频率响应分析仪知识

频率响应分析仪知识
频率响应分析仪知识

频率响应分析仪知识

一、概述

(一)用途

频率响应分析仪是测量被测系统频率特性的仪器。早期频率特性的测量是用信号源、电压表、频率计、相位计、示波器等单机组成,仪器操作复杂,易受干扰,测量精度低。进入60年代,国外开发出以数字相关滤波为核心技术的频率响应分析仪,提高了测量精度。随着技术发展,智能化、数字化程度不断提高,测量功能、精度得到了快速发展,拓宽了仪器应用范围。目前,频率响应分析仪广泛地应用于航空航天、军工、机械制造的振动分析,大型机械的故障监测与诊断,自控系统、伺服系统的设计与调试,电子元件、压电元件的阻抗与谐振测试,高压电网滤波器调试,桩基检测,自动控制系统科研与教学等领域。

(二)分类与特点

频率响应分析仪可以分为基础型频率响应分析仪、教学型频率响应分析仪、多通道频率响应分析系统等类型产品。

●基础型频率响应分析仪的特点

性能指标高,接口齐全,方便与各种测试仪器及计算机联接组成测试系统,适用于各种领域的频率响应测试。

●教学型频率响应分析仪的特点

性能指标一般,频率范围窄,适用于低成本测试,如教学以及要求性能指标不高,能满足一定要求的场合。

●多通道频率响应分析仪的特点

性能指标高,多通道测试可达32通道,适用于大型机械、桥梁、堤坝等大型系统多点测试。

(三)产品国内外现状

国内生产频率响应分析仪的厂家主要有:天津中环电子仪器。天津中环电子仪器自1958年建厂以来,一直致力于频率响应测试产品的研发,80年代与英国solartron公司合作,开发出以TD1250频率响应分析仪为代表的系列产品,同类产品技术水平国内领先。国外厂家主要有:英国solartron公司和日本NF回路设计株式会社。英国solartron公司以数字相关滤波为技术核心的产品,频率范围10微赫到65千赫(1250),以及10微赫到32兆赫(1260)等,具有双通道及四通道测试功能,1250侧重于低频与超低频,主要用于机械、自控等领域,1255上限频率较高,满足低频测试的同时可用于电子元件、压电元件等测试。

(四)技术发展趋势

●小型化成为频率响应分析仪的主要发展趋势;

●提高功能指标精度,嵌入式、PLD的采用是未来的趋势;

●降低成本,向教学普及扩大应用范围是未来主要发展方向。

二、基本工作原理

频率响应分析仪主要由:发生器、分析器、控制器、运算器、键盘与显示器、接口、选件等构成。频率响应分析仪的原理框图如下图1所示。

键盘键盘显示显示GPIB 接口GPIB 接口串口

串口同步器

同步器辅助发生器

辅助发生器调制/解调器调制/解调器控制器和运算器控制器和运算器发生器

发生器分析器1分析器1分析器

2分析器2通道1通道2

图1 频率响应分析仪的原理框图

由信号发生器产生一个正弦波或方波电激励信号,用于系统测试。两个分析器,

它们在系统的两个点上测量对应于激励信号的响应,经过运算器完成数学相关运算后

由显示器显示测量结果:直角坐标( a,jb )、极坐标(γ,θ)、对数坐标(log γ,θ),

通过接口可以同其它仪器及计算机组成测试系统。选件调制解调器:允许频响仪直接

同需要交流载波输入或产生交流载波输出的系统相接;辅助发生器:可以附加发生器,

同步到主发生器,可以产生与主发生器同相或正交信号;同步器:用外部信号发生器

与频响仪信号发生器同步。

三、主要技术指标

基础型频率响应分析仪功能强、指标高、应用范围广,以下叙述为基础型频率

响应分析仪的主要指标:

● 频率范围

指发生器输出信号的上限及下线频率,频带越宽仪器适用范围越广。

● 幅度范围

指发生器输出信号的幅度大小,用以激励系统。

● 幅度精度

指发生器输出信号的幅度误差,误差越小系统的测量精度越高。

● 量程

指分析器允许信号输入幅度的大小,可以分成几档和自动量程。

● 精度

指分析器对输入信号的测量精度,与被测信号的频率有关,不同的频率范围测量

精度不同,一般分频段划分。

● 分辨率

指分析器对输入信号测量结果的显示位数,分辨率越高说明分析器采用的A/D电路位数越高。

四、选购注意事项

●价格

选择适合工作要求的产品,主要考虑频率范围,不同的频率范围价格相差很大,同时,国内与国外产品价格相差很大。

●服务

频率响应分析仪服务对象往往是多学科交叉的应用技术,如机械与电子测量、桩基与电子测量、电化学与电子测量等等。这就需要生产厂家或供货商,具备较强的仪器应用知识和能力。

●仪器的扩展性

如大型机械要求多通道测试系统的配套性,如计算机连接专用软件的开发等等,这都需要生产厂家有较强的技术支持能力。

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

电脑多元素分析仪操作规程

一. 开机: 在电脑多元素分析仪四个通道比色杯加入水,打开其电源开关,开启电脑,点击“电脑多元素分析仪”软件程序(界面窗口最下方有一条在变化的小方格,指示当前程序正在正常运行)。 二. 定标: 1. 分别点击四个通道屏右侧“满度”,使其透过率(T )为“ T 100.00”,吸光度(A )“A 0.00”,浓度含量(C )“C 0.000”(允许有少许偏差); 2. 点击屏下“零点”,校零成功“零点”变成“校零完成”,只有校零完成才能进行以下操作; 3. “校零完成”后,点击所测元素通道右侧“定标”,进入标样状态,按电脑多元素分析仪该通道的放液按钮,放掉溶液,用少许标样比色液冲洗该通道比色杯,加入标样比色液,待无气泡上逸时(显示A 值比较稳定),点击“A 值输入”,“元素”右框中输入元素符号“%”,在框中输入标样C 值含量值,点击“C 值输入”,点击“定标”(曲线号可不输入仪器会自动加1),点击“保存”; 三.测试: 1.点击定标状态屏右中侧“曲线…>”进入曲线处理界面,选取当前曲线最 左侧小白框,点击该小白框,使用权该条曲线变黑,再点击“调用”,即进入测试状态; 2.用该通道放液按钮,放掉标样比色液,用水冲洗干净后,加入水,点击相应通道右侧“满度”,使其显示“T 100.00”,“A 0.000”,“C 0.000”; 3.把该通道杯中溶液放掉,用所测试样比色液少许冲洗比色杯,加入试样比色液,待无气泡上逸时,直接读其含量值; 4.放掉该通道试样比色液,可用第二试样比色液少许将比色杯冲洗干净,加入第二个试样比色液,无气泡上逸时,直读其含量值,直到所测试样测试完毕,放掉试样比色液,用水将比色杯冲洗干净,加入水。 四.关机: 点击“退出(X )“,关闭电脑,最后关闭电脑多元素分析仪电源。 五.注意事项参照仪器使用说明书。

频谱分析仪基础知识性能指标和实用技巧

频谱分析仪基础知识性能指标及实用技巧 频谱分析仪是用来显示频域幅度的仪器,在射频领域有“射频万用表”的美称。在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。 频谱分析仪的种类与应用 频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。 即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。 扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。 基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。新型的频谱分析仪采用数位,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。 频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。另外,由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和机的类型。在军事领域,频谱仪在电子对抗和频谱监测中

频响频响分析方法总结

频响频响分析方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。

分析化学常用仪器英文名称

分析化学常用仪器英文名称 玻璃漏斗Glass funnel long stem 试管test tube test tube brush test tube holder test tube rack 蒸发皿evaporating dish small 烧杯beaker 锥形瓶Erlenmeyer 量筒grad cylinder 洗瓶plastic wash bottle 勺皿casserole ,small 塞式烧瓶stoppered flask 分液漏斗separatory funnel water bath/oil bath strring bar magnetic stirrer 冷凝器condenser 圆颈烧瓶Round-buttom flask 试剂瓶reagent bottles 托盘天平platform. balance 托盘pan 指针刻度表pointer and scale crossbeams and sliding weights 游码 分析天平two-pan/single-pan analytical balance 滴定管burette glass bead(basic) nozzle 移液管pipette 洗耳球rubber suction bulb 玻棒glass rod 玻璃活塞stopcock 容量瓶volumetric flasks 比重瓶(one-mark)volumetric flasks 刻度吸管graduated pipettes 锥形瓶conical flask 药匙medicine spoon Erlenmeyer flask 滴管drip tube;dropper 烧杯beaker 玻棒Glass stic

元素分析仪(EA)操作规程

元素分析仪(EA)操作规程 德国Elementar公司vario MAX cube型元素分析仪,配有90位自动进样器,最大进样量可达5g,从而提高分析精度,降低检出限。通过更换部分管路和反应管,仪器可于C/N模式和C/N/S模式之间切换。目前主要用于植物、土壤、沉积物等样品中的C、N、S元素分析。 操作步骤: 1、开机 1)检查反应管外观、载气剩余量,做好记录。 2)开启计算机,进入vario max cube软件,查看当前模式,确定是否需要切换模式。 3)options—maintenance—intervals,检查各反应管使用情况,判断是否需要重填反应管,若重新填装,将计数清零。 4)options—settings—parameters,将前三项反应管温度均设为“0”,其余参数不动,退出软件。 5)开启主机电源,带仪器自检完毕后,重新开启软件。 6)将He气分压调至0.15MPa,O2暂不开。等待仪器进入standby状态,若联机不成功需重启软件。 7)options—diagnostics-leak check, 点击“start”开始检漏。 8)检漏通过后,将He气分压调至0.38MPa,O2分压调至0.25MPa 9)options—settings—parameters,根据当前模式,设置反应管温度。 C/N模式:Comb. tube: 900℃ Post Comb. tube: 900℃ Reduct Comb. tube: 830℃C/N/S模式:Comb. tube: 1140℃ Post Comb. tube: 800℃ Reduct Comb. tube: 850℃ 2、样品测试 1)等待反应管升温结束,TCD检测器本底稳定,状态栏无闪烁项时,可准备测样。 2)建立新样品表并命名(不要用中文),先编辑一个blank[O2],两个blank,两个sulfadiazine样品激活仪器,三个sulfadiazine标样用于计算校正因子,下面可编辑样品。可用“复制粘贴”、“enter”等功能添加新样品行。 3)称取标样和样品,可直接将样品质量传输至样品表。 4)样品称量结束后(约30-50个),再次称量三个sulfadiazine标样,确认仪器状态,状态正常可继续添加样品。 5)保存样品表并运行。 6)样品运行结束后,仪器自动进入休眠模式,切断载气,反应管自动降温。 3、数据计算与保存 1)math—factor,计算日常校正因子,如果三个标样结果不平行,选取其中两个接近的数值进行计算,factor通常在0.9-1.1之间,如果偏差过大,需要重新做标准曲线。

光谱分析操作规程

1 适用范围 本规程适用于GVM-1014S光谱分析仪光谱分析、 2 测量原理 将加工好的块状样品作为一个电极,与反电极之间激发激光,通过分光元件将激发光分解成光谱。发射光的光谱特征谱线表示所给样式的含量的特性,对选用的内标线和分析线的强度进行光电测量,根据所用标准样品制作的工作曲线,求出样品中分析元素的含量。 3 操作程序 3.1 开关机程序 3.1.1 开机 顺序打开稳压电源开关、光谱仪主开关、温度调节开关、激发光源开关(随做随开)、CRT、打印机、计算机、真空泵电源及手动阀门。 3.1.2 关机 先关计算机,再关CRT,以下顺序与开机顺序相反。 3.2 准备工作(光谱仪稳定四小时后方可进行描迹、标准化、含量分析)。 3.2.1 抽真空(每天需要进行的工作) 开机后计算机自动进入数据处理系统,按“ENTER”键后,即进入工作状态。 3.2.1.1 按“shift+F1”键,显示主菜单画面,用“↑”,“↓”键,将光标移至“maintenance” 3.2.1.2 用“↑”、“↓”键将光标移至“Instrument Status”(仪器状态)项,按“ENTER”键,则显示出其画面。 3.2.1.3 打开真空泵开关五分钟后,打开手动阀门,待“V ACUUM”黄色指针移至左侧绿色区域中央时关闭手动阀门。一分钟后关掉真空泵电源开关,同时确认“AC 100V”、“TEMP”在绿色区域。 3.2.2 描迹(需要时) 3.2.2.1 按“F10”键回到“维护”画面,用“↑”、“↓”键将光标移至“manual scanning”(描迹)项,按“ENTER”键,则显示其他画面。 3.2.2.2 打开氩气总阀,打开激发光源开关,按“F8”键打开负高压开关。 3.2.2.3 放好描迹的试样,按“F1”键开始激发,用手握紧鼓轮逆时针转动20小格,再顺时针转动,每间隔5个小格按“F6”键,CRT上显示出标记。当描出Fe线有峰值的轮廓时,按“F2”键,停止激发。

PE- AA400原子吸收光谱仪操作规程

PE- AA400原子吸收光谱仪操作规程 AAnalyst 400 Atomic Absorption Spectrophotometer ●仪器型号:AAnalyst 400 ●仪器厂商:美国PerkinElmer公司 ●启用日期:2007.6 ●应用领域:可用于水体、岩石矿物、土壤、植物、食品、石油、化工产品中 金属元素含量的测定,检测限为ppm~ppb级 ●技术参数及特点: ①原子化器为火焰原子化系统,燃气通常为乙炔,助燃气通常为空气,可测 定三十多个金属元素; ②测定波长范围190~900nm;内置4个灯坐; ③氘灯背景校正。 测试步骤: 1.打开排风系统,打开稳压电源,打开空气压缩机(先拧松底部的放水阀进行 放水),打开乙炔钢瓶总阀门,调整分压阀,使压力在0.1 MPa处。 2.打开仪器前门,打开置于前面板底部的仪器电源开关。 3.打开电脑,开启工作软件WinLab32 for AA,系统自动自检并初始化,待 System Status 卡上(或Diagnostics卡上)AA400 spectrometer 和Flam两大组件都自检通过后(打绿勾),方可进行下一步操作。 4.点击快捷键Wrkspc,打开一个工作界面,此时电脑屏幕上同时出现4个操作 窗口,分别为Flame control(用于点火操作和火焰控制)、Calibration Display(显示标准曲线)、Manual Analysis Control(用于控制空白、标准曲线和样品的测定)、Results(显示测定结果,包括吸光度值和浓度)。 5.新建一个测试方法:File—new—method,选择待测元素,点击ok,在Method

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

手持式合金分析仪操作规程(中英文)

手持式合金分析仪操作规程 Operating regulation for handy-alloy analysis 一、范围 1. Range 本规程适用于厂内型号为Niton XLT898W手持式合金分析仪的使用操作。 This operating regulation is applied for handy-alloy analysis in HBG named Niton XLT898W. 二、工作原理及适用范围: 2. Working principle and scope of application 采用X射线荧光(XRF)技术进行多元素分析。用于各种高低合金钢、不锈钢、工具钢、铬/钼钢、镍合金、钴合金、镍/钴耐热合金、钛合金、铜合金等,可分析Ti V Cr Mn Fe Co Ni Cu Zn Nb Zr Mo Ag Pd Sn Hf Ta W Re Pb Bi Se Sb 等元素。 Using fluorescent X-ray technology to have multi-element analysis. this devie is applied for kinds of alloyed steel, non-corrosive steel, tool steel, chrome-molybdenum steel, nickel alloy, cobalt alloy, nickel/cobalt heat-resisting alloy, titanium alloy, copper alloy and so on. it can also analysis kinds of elements like Ti V Cr Mn Fe Co Ni Cu Zn Nb Zr Mo Ag Pd Sn Hf Ta W Re Pb Bi Se Sb. 三、工作条件: 3.Working condition 工作温度:-20℃-50℃;样品温度:0℃-50℃。 Working temperature: -20℃-50℃;specimen temperature: 0℃-50℃. 四、被测金属样品的外形尺寸: 4.outline dimension of measured metal specimen 线材:直径1mm以上; 小口径管材:外径2mm以上; 被测材料与探测窗之间的距离小于10mm; 被测材料(表面)的状态:平面、曲面、粗糙表面、不规则表面、粉末状、振动状态等。 被测表面应打磨露出金属光泽,不影响分析结果。 Wire stock: diameter greater than 1mm; Small pipe-tube: external diameter greater than 1mm; Distance between measured material and detecting window less than 10mm; Status of measured material(surface):flat face, curved face, rough face, irregular face, pulverous face, vibrate face and so on, measured material surface should be shined until the material appear metal brightness and not effect on analysis result. 五、操作步骤: 5.Operation procedure: 1.使用前认真阅读本设备操作使用规程或使用说明书,仔细检查仪器表面,如发现有 明显破损或异常现象应立即更换。 2.使用该设备时应正确佩戴设备防护腰带,手握设备时应先把防滑带套入手腕,以防 设备损坏。 3.测量前应保证被测面露出金属光泽。按下电源开关,仪器发出提示音,液晶屏幕显 示数据后,直接在触摸屏上输入1、2、3、4、E进入操作界面(主界面)。

是德科技频谱分析基础

是德科技 频谱分析基础 应用指南 150

谨以本应用指南献给是德科技的 Blake Peterson。 Blake 在惠普和是德科技效力 45 年之久,为全球各地的客户提供最出色的技术支持。Blake 长期负责向新入行的市场和销售工程师传授有关频谱分析仪技术的基础知识,以便为他们学习和掌握更高深的技术打下良好的基础。工程师们把他视为频谱分析领域的良师益友和具有突出贡献的技术专家。 Blake 的众多成就包括: –著作首版《频谱分析基础》应用指南,并参与后继版本的编撰 –帮助推出 8566/68 频谱分析仪,开启现代频谱分析新时代;以及 PSA 系列频谱分析仪,在问世时为业界树立全新性能标杆 –提议创办 Blake Peterson 大学—为是德科技所有新入职的工程师提供必要的技术培训 为了表彰他的出色成就和重要贡献,《Microwaves & RF》杂志将首座 2013 年当代传奇奖 (Living Legend Award)特别授予 Blake。

第 1 章 – 引论 – 什么是频谱分析仪? (5) 频域对时域 (5) 什么是频谱? (6) 为什么要测量频谱? (6) 信号分析仪种类 (8) 第 2 章 – 频谱分析仪原理 (9) 射频衰减器 (10) 低通滤波器或预选器 (10) 分析仪调谐 (11) 中频增益 (12) 信号分辨 (13) 剩余FM (15) 相位噪声 (16) 扫描时间 (18) 包络检波器 (20) 显示 (21) 检波器类型 (22) 取样检波 (23) (正)峰值检波 (24) 负峰值检波 (24) 正态检波 (24) 平均检波 (27) EMI 检波器:平均值和准峰值检波 (27) 平滑处理 (28) 时间选通 (31) 第 3 章 – 数字中频概述 (36) 数字滤波器 (36) 全数字中频 (37) 专用数字信号处理集成电路 (38) 其他视频处理功能 (38) 频率计数 (38) 全数字中频的更多优势 (39) 第 4 章 – 幅度和频率精度 (40) 相对不确定度 (42) 绝对幅度精度 (42) 改善总的不确定度 (43) 技术指标、典型性能和标称值 (43) 数字中频结构和不确定度 (43) 幅度不确定度示例 (44) 频率精度 (44)

线性控制系统的频率响应分析

一.实验目的 1.了解和掌握对数幅频曲线和相频曲线(波德图)、幅相曲线(奈奎斯特图)的构造及绘制方法。 2.二阶开环系统中的相位裕度和幅值穿越频率的计算。 二.实验内容及要求 1.一阶惯性环节的频率特性曲线测试。 2.二阶开环系统的频率特性测试,研究表征系统稳定程度的相位裕度和 幅值穿越频率对系统的影响。 三、实验主要仪器设备和材料 1.labACT自控/计控原理实验机一台 2.数字存储示波器一台 四、实验方法、步骤及结果测试 1.一阶惯性环节的频率特性曲线 惯性环节的频率特性测试模拟电路见图4-1。 图4-1 惯性环节的频率特性测试模拟电路 实验步骤:注:‘S ST'不能用“短路套”短接! (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)按图4-1安置短路套及测孔联线。 (3)运行、观察、记录: ①运行LABACT程序,选择自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择一阶系统,再选择开始实验,点击开始,实验机将自动产生0.5Hz~64Hz多个频率信号,测试被测系统的频率特性,等待将近十分钟,测试结束。 ②测试结束后,可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈 奎斯特图),同时在界面上方将显示点取的频率点的L、、Im、Re等相关数

据。如点击停止,将停止示波器运行,不能再测量数据。 ③分别改变惯性环节开环增益与时间常数,观察被测系统的开环对数幅频曲线、相频曲线及幅相曲线,在幅频曲线或相频曲线上点取相同的频率点,测量、记录数据于实验数据表中。 实验数据表1:改变惯性环节开环增益,(T=0.05,C=1u,R2=50K) 实验数据表2: 改变惯性环节时间常数, K=1(R1=50K、R2=50K) 2.二阶开环系统的频率特性曲线 二阶系统模拟电路图的构成如图4-2所示。

元素分析仪FLASH2000操作规程氧的操作步骤

氧的操作步骤 1,打开He氦气钢瓶压力(0.3Mpa),关闭氧气开关,调整仪器上He气压力表调节到250Kpa。2,打开仪器电源,打开操作软件:点击Eager Xperience图标,点击O2分析图标。 3,点击图标设置温度及流量后点击Send发送给仪器。 右炉(Right Furnace):1060℃ 柱温(Oven):75℃ 载气(Carrier):140ml/min 参比(Reference):100ml/min 4, 点击图标查看仪器状态,仪器达到设定值时,点击图标点击Detector,将Filament On点上“√”点击“Send”发送给仪器。 注释:检测器打开后,需要稳定1~1.5小时后可做样品。 5,准备样品,称取样品或标准样品在1到3mg.。 注意:空白(blank):直接包一个空银杯,并且空白只有在做标准曲线时才做。 Bypass:空银杯中放入少量标准样品(不需要称重),并且空白只有在做标准曲线时才做。 称量样品时不要将样品洒落在称量器皿上,不要洒在天平里。 包样品时注意不要拿镊子尖触碰银杯,以防将样品包漏。 6,称取样品后,点击图标编辑样品表(依照称取样品顺序)。如下图:

注释:样品名可重复,但是文件名不能重复。 样品表编辑完成后可点击图标将样品表保存为永久性文件。 添加多个样品时可点击图标对样品进行添加。如下图: Sample name:样品名称Filename:文件名称 Unkown,Standard:选择样品类型 No.samples:增加几个样品填写几个。 Sample name idx,Filename idx:添加样品时将其他数值改为1。 7,前面程序准备好后,点击图标,点击“Detector”,然后点击“Adjust Level at 1000” 将基线调整到1000uv。 8,点击图标,然后点击“Start New”开始分析样品。 9,分析结束后,点击图标,设置成份表。如图: 注释:可依上图参数设定其参数。

最全的各类分析仪器介绍

电子称电子称是用来对货物进行称重的自动化称重设备,通过传感器的力电转换,经称重仪表处理来完成对货物的计量,适用于各种散货的计量。 电子秤电子秤是用来对货物进行称重的自动化称重设备,通过传感器的力电转换,经称重仪表处理来完成对货物的计量,适用于各种散货的计量。 测厚仪测厚仪用来测量不同单一材料或者覆盖层的厚度,分无损和有损两种,其中大部分是无损的。 硬度计硬度计是测量各种材料硬度的仪器,分为洛氏、维氏、布氏、邵氏、里氏、消氏等不同类别。 电子天平是实验室分析或质量控制所必须的仪器,具有称量大,精度高,在较差使用环境下亦可达到精密称量的要求。 测温仪是温度计的一种,用红外线的原理来感应物体表面温度,操作比较方便,特别是高温物体的测量。应用广泛,如钢铸造、炉温、机器零件、玻璃及室温、体温等各种物体表面温度的测量。 干燥箱干燥箱是一种常用的仪器设备,主要用来干燥样品,也可以提供实验所需的温度环境.干燥箱应用与化工,电子,铸造,汽车,食品,机械等各个行业. 分光光度计常用分析仪器之一,常用于样品的定性与定量的分析,或透射、反射等光谱分析。广泛应用于医药,食品,石油,建材等各个领域 电导率仪电导率仪是适用于精密测量各种液体介质的仪器设备,主要用来精密测量液体介质的电导率值,当配以相应常数的电极可以精确测量高纯水电导率,广泛应用各领域的科研和生产. 粘度计一种用于测量液体的粘性阻力与液体的动力粘度的仪器,广泛应用于油脂、油漆。电流表电流表是测定电流强弱和方向的电学仪器。分直流电流表和交流电流表。供实验室和工业现场测试用。 温湿度计用来测定环境的温度及湿度,以确定产品生产或仓储的环境条件。也应用于人们日常生活。应用较为广泛。 水分测定仪快速测定物质含水量,可提供实时温度、样品质量、脱水率、样品含水百分比等数。 酸度计酸度计是一种常用的仪器设备,主要用来精密测量液体介质的酸碱度值,配上相应

元素分析仪VarioMaxCN操作规程

元素分析仪Vario Max CN操作规程 一、操作步骤 1. 启动仪器 1.1开启计算机,进入WINDOWS 状态。 1.2拔掉主机尾气堵头。 1.3关上主机的进样装置的保护罩的门,并锁上门。 1.4开启主机电源,待仪器自检完毕。 1.5打开氦气和氧气,将钢瓶气体的压力减压阀调至:He:0.38 MPa ;O: 0.25Mpa。 1.6双击电脑桌面图标varioMAX 启动操作软件。 注意:以上操作必须由仪器管理员完成,任何人不得自行操作。 2. 样品测试 2.1 打开天平,预热30分钟以上。 2.2 做样顺序: 2.2.1 做空白样品(blank)1~2个,选择方法为Blank。要求空白C和N元素峰面积(C area 和N area)均低于1000。如果完成2个空白样品后,C和N元素峰面积仍高于1000,应尽快联系仪器管理员。 2.2.2 做run in。称取约60~120mg(精确到0.01mg)谷氨酸样品1个,记录称样量,选择方法为Aspar 100。 2.2.3 做L-Glutamic acid。称取约150~250mg(精确到0.01mg)谷氨酸样品1个,记录称样量,选择方法为Aspar 125。 2.2.4 做标准样品1~2个。选择与待测样品同一类型的标准样品进行称样。土壤标准样品称样量约为800~850mg(精确到0.01mg),选择方法为soil-min;植物标准样品称样量约为300~350mg(精确到0.01mg),选择方法为plant300。记录标准样品的称样量。 2.2.5 做待测样品。待测样品的称样量和方法与对应类型标准样品相同。 注:所有待测样品称样前必须干燥(65℃条件下,干燥24h),干燥后的样品取出后应放在干燥器内冷却待用。 2.2.6 插入标准样品。每测定30~40个样品,需要插入1~2个标准样品。待测样品全部称取完毕后,再插入1~2个标准样品。

频率响应的波特图分析

《模拟集成电路基础》课程研究性学习报告频率响应的波特图分析

目录 一.频率响应的基本概念 (2) 1. 概念 (2) 2. 研究频率响应的意义 (2) 3. 幅频特性和相频特性 (2) 4. 放大器产生截频的主要原因 (3) 二.频率响应的分析方法 (3) 1. 电路的传输函数 (3) 2. 频率响应的波特图绘制 (4) (1)概念 (4) (2)图形特点 (4) (3)四种零、极点情况 (4) (4)具体步骤 (6) (5)举例 (7) 三.单级放大电路频率响应 (7) 1.共射放大电路的频率响应 (7) 2.共基放大电路的频率响应 (9) 四.多级放大电路频响 (10) 1.共射一共基电路的频率响应 (10) (1)低频响应 (11) (2)高频响应 (12) 2.共集一共基电路的频率响应 (13) 3.共射—共集电路级联 (14) 五.结束语 (14)

一.频率响应的基本概念 1.概念 我们在讨论放大电路的增益时,往往只考虑到它的中频特性,却忽略了放大电路中电抗元件的影响,所求指标并没有涉及输入信号的频率。但实际上,放大电路中总是含有电抗元件,因而,它的增益和相移都与频率有关。即它能正常工作的频率范围是有限的,一旦超出这个范围,输出信号将不能按原有增益放大,从而导致失真。我们把增益和相移随频率的变化特性分别称为幅频特性和相频特性,统称为频率响应特性。 2.研究频率响应的意义 通常研究的输入信号是以正弦信号为典型信号分析其放大情况的,实际的输入信号中有高频噪声,或者是一个非正弦周期信号。例如输入信号i u 为方波,s U 为方波的幅度,T 是周期, 0/2ωπ=T ,用傅里叶级数展开,得...)5sin 5 1 3sin 31(sin 22000++++= t t t U U u s s i ωωωπ 各次谐波单独作用时电压增益仍然是由交流通路求得,总的输出信号为各次谐波单独作用时产生的输出值的叠加。但是交流通路和其线性化等效电路对低频、中频、高频是有差别的,这是因为放大电路中耦合电容、旁路电容和三极管结电容对不同频率的信号的复阻抗是不同的。电容C 对K 次谐波的复阻抗是C jK 0/1ω,那么,放大电路对各次谐波的放大倍数相同吗?放大电路总的输出信号能够再现输入信号的变化规律吗?也就是放大电路能够不失真地放大输入信号吗?为此,我们要研究频率响应。 3.幅频特性和相频特性 幅频特性:放大电路的幅值|A|和频率f(或角频率ω)之间的关系曲线,称为幅频特性曲线。由于增益是频率的函数,因此增益用A (jf )或A (ωj )来表示。在中频段增益根本不随频率而变化,我们称中频段的增益为中频增益。在中频增益段的左、右两边,随着频率的减小或增加,增益都要下降,分别称为低频增益段和高频增益段。通常把增益下降到中频增益的0.707倍(即3dB )处所对应的频率称为放大电路的低频截频(也称下限频率)L f 和高频截频(也称上限频率)H f ,把L H f f BW -=称为放大器的带宽。 相频特性:放大电路的相移?和频率f(或角频率ω)之间的关系曲线,称为相频特性曲线。

常用仪器分析介绍

近代分析仪器及其发展(一) (北京普析通用仪器有限责任公司分析中心北京 100081)Recent Analysis Instruments and Development Beijing Purking General InstrumentCo.,Lt Analytical Centre 近代分析仪器的发展促进了分析化学向纵深发展,并在国民经济各个领域获得了广泛的应用,从航天材料、食品安全、环境污染、医疗卫生、地质勘探、工业生产、农业生产、检验检疫诸多方面都离不开分析仪器。现代分析化学的发展趋势是高灵敏度、高选择性(复杂体系)、智能化、快速、自动、简便、经济。对分析仪器而言,一方面要降低仪器的信噪比,另一方面是各类分析仪器的联用,特别是分离仪器和检测器的连用,如色谱仪 (气相色谱、液相色谱或超临界流体色谱仪、多维色谱仪等)和各种分析仪器(质谱、核磁共振波谱、傅立叶红外光谱、原子吸收光谱和原子发射光谱)的联用,利用前者的优异的分离功能,将组分分离后由后者加以识别,进行定性和定量分析。此外,近红外光谱化学计量学软件设计及其在各行业的应用软件 (包括建模、校准、评价、数据优化等软件和软件包)的开发和完善也将成为国内外分析仪器发展的另一个热点。 1 原子光谱分析法 1.1 原子发射光谱分析法(AES) 21世纪新兴的原子光谱分析光源是等离子体光源(plasma source),分为直流等离子体 (DCP)、高频电感耦合等离子体(ICP)和微波等离子体 (MP)。直流等离子体是最早用于原子光谱分析的一种等离子体光源,功率较ICP低,雾化器不易堵塞,总氩气的用量只及 ICP耗气量的一半,无高频辐射,检出限与ICP相近或稍差,精密度不如ICP好,线性范围比ICP窄,基体效应比 ICP严重,电极易污染。ICP具有优良的分析特性,被测元素能有效的进行原子化和消除化学干扰,工作曲线有较宽的线性范围,达 4~6个数量级,信噪比高,可快速进行多元素的同时测定。微波等离子体包括电容耦合微波等离子体(CMP)和诱导微波等离子体 (MIP),常用微波频率为 2450 MHz,主要优点是激发能力强,以He气为工作气体时,可以测定包括卤素在内的几乎所有元素,有很好的检出限。AES法广泛应用于钢铁、合金、有色金属、地质、石化等领域的分析。 1.2 原子吸收光谱法(AAS) 按照所用的原子化方法的不同,可分为火焰原子吸收法(FAAS)、石墨炉原子吸收法 (GFAAS)和石英炉原子化法,可以在较低的温度下原子化,包括汞蒸气原子化、氢化物原子化和挥发物原子化。背景校正器有氘灯背景校正器、塞曼效应背景校正器、自吸背景校正器。原子吸收法的优点是检出限低,FAAS为 10-6~10-9 g/mL,GFAAS为10-10~10-14g/mL。目前, 1.3 原子荧光光谱法(AFS) 原子荧光光谱在元素及其形态分析方面有着广泛的应用,特别是与氢化物发生进样技术的结合,在测定地质样品、钢铁合金、环境样品、食品、生物样品等中的 Ge、Sn、Pb、As、Sb、Bi、Se、Te、Hg和 Cd等元素都有很好的效果。原子荧光光谱法的特点是谱线简单、光谱干扰少、检出限低,测定空气中的汞,检出限达到每立方米2.2×10-9个原子,可进行多元素同时测定,校正曲线的线性范围宽,达到4~7数量级,适用元素的范围不如AES和 AAS广泛。AFS法与AAS、AES分析技术互相补充,在冶金、地质、环境监测、生物、医学分析等领域得到了日益广泛的应用。 2 分子光谱分析法 2.1 紫外一可见分光光度法(UV-VIS) 紫外可见分光光度法是历史最悠久、应用面最为广泛的一种仪器分析方法,现在又发展了多种分光光度测量技术,如双波长(三波长)分光光度法,可以有效地消除复杂试样的背景吸收、散射、浑浊对测定的影响,很适合于生物样品和环境样品的分析。胶束增溶分光光度法可以提高测定选择性和灵敏度,摩尔吸收系数一般可达 106 L/(mol·cm )。导数分光光度法提高了对重叠、平坦谱带的分辨率与测定灵敏度,示差分光光度法提高了测定很稀或很浓溶液吸光度的精度。正交函数吸光光度法在吸收曲线的某一区域选择适当的正交多项式,使干扰组分的正交多项式系数最小,以致可以忽略不计,用待测组分的正交多项式的系数进行定量分析。随着化学计量学方法的兴起,出现了多种计算机辅助分光光度法,如因子分析、偏最小二乘法、多元线性回归分光光度法等,可以在谱带严重重叠的情况下,不经分离可以直接实现多组分的同时测定。此外,还有流动注射吸光光度法、动力学吸光光度法、浮选吸光光度法、固相吸光光度法、计量学吸光光度法等。 2.2 红外光谱吸收法(IR) 红外光谱能提供有机化合物丰富的结构信息,特别是中红外光谱是鉴定有机化合物结构最主要的手段之一。近年来,近红外光谱技术与各种化学计量学算法相结合,取得了显著的研究成果。目前,傅立叶变换红外光谱仪 (FTIR),逐渐取代了色散型红外光谱仪,它主要由红外光源、光学系统、检测器以及数据处理与数据控制系统组成。现在数据库已储存有大量的有机化合物的标准红外图谱,检索也十分方便。对于化工生产控制和未知物剖析有很大帮助。 综 述

相关文档
最新文档