几个方面:1.电机参数调整:根据列车的牵引负载和最大速度要求,调整电机的额定功率、额定转速和电流容量等参数。

通过匹配电机参数和车辆特性,优化列车的动力性能和能耗指标。

2.控制参数调整:根据列车的运行环境和行车任务,调整逆变器控制器的参数,如PWM频率、电压幅值、功率因数等。

通过合理调整控制参数,提高电机转矩响应速度和稳定性。

3.故障诊断参数调整:根据电机和逆变器系统的运行状态,设置故障诊断参数,实现对设备状态和性能的实时监测和诊断。

通过定期检测和修正故障诊断参数,提高列车运行的可靠性和安全性。

综上所述,CRH动车组驱动装置的控制策略和参数调整至关重要,直接影响列车的性能和运行效率。

高铁列车牵引系统的控制策略研究

高铁列车牵引系统的控制策略研究

高铁列车牵引系统的控制策略研究高铁列车是现代化交通运输领域中的一项重要技术成果,其速度快、运行平稳、效率高与绿色环保等特点深受人们的欢迎。

高铁列车的牵引系统是保障列车安全平稳运行的核心技术之一,其控制策略的合理性直接关系到高铁列车的运行质量与安全性。

因此,高铁列车牵引系统的控制策略研究显得尤为重要。

一、高铁列车牵引系统的结构及特点高铁列车牵引系统包括电力系统、传动系统、转向系统、制动系统等多个部分。

其中,电力系统由供电电源、受电弓、电缆、集电装置、变流器、牵引电机等组成,能够为车辆提供稳定的供电。

传动系统由轮对、齿轮传动装置、传动节等组成,将电能传输到车轮。

转向系统由轮对轴箱装置、连接杆、悬挂装置等组成,能够使车轮沿着铁轨平稳运行。

制动系统由空气制动、电力制动、转动惯量制动等多种方式组成,能够保障车辆在运行过程中的安全稳定。

高铁列车的牵引系统具有运行速度快、加速度大、牵引力大等特点。

其中,高速运行时需要充分利用列车的动力性能,使得列车能够在短时间内达到预定的速度,因此要求牵引力较大。

而在运行过程中,特别是在刹车和通过弯道时也需要大量的制动力来保障列车的平稳安全运行。

二、高铁列车牵引系统的控制策略研究及其意义高铁列车的牵引系统控制策略研究是实现列车高速、平稳、安全运行的关键技术之一。

在牵引或制动过程中,需要通过变速器、电机控制器或电动阻尼器等控制设备对列车进行控制。

因此,寻找一种合适的控制策略能够更好地实现列车的安全平稳运行、提高列车能量利用效率并且降低能耗。

为了更好地控制列车的牵引力和制动力,牵引控制策略的设计需要考虑多个因素,例如列车的运行状态(如速度和加速度等)、牵引电机的实际转速和转矩情况等,并利用调速器、反馈控制器等进行实时控制。

在实际的牵引控制策略设计过程中,有多种可供选择的方案,例如基于PID控制器、模糊控制器、神经网络控制器等,具体控制策略的选择需要根据具体应用情况进行设计优化。

三、高铁列车牵引系统控制策略研究进展及挑战随着科技不断发展,高铁列车的牵引系统控制策略也在不断更新和完善。

CRH2型动车组牵引传动系统工作原理及控制

CRH2型动车组牵引传动系统工作原理及控制

CRH2型动车组牵引传动系统工作原理及控制简介CRH2型动车组是中国铁路总公司研制的一种高速动车组,它采用了先进的牵引传动系统,使得列车运行更加平稳、舒适、安全。

本文将对CRH2型动车组牵引传动系统的工作原理及控制做简要介绍。

牵引传动系统设计结构CRH2型动车组牵引传动系统主要由两部分组成:1.传动控制装置(Traction Control Unit,简称TCU):负责对牵引变流器进行控制,使它能够在不同工况下提供合适的电能给电机车转动。

2.永磁同步电机:由牵引变流器接受高压直流电流,再将其转化为交流电流供给电机。

永磁同步电机与牵引变流器通过两根电缆相互连接,通过双馈变流器的控制可以调整电机的转速、电流及扭矩。

工作原理当列车开始加速时,列车的电控系统将加速命令发给TCU,TCU会根据加速命令计算出需要给永磁同步电机提供多少电能,然后再将指令发送给牵引变流器。

牵引变流器会将直流电信号转换成三相交流电信号,通过永磁同步电机的转子产生电磁场,与电机内部的电磁场相互作用,产生转矩,从而使电车向前行驶。

当列车开始减速时,列车的电控系统将减速命令发给TCU,TCU会根据减速命令计算出需要回收多少列车惯性能量供给电网,然后再将指令发送给牵引变流器。

牵引变流器将列车由电动状态转为电制动状态,在电机内部通过电气反向转换的方式,将电能从电机中抽走转化成电动红外辐射远距离无线通信份额,反馈到直流供电系统中,从而实现了回收列车惯性能量的目的。

控制系统设计控制方式CRH2型动车组采用了集中式控制方式,所有永磁同步电机通过车载TCU统一控制,从而使整个牵引传动系统工作更加稳定。

在TCU中,采用了现代化的控制理念,通过高效控制算法实现列车的稳定加速和减速,并满足列车输入输出功率的匹配。

控制原理TCU通过精准测量永磁同步电机的工作状态,包括转速、电流、电压等参数,来掌握牵引传动系统的工作状态。

当需要加速或减速时,TCU会立即对永磁同步电机的控制信号进行调整,从而保证列车稳定运行。

CRH2型200km动车组牵引传动系统的研究-牵引电机课程设计

CRH2型200km动车组牵引传动系统的研究-牵引电机课程设计

课程名称:牵引电机课程设计设计题目:CRH2型200km/h动车组牵引传动系统的研究学号:20170145姓名:朱培樟指导教师:李宗防西南交通大学峨眉校区2017 年4月30日随着经济发展和社会进步,高速铁路越来越受到世界发达国家及新兴工业国家的重视,成为解决客运交通拥堵的一种选择,从而推动了CRH2型200km/h动车组研究、应用和进步。

本文在分析国内高速铁路及动车组发展现状并结合电力电子、高电压技术、电机学、继电保护和轨道交通牵引供变电技术的相关知识,完成对CRH2型200km/h动车组牵引传动系统的研究。

本文分为三部分:(1)CRH2型200km/h动车组牵引传动系统的框图及其组成(2)对CRH2型200km/h动车组牵引传动系统的高压电器、牵引变压器、牵引电机的技术参数及技术特点进行分析。

(3)对CRH2型200km/h动车组牵引传动系统的集成性及可靠性进行分析。

关键词:CRH2型动车组、高压电器、牵引变压器、牵引电机、集成性、可靠性第一章绪论 (4)1.1我国CRH2型200km/h动车组的发展现状 (4)1.2 CRH2型200km/h动车组基本组成 (5)第二章 CRH2动车组牵引传动系统组成 (6)2.1 CRH2动车组牵引传动系统的框图及其组成原理 (6)2.2 CRH2 牵引传动系统主电路 (7)第三章 CRH2高压电器、牵引变压器、牵引电机的技术参数及技术特点 (8)3.1 高压电器的技术参数及技术特点 (8)3.1.1技术参数 (8)3.2 牵引变压器的技术参数及技术特点 (10)3.2.1 技术参数 (10)3.2.2技术特点 (11)3.3 牵引电机的技术参数及技术特点 (11)3.3.1技术参数 (11)3.3.2技术特点 (12)第四章 CRH2型200km/h动车组牵引传动系统的集成性及可靠性分析 (13)4.1 CRH2型200km/h动车组牵引传动系统的集成性分析 (13)4.2 CRH2型200km/h动车组牵引传动系统的可靠性分析 (14)4.2.1动车组安全可靠性 (14)4.2.2动车组部分可靠性模型及分析 (15)第五章总结 (17)第一章绪论1.1我国CRH2型200km/h动车组的发展现状CRH2型200km/h动车组由四方机车车辆股份有限公司为主机厂牵头为中国铁道部生产的时速200公里动力分散型电力动车组(动力分散是与动力集中相对应的两种动车组的动力布置方式,动力集中方式指整个动车组的动力只集中在头尾两节机车如中华之星或一节机车上如蓝箭动车组采用推挽是的牵引方式,前拉后推;动力分散方式是指将动车组的动力布置在动车组的所有或若干节车辆上,这样做的好处在于动车组的黏着性能好,起动、制动速度快,可靠性好-某节车故障只损失小部分动力,缺点是动力装置总重量较重,检修维护量大、噪音较大),是以日本新干线E2-1000番为原形车,引进日本川崎重工、三菱电机、日立公司(日立公司和北车永济厂生产10列车的牵引变流器)等公司的技术生产的。

CRH2型动车组牵引系统电机控制策略研究 崔佳南

CRH2型动车组牵引系统电机控制策略研究 崔佳南

CRH2型动车组牵引系统电机控制策略研究崔佳南摘要:日系动车牵引电路基本单元装置有八台牵引电机,每台电机都是四级三相鼠笼式异步电机。

而为了使电机能够良好的控制牵引能够使动车更加高效的运行,本文对该动车牵引电机控制策略进行了阐述,将动车中控制牵引系统功能模块的原理与作用进行了研究,这对于动车牵引技术的研究具有非常重要的参考意义。

关键词:日系动车;牵引系统;电机控制策略动车组电机与普通电机存在较大的区别,其启动电流与转矩都较大,在加速阶段电机会处于励磁状态,这样能够使动车在短时间内获得额定的速度。

日系动车组电机采用了间接转子磁场定向控制,这样可根据车辆的情况进行电机扭矩与励磁的给定,从而得到电压电流的定向量。

不仅如此,其还要进行电压矢量前馈补偿等。

由此可见动车组牵引系统电机的控制难度非常高,通过对其工作原理及各个模块的作用分析研究从而采取措施进行电机控制将会有效推动动车组的发展。

1.间接磁场定向控制原理充分发挥电机的牵引功能需要获得良好的转矩动态响应,这样就必须采用高性能的电机控制策略,所以对动车组的间接转子磁场定向控制原理进行分析,对进行电机的控制起到重大作用[1]。

感应电机采用的控制方式只能够进行定子电流的控制,加上电磁转矩是由气隙磁链和滑差频率所确定的,所以这就无法通过标量控制进行两物理量的解耦。

而且由于滑差频率的变化会改变电机的动态转矩特性,这样交流调速将无法与转矩、励磁的直流调速相比。

2.动车组电机控制牵引原理日系动车组通过间接转子磁场进行定向控制,这种控制方式具有两种牵引模式,牵引转矩给定与恒速控制,其需要计算定磁通与力矩[2]。

当然牵引力的计算必不可少,通过电力限制和空转恢复黏着控制模块得到转矩,然后根据牵引的情况调整电机励磁水平,这样能够计算得出转子磁链值。

通过与实际电机电流分量进行闭环控制能够得到电压矢量,最后结合直流母线的电压能够计算PWM的调制系数与电压矢量相位。

2.1 牵引力转矩与励磁值计算这一部分具有两个模块分别为扭矩换挡控制与恒速控制模块,这两个模块有司机进行控制,这两种模式通过指令可进行切换[3]。

CRH2 牵引系统(很详细)解读

CRH2 牵引系统(很详细)解读

第三章 牵引系统第一节 概 述主牵引系统主要由受电弓、牵引变压器、牵引变流器及牵引电机组成。

受电弓通过电网接入25kV 的高压交流电,输送给牵引变压器,降压成1500V 的交流电。

降压后的交流电再输入牵引变流器,通过一系列的处理,变成电压和频率均可控制的三相交流电,输送给牵引电机,通过电机的转动而牵引整个列车。

主牵引基本动力单元由1台牵引变压器、2台牵引变流器、8台牵引电机构成,1台牵引变流器驱动4台牵引电机。

四台牵引电机并联使用。

四台牵引电机特性差异控制在±5%以内,以便电流负荷分配均匀。

动车组有两个相对独立的主牵引动力单元。

正常情况下,两个牵引单元均工作。

当设备故障时,M 1车和M 2车可分别使用。

另外,整个基本单元可使用VCB 切除,不会影响其它单元工作。

一、系统原理主电路简图如图3-2所示,受电弓从接触网25kV 、50Hz 单相交流电源受电,通过主图 3-2 主电路简图牵引变压器 逆变器 滤波电容器 脉冲整流器脉冲整流器 滤波电容器 逆变器图 3-1 主牵引系统示意图断路器VCB连接到牵引变压器原边绕组上。

主电路开闭由VCB控制。

牵引变压器牵引绕组设两组,原边绕组电压25kV时,牵引绕组电压1500V。

主电路系统以M1车、M2车的两辆车为1个单元。

主电路系统原理参见图3-2主电路简图。

更详细的可参见附图中的《主电路接线图》。

二、系统布置主牵引系统车底电气设备布置参见图3-3。

2、6号车车下各设一台牵引变压器,而2号车(M2)、3号车(M1)、6号车(M2)、7号车(M1s)的车底下均悬挂一台牵引变流器,及车下转向架分别安装4台牵引电机。

其中4号车和6号车车顶均设受电弓、保护接地开关EGS、故障隔离开关一套,2号车和6号车的车下均设高压机器箱;2、3、4号车之间和5、6号车之间的车顶上设置高压电缆连接器,为了方便摘挂,在4、5号车之间的车顶上,设置了高压电缆用倾斜型电缆连接器。

CRH2浅析

CRH2浅析

CRH2浅析1、引言 (1)2、CRH2牵引系统构成 (1)3、三点式(IGBT器件)主电路 (4)4、交直交机车辅助电路系统 (10)1、引言CRH2型电动车组是由铁道部向日本川崎重工引进并由我国的专家将之国产化的高速列车。

牵引变流器由单相三电平脉冲整流器、中间直流环节和三相电平三电平逆变器组成。

牵引过程中,从变压器过来的1500V交流通过由脉冲整流器变为2600V~3000V直流,再由三电平逆变器变为电压和频率都可调的交流供牵引电机使用。

再生制动过程为牵引的反过程,将动能转化为电能返回电网。

其中单相三电平脉冲整流器控制方法为瞬态直接电流控制,采用SPWM调制,三相三电平逆变器控制方法为矢量控制采用SVPWM调制。

2、CRH2牵引系统构成动车组由南车四方机车车辆股份有限公司与日本合作伙伴川崎重工提供,原型车为日本新干线E2-1000型动车组。

动车组采用8辆编组,4动4拖,由两个动力单元组成。

每个动力单元由2个动车和 2个拖车(T-M –M-T)组成。

(1)CRH2动车组牵引系统的组成接触网25kV、50Hz单相交流经受电弓通过VCB(主断路器)接入牵引变压器,牵引变压器次边设有2个线圈,电压均为1500V 。

①动力单元组成1台牵引变压器、2台变流装置(C/I)、8台牵引电机。

1台变流装置控制4台牵引电机。

见图7-43所示。

②牵引传动主电路由图可见:由4号车(或者6号车)的受电弓受电,通过车顶上的特高压导线,经由VCB后被送到2号、6号车的主变压器。

注意:车顶装有保护接地装置(EGS),运行中需紧急让变电所区间内的所有车辆停车时,让其动作,使架线接地短路。

EGS的操作必须按照铁道部的规定执行。

(2)CRH2牵引传动系统主电路设备①高压电器设备作用:完成从接触网到牵引变压器的供电。

组成:受电弓、主断路器、避雷器、电流互感器、接地保护开关等。

DSA250型受电弓:单臂型结构,额定电压/电流为25kV/1000A,接触压力70±5N,弓头宽度约1950mm,具有自动降弓功能,适应接触网高度为5300~6500mm,列车运行速度250km/h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速动车组通常采用感应电机作为牵引电机, 因为感应电机具有转速高、转动惯量小, 机械结构坚固耐用、牵引特性良好等优点。

与普通电机驱动方式不同, 高速动车组电机牵引具有一些特点: 电机启动转矩和电流较大, 加速起始阶段电机处于过励磁状态, 充分利用电机设计所允许的磁饱和范围和电流的短时过载能力, 以获得较大的加速度, 使车辆在较短的时间内达到给定速度。

电机速度与电压逐渐协调升高, 当达到变流器母线电压限制后,采取弱磁控制,以减小电机的反电势(主要是动生电动势, 以满足力矩电流需求。

以CRH2型动车组为例,该型动车4动4拖编组包含两个牵引单元,分别由一套受电弓、一台变压器、一套高压电路设备以及两台Ac 一Dc 一Ac 四象限变流器组成,每台变流器同时驱动4 台电机, 全车共有16 台牵引电机,电机额定电压2 000V、电流106 A 、输出功率3000 kW 、额定转速4140 r/ 而n , 额定工作点车辆速度约为210kM/h。

CRH2动车组电机采用间接转子磁场定向控制,控制系统根据牵引模式(牵引力矩给定/ 恒速运行与车辆的运行速度, 分别确定电机牵引扭矩和励磁给定, 计算得到电流、电压给定向量, 经过磁场定向坐标变换实现电流闭环控制, 并进行电压矢量前馈补偿控制。

控制系统除具有磁场角度计算、电流、电压旋转坐标转换等磁场定向控制基本功能外, 还包括转子温升补偿功能以及抑制直流母线二次谐波波动的beat-less控制功能。

本文详细介绍牵引控制的基本原理与各模块的工作原理和作用。

相关文档
最新文档