高三生物光合作用知识点讲解

合集下载

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结定义:光合作用是绿色植物吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。

反应场所:主要在叶绿体的类囊体薄膜上进行,而暗反应(碳反应)则在叶绿体基质中进行。

光反应:水的光解:在光下,叶绿体中的色素吸收光能,将水分解为氧气和[H]。

ATP的生成:在光反应中,利用光能合成ATP,提供暗反应所需的能量。

色素吸收光能:叶绿素和类胡萝卜素主要吸收红光和蓝紫光,将光能传递给少数特殊状态的叶绿素a分子,引发光反应。

暗反应(碳反应):CO₂的固定:在暗反应开始时,CO₂与五碳化合物(C₅)结合生成两个三碳化合物(C₃)。

C₃的还原:在光反应中生成的[H]和ATP作用下,C₃被还原为三碳糖(C₃H₆O₃),并释放出能量。

五碳化合物的再生:三碳糖的一部分合成五碳化合物(C₅),完成五碳化合物的再生。

糖类的合成:三碳糖的另一部分转化为葡萄糖或其他糖类。

光暗反应的联系:光反应产生的[H]和ATP是暗反应的原料,暗反应产生的五碳化合物是光反应的产物。

二者相互依存,缺一不可。

影响因素:光照强度:直接影响光反应速率,间接影响暗反应速率。

CO₂浓度:直接影响暗反应速率。

温度:通过影响酶的活性来影响光合作用速率。

矿质元素和水:矿质元素是叶绿素的组成成分,水是光合作用的光反应和暗反应的原料。

光合作用的意义:为生物圈提供有机物和氧气。

维持大气中氧和二氧化碳的平衡。

对生物的进化有重要作用,对地球的温室效应有重要影响。

以上仅为光合作用的基础知识点总结,更深入的理解和掌握可能需要通过更多的学习和实践来实现。

高中生物光合作用知识点

高中生物光合作用知识点

高中生物光合作用知识点光合作用是生物界最重要的代谢过程之一,它发生于植物和一些藻类中,通过光合作用,光能被转化为化学能,从而为这些生物提供能量和有机物质。

本文将介绍高中生物中关于光合作用的一些重要知识点。

一、光合作用的概述光合作用是通过光能、水和二氧化碳来合成有机物质,同时产生氧气的生化过程。

它分为光能转化和化学反应两个阶段。

在光能转化过程中,光能被吸收,转化为化学能,并储存在化合物中。

在化学反应过程中,化学能被释放出来,通过一系列反应,将二氧化碳还原成为有机化合物。

二、光合作用的两个阶段1. 光能转化阶段光合作用的第一个阶段发生在叶绿素分子中。

光合作用中最重要的光合色素是叶绿素a,它能吸收红、橙、蓝、紫等波长的光线,而对绿色光线较不敏感。

当光线照射到叶绿素分子上时,叶绿素会吸收光能,并将其传递给反应中心,产生一系列反应,最终形成能转化为化学能的高能电子。

2. 化学反应阶段化学反应阶段也被称为黑暗反应,因为它并不直接依赖于光线。

这个阶段主要发生在叶绿体的叶绿体基质中。

高能电子在这里将能量储存在三磷酸腺苷(ATP)和还原型烟酰胺腺嘌呤二核苷酸(NADPH)分子中。

然后,这些高能分子被用来驱动卡尔文循环,将二氧化碳还原为葡萄糖等有机物质。

三、卡尔文循环的过程卡尔文循环是光合作用黑暗反应的关键步骤。

它包括碳固定、还原和再生三个阶段。

1. 碳固定阶段在这个阶段,CO2会与一种酶催化剂RuBisCo结合,形成一个中间产物,即六碳分子。

这个分子很快分裂成两个三碳分子,这些分子被称为3-磷酸甘油醛。

2. 还原阶段3-磷酸甘油醛会接受ATP和NADPH提供的高能电子,并进行一系列反应,最终生成葡萄糖。

这个过程也消耗了许多ATP和NADPH。

3. 再生阶段在这个阶段,一部分3-磷酸甘油醛分子会被转化为核酸磷酸盐和脂肪酸,而另一部分则会被转化为RuBisCo,以维持卡尔文循环的继续进行。

四、光合作用的意义和影响光合作用是地球上生命存在的基础,它不仅为植物和一些藻类提供了能量和有机物质,也为整个生态系统提供了能量来源。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结一、光合作用的概念光合作用是绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。

简单来说,就是植物将光能转化为化学能并储存起来的过程。

二、光合作用的场所——叶绿体叶绿体是进行光合作用的细胞器。

它具有双层膜结构,内部含有类囊体薄膜,这些类囊体堆叠形成基粒,基粒和基质中都含有与光合作用有关的酶和色素。

叶绿体中的色素分为两大类:叶绿素(包括叶绿素 a 和叶绿素 b)和类胡萝卜素(包括胡萝卜素和叶黄素)。

叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。

这些色素能够吸收、传递和转化光能,为光合作用提供能量基础。

三、光合作用的过程光合作用分为光反应和暗反应两个阶段。

1、光反应光反应发生在类囊体薄膜上,需要光的参与。

条件:光、色素、酶。

物质变化:(1)水的光解:水分子在光的作用下分解成氧气和H(还原型辅酶Ⅱ)。

(2)ATP 的合成:ADP 和磷酸在酶的作用下结合,利用光能转化的能量合成 ATP。

能量变化:光能转化为活跃的化学能(ATP 和H)。

2、暗反应暗反应发生在叶绿体基质中,有没有光都可以进行。

条件:酶、ATP、H。

物质变化:(1)二氧化碳的固定:二氧化碳与五碳化合物结合生成两个三碳化合物。

(2)三碳化合物的还原:在酶的作用下,三碳化合物接受 ATP 释放的能量并且被H还原,经过一系列的反应生成糖类等有机物和五碳化合物。

能量变化:活跃的化学能转化为稳定的化学能(有机物中)。

四、影响光合作用的因素1、光照强度在一定范围内,光照强度增强,光合作用速率加快;当光照强度达到一定值后,光合作用速率不再增加。

2、二氧化碳浓度二氧化碳是光合作用的原料之一,在一定范围内,增加二氧化碳浓度可以提高光合作用速率。

3、温度温度通过影响酶的活性来影响光合作用速率,一般来说,在最适温度之前,随着温度的升高,光合作用速率加快;超过最适温度,光合作用速率会下降。

4、水分水是光合作用的原料之一,缺水会导致气孔关闭,影响二氧化碳的吸收,从而影响光合作用。

生物知识点高三光合作用

生物知识点高三光合作用

生物知识点高三光合作用高三生物知识点:光合作用光合作用是一种生命过程,是植物利用太阳能将二氧化碳和水转化成有机物质的过程。

它是地球上生命的基础,也是维持生态平衡的重要环节。

本文将会从光合作用的基本原理、光合作用的意义以及光合作用与环境的关系等方面进行探讨。

一、光合作用的基本原理光合作用的基本过程分为两个阶段:光反应和暗反应。

光反应发生在叶绿体的光合膜上,它利用光能将水分解成氧气和一种能量丰富的化合物——三磷酸腺苷(ATP);暗反应发生在叶绿体的基质中,它利用ATP、二氧化碳和另一种能量载体——辅酶A (NADPH)合成葡萄糖。

光反应的关键步骤是光的吸收和能量转化。

光被叶绿素吸收后,激发叶绿素分子进入激发态。

随后,激发态叶绿素将能量传递给附近的反应中心,并将能量转移到光化学反应中心。

在光化学反应中心,能量通过一系列电子传递步骤最终转化为ATP和NADPH。

暗反应是在光反应产生的ATP和NADPH的作用下进行的。

暗反应的关键步骤是卡尔文循环。

卡尔文循环包括碳固定、还原、再生等阶段,最终通过一系列酶催化反应将二氧化碳转化为葡萄糖。

二、光合作用的意义光合作用是地球上能量的主要来源之一。

通过光合作用,植物能够将太阳能转化为化学能,进而合成有机物质。

这些有机物质不仅为植物和其他生物提供了能量源,也是构成植物体的基本构建块。

除了能量来源之外,光合作用还能维持氧气和二氧化碳的平衡。

在光合作用过程中,植物释放出氧气,同时吸收二氧化碳。

这些氧气供应给动物呼吸,而吸收的二氧化碳则促进了气候稳定。

光合作用不仅使地球上的氧气供应得以保持,还减缓了温室效应,帮助维持了地球的生态平衡。

此外,光合作用也与食物链密切相关。

植物通过光合作用合成的有机物质能够提供给食物链中的其他生物。

植物作为一级生产者,为二级、三级以至更高级别的消费者提供了食物和能量。

光合作用的正常进行,不仅影响植物的生长和繁殖,也对整个生态系统的稳定性起到重要的作用。

高中生物—光合作用知识点全面总结

高中生物—光合作用知识点全面总结

高中生物—光合作用知识点全面总结一、叶绿体的结构与功能(一)叶绿体的结构模型.(二)相关知识1、.叶绿体是真核细胞进行光合作用的场所2、叶绿体由两层膜(内膜和外膜)包围而成,内部有许多基粒,基粒和基粒之间充满了基质。

3、每个基粒都有许多个类囊体构成,类囊体薄膜上含有吸收、传递和转化光能的色素以及光反应所需的酶,是光反应的场所。

4、基质中含有暗反应所需的酶,是进行暗反应的场所。

5、光合色素的相关知识。

(1)叶绿体色素的种类及含量:叶绿素a叶绿素(3/4)叶绿素b叶绿体色素胡萝卜素类胡萝卜素(1/4)叶黄素(2)叶绿体色素的分布:叶绿体类囊体薄膜上。

(3)叶绿体色素的功能:吸收,传递(4种色素),转化光能(只有少量的叶绿素a把光能转为电能)(4)影响叶绿素合成的因素:①光照:光是影响叶绿素合成的主要条件,一般植物在黑暗中不能合成叶绿素,因而叶片发黄。

(例如韭黄,蒜黄)②温度:温度可影响与叶绿素合成有关的酶的活性,进而影响叶绿素的合成。

低温(秋末)时,叶绿素分子易被破坏,而使叶子变黄。

③必需元素:叶绿素中含N、Mg等必需元素,缺乏N、Mg将导致叶绿素无法合成,叶变黄。

另外,Fe是叶绿素合成过程中某些酶的辅助成分,缺Fe也将导致叶绿素合成受阻,叶变黄。

(5)叶绿体色素的吸收光谱:①叶绿体中的色素只吸收可见光,而对红外光和紫外光等不吸收。

②叶绿素a和叶绿素b主要吸收红光和蓝紫光,类胡萝卜素(胡萝卜素和叶黄素)主要吸收蓝紫光。

色素对绿光吸收最少。

对其他波段的光并非不吸收,只是吸收量较少。

经过色素吸收后,光谱出现两条黑带。

说明:叶绿体中的色素主要吸收红光和蓝紫光。

(6)叶绿体色素的性质:易溶于酒精、丙酮和石油醚等有机溶剂,不溶于水,叶绿素的性质不稳定,易被破坏,类胡萝卜素性质相对稳定。

(7)植物叶片的颜色与所含色素的关系:正常绿色正常叶片的叶绿素和类胡萝卜素的比例约为3∶1,且对绿光吸收最少,所以正常叶片总是呈现绿色叶色变黄寒冷时,叶绿素分子易被破坏,类胡萝卜素较稳定,显示出类胡萝卜素的颜色,叶子变黄叶色变红 秋天降温时,植物体为适应寒冷,体内积累了较多的可溶性糖,有利于形成红色的花青素,而叶绿素因寒冷逐渐降解,叶子呈现红色6、色素的提取和分离实验。

生物光合作用知识点

生物光合作用知识点

生物光合作用知识点1.光合作用的化学方程式:光合作用的化学方程式可以表示为:6CO2+12H2O+光能→C6H12O6+6O2+6H2O。

这个方程式描述了光合作用中的两个主要过程,光反应和暗反应。

2.光反应:光反应发生在叶绿体内的“光合体”中。

在光反应中,光能被吸收,并转化为高能化学物质ATP和NADPH。

光能被叶绿素吸收后,电子从叶绿素分子被激发并传递给电子传递链,最终产生ATP和NADPH。

在此过程中,水分子也被分解,产生氧气作为副产品释放到空气中。

3.暗反应:暗反应发生在叶绿体中的基质内。

在暗反应中,ATP和NADPH提供能量和电子,将二氧化碳转化为有机物质,最常见的是葡萄糖。

暗反应中最重要的过程是碳同化,通过鲍斯-卡尔文循环进行。

暗反应的终产物为三碳糖(三磷酸甘油),它可以进一步合成葡萄糖。

4.光合色素:光合色素包括叶绿素、类胡萝卜素和蓝藻素等。

其中叶绿素是最重要的光合色素,它的主要作用是吸收光能。

叶绿素分子的结构使其能够吸收可见光中的蓝色和红色光,而反射绿色光,因此植物的叶子呈现出绿色。

5.光合作用的条件:光合作用需要适宜的光照、温度和二氧化碳浓度等条件。

光照是光合作用发生的关键因素,光照强度过强或过弱都会抑制光合作用。

适宜的温度范围也能提高光合作用效率,但过高的温度会破坏蛋白质结构,导致光合作用受阻。

6.光合作用的调节:植物对光照强度和二氧化碳浓度的变化有自我调节机制。

当光照强度较强时,植物会关闭气孔,减少水分蒸发和二氧化碳流失,以避免过度脱水。

当二氧化碳浓度较低时,植物会加大二氧化碳的吸收和浓缩,以增加光合作用的效率。

7.生物光合作用的意义:生物光合作用是地球上维持生命的重要过程之一、通过光合作用,植物可以将太阳能转化为化学能,并将二氧化碳转化为有机物,维持了生态系统中的能量流。

光合作用还产生氧气,维持了大气中的氧气含量,为动物呼吸提供了必要的氧气。

总结起来,生物光合作用是一种利用光能将二氧化碳和水合成有机物质的过程。

光合作用重点知识总结

光合作用重点知识总结

光合作用重点知识总结光合作用是光能转化为化学能的过程,是地球上生物能量来源的关键。

通过光合作用,植物能够利用阳光、水和二氧化碳合成有机物质,并释放出氧气。

本文将从光合作用的基本原理、光合作用的过程以及影响光合作用的因素等方面进行总结。

一、光合作用的基本原理光合作用的基本原理是利用叶绿素等色素分子吸收光能,将其转化为化学能,进而参与光合作用过程中的化学反应。

光合作用主要发生在植物叶绿体中的叶绿体膜上,其中包含光合色素复合物。

在光合色素复合物中,光能被吸收并通过电子传递链路传递,最终产生ATP 和NADPH。

二、光合作用的过程光合作用可分为两个阶段:光反应和暗反应。

1. 光反应:光反应发生在光合体中的光合色素复合物上。

光反应需要光能,同时产生ATP和NADPH。

在光反应中,光能被吸收并激发光合色素复合物中的电子,这些激发态电子经过电子传递链路,最终产生ATP。

此外,光能还用于将NADP+还原为NADPH,作为暗反应的还原剂。

2. 暗反应:暗反应发生在光反应结束后,在叶绿体质体内的基质中进行。

暗反应利用ATP和NADPH,将二氧化碳还原为有机物质。

主要包括光合碳同化的三个过程:固定、还原和再生。

固定过程由RuBisCO催化,将CO2与RuBP反应,产生糖磷酸。

还原过程利用ATP和NADPH将糖磷酸还原为糖,最终产生葡萄糖。

再生过程通过糖磷酸反应生成RuBP,以继续进行固定过程。

三、影响光合作用的因素光合作用受到诸多因素的调节,包括光强、温度、二氧化碳浓度等。

1. 光强:光合作用的速率与光强呈正相关关系。

适宜的光强可以提高光合色素复合物的激发态电子数量,从而增加ATP和NADPH的产生量。

然而,过高的光强会导致光合色素复合物的破坏,进而抑制光合作用。

2. 温度:适宜的温度有利于光合作用的进行。

在较低温度下,光合酶活性较低,影响暗反应的进行。

而在过高的温度下,则可能引发酶的变性,破坏光合作用的过程。

3. 二氧化碳浓度:二氧化碳是进行光合作用的原料之一,其浓度的变化会直接影响光合作用速率。

光合作用的生物知识点总结

光合作用的生物知识点总结

光合作用的生物知识点总结一、光合作用的基本过程光合作用是一种复杂的生物化学反应,其基本过程包括光能的吸收、光能的转化、光合色素的参与、光合产物的合成等多个步骤。

1.1 光合作用的发生地点光合作用的主要发生在植物叶绿体的叶绿体内膜系统中的光合膜上,其中主要包括光合色素、载体蛋白和光合酶等。

1.2 光能的吸收光合色素是植物叶绿体内的色素颗粒,其中包括叶绿素a、叶绿素b、类胡萝卜素等光合色素分子。

这些分子能够吸收来自太阳的光能,并将其转化为化学能。

1.3 光能的转化当光合色素吸收到光能后,会激发其中的电子,使得这些电子跃迁至更高的能级。

接着,这些高能电子在光合作用的电子传递链中逐步失去能量,并最终被用来合成光合产物。

1.4 光合产物的合成光合作用最终产生的是ATP和NADPH。

这些物质是植物进行生长发育和代谢活动所需的能量与电子供体。

二、光合作用的过程与途径光合作用的过程及途径主要包括光合作用的两个阶段和不同环境条件下的适应性变化。

2.1 光合作用的两个阶段光合作用可以分为光反应与暗反应两个阶段。

光合作用的光反应阶段是在光下进行的,其中光能被转化为ATP和NADPH。

而暗反应阶段则利用这些能量和电子来合成有机物质。

2.2 光合作用的适应性变化光合作用的进行受到光照、温度、二氧化碳浓度以及水分等多个环境因素的影响。

植物在不同环境条件下,会通过调节叶片的气孔开闭、调节叶绿体和光合酶的产生等途径来适应外界环境的变化。

三、光合作用的生物学意义和应用价值光合作用在生物界中具有重要的生物学意义和应用价值,包括对生物能量转化、资源利用、生态环境以及农业生产等方面的影响。

3.1 生物能量转化光合作用是地球上生物界中最重要的能量来源之一,通过光合作用,植物能够将太阳光能转化为化学能,并利用这些能量来维持生长发育和代谢活动。

3.2 资源利用光合作用参与了植物中的碳水化合物(如葡萄糖、淀粉等)的合成,这些有机物质是植物的主要养分来源,也是人类和其他动物的食物来源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高三生物光合作用知识点讲解
生物是高中生学好高中的重要组成部分,学好直接影响着高考的成绩。

下面是查字典生物网为大家分享的高三生物光合作用知识点讲解。

光合作用知识点讲解
名词:1、光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。

语句:1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。

②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。

过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。

证明:绿色叶片在光合作用中产生了淀粉。

③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。

证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。

④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。

第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。

光合作用释放的氧全部来自来水。

2、叶绿体的色素:①分布:基粒片层结构的薄膜上。

②色素的种类:高等植物叶绿体含有以下四种色素。

A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(;
B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素和叶素
3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。

4、光合作用的过程:①光反应阶段a、水的光解:
2H2O4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能ATP(为暗反应提供能量)②暗反应阶段:a、CO2的固定:CO2+C52C3b、C3化合物的还原:2C3+[H]+ATP(CH2O)+C5 5、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。

②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。

③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。

④能量变化:光反应中光能ATP中活跃的化学能,在暗反应中ATP中活跃的化学能CH2O中稳定的化学能。

⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。

6、光合作用的意义:①提供了物质来源和能量来源。

②维持大气中氧和二氧化碳含量的相对稳定。

③对生物的进化具有重要作用。

总之,光合作用是生物界最基本的物质代谢和
能量代谢。

7、影响光合作用的因素:有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。

这些因素中任何一种的改变都将影响光合作用过程。

如:在大棚蔬菜等植物栽种过程中,可采用白天适当提高温度、夜间适当降低温度(减少呼吸作用消耗有机物)的方法,来提高作物的产量。

再如,二氧化碳是光合作用不可缺少的原料,在一定范围内提高二氧化碳浓度,有利于增加光合作用的产物。

当低温时暗反应中(CH2O)的产量会减少,主要由于低温会抑制酶的活性;适当提高温度能提高暗反应中(CH2O)的产量,主要由于提高了暗反应中酶的活性。

8、光合作用过程可以分为两个阶段,即光反应和暗反应。

前者的进行必须在光下才能进行,并随着光照强度的增加而增强,后者有光、无光都可以进行。

暗反应需要光反应提供能量和[H],在较弱光照下生长的植物,其光反应进行较慢,故当提高二氧化碳浓度时,光合作用速率并没有随之增加。

光照增强,蒸腾作用随之增加,从而避免叶片的灼伤,但炎热夏天的中午光照过强时,为了防止植物体内水分过度散失,通过植物进行适应性的调节,气孔关闭。

虽然光反应产生了足够的ATP和〔H〕,但是气孔关闭,CO2进入叶肉细胞叶绿体中的分子数减少,影响了暗反应中葡萄糖的产生。

9、在光合作用中:a、由强光变成弱光时,[产生的H]、ATP
数量减少,此时C3还原过程减弱,而CO2仍在短时间内被一定程度的固定,因而C3含量上升,C5含量下降,(CH2O)的合成率也降低。

b、CO2浓度降低时,CO2固定减弱,因而产生的C3数量减少,C5的消耗量降低,而细胞的C3仍被还原,同时再生,因而此时,C3含量降低,C5含量上升。

以上是高三生物光合作用知识点讲解,谢谢查阅。

相关文档
最新文档