气体实验定律物理教案

合集下载

实验五气体三定律及气态方程的验证

实验五气体三定律及气态方程的验证

实验五气体三定律及气态方程的验证在物理学的领域中,气体的性质一直是研究的重要课题之一。

其中,气体三定律以及气态方程为我们理解和描述气体的行为提供了有力的工具。

本次实验的目的就是要通过实际操作和数据测量,来验证这些定律和方程的准确性。

实验前,我们首先需要了解一下所要验证的气体三定律及气态方程的具体内容。

波义耳定律指出,在温度不变的情况下,一定质量气体的压强与体积成反比。

也就是说,当气体的温度保持恒定,如果对气体进行压缩,使其体积减小,那么气体的压强就会增大;反之,如果气体的体积增大,压强则会减小。

查理定律表明,在压强不变的条件下,一定质量气体的体积与热力学温度成正比。

这意味着当气体所受压强恒定,随着温度的升高,气体的体积会增大;温度降低时,体积则会减小。

盖吕萨克定律则说的是,在体积不变时,一定质量气体的压强与热力学温度成正比。

即当气体的体积固定不变,温度上升,压强增大;温度下降,压强减小。

而综合这三个定律,我们可以得到理想气体状态方程,即 PV =nRT ,其中 P 是气体压强,V 是气体体积,n 是气体的物质的量,R 是理想气体常数,T 是热力学温度。

为了进行这个实验,我们准备了以下实验器材:一个带有刻度的注射器、一个气压计、一个温度计、一个恒温箱以及一些必要的连接装置。

实验开始,首先验证波义耳定律。

我们在室温下,将一定量的气体吸入注射器中,记录此时的体积和压强。

然后,通过缓慢推动注射器的活塞,逐渐减小气体的体积,并同时记录相应的压强值。

经过多次测量,我们得到了一系列体积和压强的数据。

将这些数据绘制成图表,可以清晰地看到,在温度不变的情况下,压强与体积的乘积基本保持恒定,从而验证了波义耳定律。

接下来验证查理定律。

我们将注射器放入恒温箱中,设置不同的温度,保持压强不变,测量并记录不同温度下气体的体积。

同样,将这些数据进行整理和分析,结果表明,在压强不变时,气体的体积与温度呈线性关系,符合查理定律的描述。

气体 理想气体的状态方程 教案

气体 理想气体的状态方程 教案

气体·理想气体的状态方程·教案一、教学目标1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。

(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。

(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。

2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。

3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。

二、重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。

2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。

另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。

三、教具1.投影幻灯机、书写用投影片。

2.气体定律实验器、烧杯、温度计等。

四、主要教学过程(一)引入新课前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。

(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。

2.3气体的等压变化和等容变化_教案

2.3气体的等压变化和等容变化_教案

气体的等压变化和等容变化【教学目标】一、知识与技能1.知道什么是气体的等容变化过程;掌握查理定律的内容;理解p-T图象的物理意义;知道查理定律的适用条件。

2.知道什么是气体的等压变化过程;掌握盖-吕萨克定律的内容、数学表达式;理解V-T图象的物理意义。

3.知道什么是理想气体,理解理想气体的状态方程。

4.会用气体动理论的知识解释气体实验定律。

二、过程与方法根据查理定律和盖-吕萨克定律的内容理解p-T图象和V-T图象的物理意义。

三、情感、态度与价值观1.培养运用图象这种数学语言表达物理规律的能力。

2.领悟物理探索的基本思路,培养科学的价值观。

【教学重点】1.查理定律的内容、数学表达式及适用条件。

2.盖-吕萨克定律的内容、数学表达式及适用条件。

【教学难点】对p-T图象和V-T图象的物理意义的理解。

【教学过程】一、复习导入教师:玻意耳定律的内容和公式是什么?学生:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比。

即pV=C或p1V1=p2V2。

教师:应用玻意耳定律求解问题的基本思路是什么?学生:首先确定研究对象(一定质量的气体,温度不变),然后确定气体在两个不同状态下的压强和体积??1、??1,??2、??2,最后根据定律列式求解。

教师点出课题:那么,当气体的体积保持不变时,气体的压强与温度的关系是怎样的呢?若气体的压强保持不变时,气体的体积与温度的关系又是怎样的呢?这节课我们学习气体的等容变化和等压变化。

二、新课教学(一)气体的等压变化1.等压变化:一定质量的某种气体,在压强不变时,体积随温度的变化。

猜想:在等压变化中,气体的体积与温度可能存在着什么关系?教师介绍盖-吕萨克的猜想。

盖-吕萨克1778年9月6日生于圣·莱昂特。

1800年毕业于巴黎理工学校。

1850年5月9日,病逝于巴黎,享年72岁。

1802年,盖-吕萨克发现气体热膨胀定律(即盖-吕萨克定律)压强不变时,一定质量气体的体积跟热力学温度成正比。

高中物理气体方程技巧教案

高中物理气体方程技巧教案

高中物理气体方程技巧教案
教学目标:通过本节课的学习,学生能够掌握气体方程的推导和应用方法,理解气体的基本性质和相关定律。

教学重点:气体方程的推导和应用方法。

教学难点:气体方程的实际应用,及其在解决实际问题中的应用。

教学准备:
1. 教材:高中物理教材相关章节。

2. 教具:板书、投影仪、实验装置等。

3. 实验材料:气体容器、气体压力计等。

教学过程:
一、导入(5分钟)
向学生简要介绍气体方程及其重要性,激发学生对本节课的兴趣。

二、概念讲解(15分钟)
1. 介绍理想气体状态方程及其推导方法。

2. 介绍实际气体状态方程及其应用。

三、实验演示(15分钟)
进行实验演示,让学生通过实验感受气体的性质和状态方程的推导过程。

四、练习与讨论(15分钟)
1. 给学生一些相关练习题,让他们通过解题来巩固所学知识。

2. 分组讨论,让学生在小组内交流思路,共同解决问题。

五、总结与扩展(10分钟)
总结本节课的重点内容,并引导学生思考气体方程在实际生活中的应用,并展开相关拓展讨论。

六、作业布置(5分钟)
布置相关作业,巩固学生对气体方程的掌握。

教学反思:
通过本节课的教学,学生对气体方程有了更深入的理解,学习效果良好。

在今后的教学中,可以通过更多实验来帮助学生理解和应用气体方程,提高教学效果。

高中物理第1章分子动理论与气体实验定律第3节气体分子速率分布的统计规律学案鲁科版选择性3

高中物理第1章分子动理论与气体实验定律第3节气体分子速率分布的统计规律学案鲁科版选择性3

第3节气体分子速率分布的统计规律学习目标:1.[物理观念]初步了解什么是“统计规律”.2.[科学思维]理解气体分子速率分布规律.一、偶然中的必然1.随机性必然事件:在一定条件下,必然出现的事件.不可能事件:在一定条件下,不可能出现的事件.随机事件:在一定条件下,可能出现,也可能不出现的事件.2.统计规律:大量的随机事件表现出的整体规律.二、气体分子速率分布规律1.气体分子速率的分布规律(1)图象如图所示.(1)规律:在一定温度下,不管个别分子怎样运动,气体的多数分子的速率都在某个数值附近,表现出“中间多、两头少”的分布规律.当温度升高时,“中间多、两头少”的分布规律不变,气体分子的速率增大,分布曲线的峰值向速率大的一方移动.2.气体温度的微观意义(1)温度越高,分子的热运动越剧烈.(2)理想气体的热力学温度T与分子的平均动能错误!k成正比,即T=a E k,表明温度是分子平均动能的标志.1.思考判断(正确的打“√”,错误的打“×”)(1)大多数气体分子的速率处于中间值,少数分子的速率较大或较小.(√)(2)温度越高,分子的热运动越激烈,是指温度升高时,所有分子运动的速率都增大了.(×)(3)气体内部所有分子的动能都随温度的升高而增大.(×)(4)当温度发生变化时,气体分子的速率不再是“中间多、两头少”.(×)(5)某一时刻一个分子的速度大小和方向是偶然的.(√)(6)温度相同时,各种气体分子的平均速度都相同.(×)2.(多选)关于气体分子的运动情况,下列说法不正确的是()A.某一时刻具有某一速率的分子数目是相等的B.某一时刻一个分子速度的大小和方向是偶然的C.某一温度下,大多数气体分子的速率不会发生变化D.分子的速率分布毫无规律ACD[具有某一速率的分子数目并不是相等的,呈“中间多、两头少”的统计规律分布,故A、D项错误;由于分子之间频繁地碰撞,分子随时都会改变自己的运动情况,因此在某一时刻,一个分子速度的大小和方向完全是偶然的,故B项正确;某一温度下,每个分子的速率仍然是随时变化的,只是分子运动的平均速率不变,故C项错误.]3.下面的表格是某地区1~7月气温与气压的对照表:7月与1月相比较,正确的是()A.空气分子无规则热运动的情况几乎不变B.空气分子无规则运动减弱了C.单位时间内空气分子对单位面积地面的撞击次数增多了D.单位时间内空气分子对单位面积地面撞击次数减少了D[由表中数据知,7月份与1月份相比,温度升高,压强减小,温度升高使气体分子热运动更加剧烈,空气分子与地面撞击一次对地面的冲量增大,而压强减小,单位时间内空气分子对单位面积地面的冲量减小.所以单位时间内空气分子对单位面积地面的撞击次数减少了,因而只有D项正确.]统计规律与气体分子运动特点(1)抛掷一枚硬币时,其正面有时向上,有时向下,抛掷次数较少和次数很多时,会有什么规律?(2)温度不变时,每个分子的速率都相同吗?温度升高,所有分子运动速率都增大吗?提示:(1)抛掷次数较少时,正面向上或向下完全是偶然的,但次数很多时,正面向上或向下的概率是相等的.(2)分子在做无规则运动,造成其速率有大有小.温度升高时,所有分子热运动的平均速率增大,即大部分分子的速率增大了,1.对统计规律的理解(1)个别事件的出现具有偶然因素,但大量事件出现的机会,却遵从一定的统计规律.(2)从微观角度看,由于气体是由数量极多的分子组成的,这些分子并没有统一的运动步调,单独来看,各个分子的运动都是不规则的,带有偶然性,但从总体来看,大量分子的运动却具有一定的规律.2.如何正确理解气体分子运动的特点(1)气体分子距离大(约为分子直径的10倍),分子力非常小(可忽略),可以自由运动,所以气体没有一定的体积和形状.(2)分子间的碰撞十分频繁,频繁的碰撞使每个分子速度的大小和方向频繁地发生改变,造成气体分子做杂乱无章的热运动,因此气体分子沿各个方向运动的机会(概率)相等.(3)大量气体分子的速率分布呈现中间多(占有分子数目多)、两头少(速率大或小的分子数目少)的规律.(4)当温度升高时,“中间多”的这一“高峰”向速率大的一方移动,即速度大的分子数目增多,速率小的分子数目减小,分子的平均速率增大,分子的热运动剧烈,定量的分析表明理想气体的热力学温度T与分子的平均动能错误!k成正比,即T=a错误!k,因此说,温度是分子平均动能的标志.【例】(多选)根据气体分子动理论,气体分子运动的剧烈程度与温度有关,下列表格中的数据是研究氧气分子速率分布规律而列出的.依据表格内容,以下四位同学所总结的规律正确的是()A.不论温度多高,速率很大和很小的分子总是少数B.温度变化,表现出“中间多、两头少”的分布规律要改变C.某一温度下,速率都在某一数值附近,离开这个数值越远,分子越少D.温度增加时,速率小的分子数减少了ACD[温度变化,表现出“中间多、两头少”的分布规律是不会改变的,选项B错误;由气体分子运动的特点和统计规律可知,选项A、C、D描述正确.]气体分子速率分布规律(1)不同的气体在不同的温度下,该曲线是不同的,即使对同一种气体,由于温度不同,曲线也不相同,并且温度升高,速率大的分子所占的比率增加,速率小的分子所占的比率减小.(2)温度升高,气体分子的平均速率变大,但具体到某一个气体分子,速率可能变大也可能变小,无法确定.[跟进训练](多选)如图所示是氧气在0 ℃和100 ℃两种不同温度下,各速率区间的分子数占总分子数的百分比与分子的速率间的关系.由图可知下列说法正确的是()A.100 ℃的氧气,速率大的分子比例较多B.具有最大比例的速率区间,0 ℃时对应的速率大C.温度越高,分子的平均速率越大D.在0 ℃时,也有一部分分子的速率比较大,说明气体内部有温度较高的区域AC[同一温度下,中等速率大的氧气分子数所占的比例大.温度升高时,速率大的氧气分子数增加,使得氧气分子的平均速率增大,100 ℃的氧气,速率大的分子比例较多,由图像可知,0 ℃时的最大比例值大,但对应的分子速率小于100 ℃时的情况,A正确,B错误;温度升高,分子的运动加剧,使得氧气分子的平均速率增大,C正确;温度是分子平均动能的标志,与个别分子速率大小无关,气体内部温度相同,D错误.]1.某种气体在不同温度下的分子速率分布曲线如图所示,f (v)表示分子速率v附近单位速率区间内的分子数百分率。

高中物理气体的结构教案

高中物理气体的结构教案

高中物理气体的结构教案
一、教学目标
1. 使学生理解气体分子的特点和理想气体的状态方程。

2. 培养学生运用气体定律解释日常生活中的现象的能力。

3. 强化学生实验观察和数据分析的技能。

二、教学内容
1. 气体分子模型的介绍:包括分子间距、分子大小和分子速度等特性。

2. 理想气体状态方程的推导和应用:V=nRT。

3. 实际气体与理想气体行为的偏差分析。

4. 相关实验介绍:如查理定律实验、波义耳定律实验等。

三、教学方法
采用讲授与讨论相结合的方式,辅以多媒体教学手段,增强学生的直观感受和理解深度。

四、教学过程
1. 引入新课:通过视频或图片展示气体在不同条件下的表现,激发学生兴趣。

2. 知识讲解:系统阐述气体的微观结构特点和理想气体状态方程。

3. 案例分析:选取生活中的例子,如气球膨胀、汽车轮胎压力变化等,让学生用所学知识进行分析。

4. 实验演示:老师现场演示或播放相关实验视频,加深学生对理论的理解。

5. 小组讨论:学生分组讨论气体定律的应用,提出疑问并互相解答。

6. 总结归纳:回顾本次课程的主要内容,强调知识点的应用价值。

五、作业布置
1. 设计一个简单的实验来验证波义耳定律或查理定律。

2. 思考题:为什么高山上的大气压比海平面低?请结合气体定律给出解释。

六、评价方式
通过课堂提问、小组讨论表现、作业完成情况以及实验报告的撰写来综合评价学生的学习效果。

七、教学反思
教师需根据学生的反馈和学习效果,对教学方法和内容进行适时调整,确保教学质量。

2.1气体实验定律Ⅰ教学设计-2023-2024学年高二下学期物理粤教版(2019)选择性必修第三册

2.1气体实验定律Ⅰ教学设计-2023-2024学年高二下学期物理粤教版(2019)选择性必修第三册
- 理想气体模型:假设气体分子为点粒子,碰撞为弹性碰撞,气体与容器壁碰撞完全弹性。
- 气体分子的平均动能与温度的关系:温度是气体分子平均动能的量度。
7. 实验操作注意事项
- 实验器材的校准和安全性检查。
- 实验过程中温度、压强和体积的精确测量。
- 实验数据的记录和分析,如使用图表、曲线拟合等。
8. 气体实验定律的实际意义
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源准备
1. 教材:确保每位学生都提前准备好本节课所需的物理教材或学习资料,包括粤教版(2019)选择性必修第三册。
2. 辅助材料:准备与气体实验定律相关的图片、图表、视频等多媒体资源,以便直观展示气体现象和定律应用。
3. 实验器材:提前检查并准备实验所需的气体定律演示装置、压强计、温度计等实验器材,确保其完整性和安全性。
- 信息技术手段:利用在线平台,促进资源共享和进度监控。
作用与目的:
- 让学生提前接触气体实验定律,为课堂学习打下基础。
- 培养学生独立思考和自主学习的能力。
2. 课中强化技能
教师活动:
- 导入新课:通过演示实验,引入气体实验定律的学习。
- 讲解知识点:详细讲解查理定律、波义耳定律和盖·吕萨克定律等知识点,结合实际案例。
4. 实验操作评价:
- 观察学生在实验操作中的规范性和准确性,评估实验结果的可靠性。
- 评价学生在实验过程中的观察力、分析问题和解决问题的能力。
5. 教师评价与反馈:
- 针对学生在课堂、讨论、测试和实验操作中的表现,给予及时、具体的评价和指导。

高中物理第二章气体4气体实验定律的图像表示及微观解释教科

高中物理第二章气体4气体实验定律的图像表示及微观解释教科

图7
答案
[知识深化] 1.p-T图像,如图8所示:
图8 (1)p-T图中的等容线是一条过原点的倾斜直线. (2)p-t图中的等容线不过原点,但反向延长线交t轴于-273.15 ℃. (3)无论p-T图像还是p-t图像,其斜率都能判断气体体积的大小,斜率 越大12/1,2/202体1 积越小.
2.V-T图像,如图9所示:
12/12/2021
图10
解析 答案
(2)请在图乙坐标系中,作出由状态A 经过状态B变为状态C的p-T图像, 并在图线相应位置上标出字母A、B、 C,如果需要计算才能确定有关坐标 值,请写出计算过程. 答案 见解析 解析 根据查理定律得TpBB=TpCC pC=TTCBpB=430000pB=43pB=43×1.5×105 Pa=2.0×105 Pa 则可画出由状态A→B→C的p-T图像如图所示.
(2)一定质量的气体的p-T图像是双曲线.( × )
(3)V-T图像的斜率大,说明压强小.( √ )
(4)若T不变,p增大,则V减小,是由于分子撞击器壁的作用力变大.( × )
(5)若p不变,V增大,则T增大,是由于分子密集程度减小,要使压强不
变,分子的平均动能增大.( √ )
(6)若V不变,T增大,则p增大,是由于分子密集程度不变,分子平均动
12/12/2021
答案
[知识深化] 1.用气体分子动理论解释玻意耳定律 一定质量(m)的气体,其分子总数(N)是一个定值,当温度(T)保持不变时, 则分子的平均速率(v)也保持不变,当其体积(V)增大为原来的n倍时,单 位体积内的分子数(N0)则变为原来的n分之一,因此气体的压强也减为原 来的n分之一;反之若体积减小为原来的n分之一,压强则增大为原来的 n倍,即压强与体积成反比.这就是玻意耳定律.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体实验定律物理教案
知识目标
1、知道什么是等温变化,知道玻意耳定律的实验装置和实验过程,掌握玻意耳定律
的内容与公式表达.
2、知道什么是等容变化,了解查理定律的实验装置和实验过程,掌握查理定律的内
容与公式表达.
3、掌握三种基本图像,并能通过图像得到相关的物理信息.
能力目标
通过实验培养学生的观察能力和实验能力以及分析实验结果得出结论的能力.
情感目标
通过实验,培养学生分析问题和解决问题的能力,同时树立理论联系实际的观点.
教学建议
教材分析
本节的内容涉及三个实验定律:玻意耳定律、查理定律和盖・吕萨克定律.研究压强、体积和温度之间的变化关系,教材深透了一般物理研究方法――“控制变量法”:在研究
两个以上变量的关系时,往往是先研究其中两个变量间的关系,保持其它量不变,然后综
合起来得到所要研究的几个量之间的关系,在牛顿第二定律、力矩的平衡、单摆周期确定
等教学中,我们曾经几次采用这种方法.
教法建议
通过演示实验,及设定变量的方法得到两个实验定律;注意定律成立的条件.提高学生
对图像的分析能力.
教学设计方案
教学用具:验证玻意耳定律和查理定律的实验装置各一套.
教学主要过程设计:在教师指导下学生认识实验并帮助记录数据,在教师启发下学生
自己分析总结、推理归纳实验规律.
课时安排:2课时
教学步骤
(一)课堂引入:
教师讲解:我们学习了描述气体的三个物理参量――体积、温度、压强,并知道对于
一定质量的气体,这三个量中一个量变化时,另外两个量也会相应的发生变化,三个量的
变化是互相关联的,那么,对于一定质量的气体,这三个量的变化关系是怎样的呢?这节课,我们便来研究一下!
(二)新课讲解:
教师讲解:在物理学中,当需要研究三个物理量之间的关系时,往往采用“保持一个
量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系”,我们研究一定质量的气体温度、体积、压强三者的关系,就可以采用这种方法.首先,我
们设定温度不变,研究气体体积和压强的关系.
1、气体的压强与体积的关系――玻意耳定律
演示实验:一定质量的气体,在保持温度不变的情况下改变压强,研究压强与体积的
关系.让学盛帮助记录数据.
压强Pa0.51.01.52.02.53.03.54.0
体积V/L8.04.02.72.01.61.31.11.0
4.04.04.054.04.03.93.854.0
以横坐标表示气体的体积,纵坐标表示气体的压强,作出压强p与体积的关系如图所示.
可见,一定质量的气体,在体积不变的情况,压强P随体积V的关系图线为一双曲线,称为等温线.①见等温线上的每点表示气体的一个状态.②同一等温线上每一状态的温度均
相同.③对同一部分气体,在不同温度下的等温线为一簇双曲线,离坐标轴越近的等温线
的温度越高.
通过实验得出,一定质量的某种气体,在温度保持不变的情况下,压强p与体积V的
乘积保持不变,即:常量
或压强p与体积V成反比,即:
这个规律叫做玻意耳定律,也可以写成:或
例如:一空气泡从水库向上浮,由于气泡的压强逐渐减小,因此体积逐渐增大.
例题1:如图所示,已知:,求:和
解:根据图像可得:
∵封闭在管中的气体质量、温度均不变.
即:
解得:
2、气体的压强与温度的关系――查理定律
演示实验:一定质量的气体,在体积保持不变的情况下改变温度,研究压强与温度的关系.让学生帮助记录数据.
压强Pa1.01.11.21.31.41.51.61.7
温度T/K300330360390420450480510
以横坐标表示气体的温度,纵坐标表示气体的压强,作出压强p与温度T的关系如图所示.
可见,一定质量的气体,在体积不变的情况下,压强p与热力学温度的关系,图线为通过原点的一条直线,称为等容线.
①等容线上的每一点表示气体的一个状态.②同一等容线上每一状态的体积均相同.③对同一部分气体,在不同体积下的等容线为一簇通过原点的直线,离横轴越远的等容线的体积越大().
通过实验得出,一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T 之比保持不变,即:常量
或压强p与热力学温度T成正比,即:
这个规律叫做查理定律,也可以写成:或
例如:乒乓球挤瘪后,放在热水里泡一会儿,由于球内气体温度升高,压强增大,就把乒乓球挤回球形.
例题2:一定质量的某种气体在20℃时的压强是Pa,保持体积不变,温度升高到50℃,压强是多少?温度降到-17℃时,压强是多少?
解:∵因气体的质量和体积均不变


3、气体的体积和温度的关系――盖・吕萨克定律
教师讲解:由前面我们得到:;;
则可以得到:
也就是说:一定质量的气体,在压强不变的情况下,体积与热力学温度成正比,即:,这个规律叫做盖・吕萨克定律,也可以写成:或
一定质量的气体,在压强不变的情况下,体积V与热力学温度的关系图线为通过原点
的直线,称为等压线.
①等压线上每一点表示气体的一个状态.②同一等压线上每一状态的压强相等.③对同
一部分气体,在不同压强下的等压线为一簇通过原点的直线,离横轴越远的等压线的压强
越大().
教师总结:理想气体的状态方程是由实验定律推证出来的,我们也可以把玻意耳定律、查理定律、盖・吕萨克定律分别看成是在温度、体积、压强不变的情况下理想气体状态方
程的特殊情况,或者说,理想气体的状态方程包括了三个实验定律.
(三)板书设计
二、气体实验定律
1、气体的压强与体积的关系――玻意耳定律
内容:图像:
表达式:
2、气体的压强与温度的关系――查理定律
内容:图像:
表达式:
3、气体的温度与体积的关系――盖・吕萨克定律:
内容:图像:
表达式:
感谢您的阅读。

祝语:你陪伴着我,从冬天走来,踏着厚厚的冰雪,迎来寒梅傲雪的那刻,朋友,感谢你,人的一生,有朋友的陪伴,如黑夜中的一点星火,让你不畏惧孤独。

相关文档
最新文档