第12章 电磁感应

合集下载

第12章-电磁感应 电磁场和电磁波

第12章-电磁感应 电磁场和电磁波

0n1I1
则穿过半径为 r2 的线圈
的磁通匝数为
N2Φ21 N2B1(π r12 )
n2lB1(πr12 )
代入 B1 计算得 2 N2Φ21 0n1n2l(πr12 )I1

M 21
N 2Φ21 I1
0n1n2l(πr12 )
33
12-3 自感和互感
例3 上题中,若通过长度为 l2 的线圈 N2 的电流为 I2 , 且 I2 是随时间而变化的,那么,因互感的作用,在线 圈 N1 中激起的感应电动势是多少呢? 解 通过线圈 N1 的磁通匝数为
dV
V 2
36
12-4 磁场的能量 磁场能量密度
例1 有一长为 l 0.20m 、截面积 S 5.0cm2 的长直 螺线管。按设计要求,当螺线管通以电流 I 450mA 时,螺线管可储存磁场能量 Wm 0.10J . 试问此长直螺
线管需绕多少匝线圈?
解 由上一节可知,长直螺线管的自感为
L 0N 2S / l
i
OP Ek dl
(v
B)
dl
OP
l
p
i
设杆长为 l
i
vBdl vBl
0
o
16
12-2 动生电动势和感生电动势
例1 一长为 L 的铜棒在磁感强度为 B 的均匀磁场中,
以角速度 在与磁场方向垂直的平面上绕棒的一端转
动,求铜棒两端的感应电动势.
解 di (v B) dl
vBdl
螺线管储存的磁场能量为
Wm
1 2
LI 2
1 2
0 N 2S
l
I2
N 1 ( 2Wml )1/ 2 1.8104匝
当 dL 0 dt

第12章电磁感应定律

第12章电磁感应定律
第12章 电磁感应
(electromagnetic induction)
电源、电动势
负载
1.电源: 将其它形式的能量转变
为电能的装置。
Ek
在电源内部存在一非静电场 Ek 。
电源
2.电动势: 等于电源把单位正电荷从负极板经电源内部
移动到正极时所作的功。单位:伏特(V)。
i Ek dl
Ek :是非静电场场强
度 B( x,t ) B0 sint sinkx,式中,k为已知常数。一
边长a,b的矩形导体回路置于其中,如图。 求回路中感应电动势对时间的关系。
解:回路不动,磁场随时间变化而, 即产生感生电动势。
建立坐标如图,取回路顺时针为正,
不论何种原因使通过回路的磁通量发生变化时,回路 中产生的感应电动势与磁通量对时间的变化率成正比。
SI制中表达式为:
i
d m
dt
式中的负号反映了感应电动势的方向(楞次定律
的数学表现)。
2.几点说明:
i
d m
dt
------单匝线圈
N匝线圈:
i
N k 1
ik
N k 1
d mk dt
dN
dt
B 变化
b
一、电磁感应现象
S
N
G
a
B 变化
b
一、电磁感应现象
S
N
G
a
B 变化
b
一、电磁感应现象
S
N
G
a
B 变化
b
一、电磁感应现象
S
N
G
a
B 变化
b
一、电磁感应现象
S
N
G
a

大学物理B-第十二章 电磁感应

大学物理B-第十二章 电磁感应
法拉第电磁感应定律
电磁感应
产 生 机 理
i
d m dt
楞次定律 动生电动势
感生电动势
自感电动势
i (v B ) dl L B i dS S t
工业生产
12-3 自感和互感
互感电动势
一、自感电动势
自感系数 I(t) Φm
1.自感现象与自感系数 由于回路自身电流的变化,在回 路中产生感应电动势的现象。
N
ab a
I NIl a b ldr ln 2r 2 a
N B dS
s
dr
I
r
由互感系数定义可得互感为: Nl ab M ln I 2 a
l
a
b
I I I I
0
0
12-4磁场的能量与能量密度
I (t )
L
R
0
充电过程曲线
τ
t
I (t)
K2
麦克斯韦提出全电流的概念
I 全 I 传导 I D
全电流连续不中断的,构成闭合回路
ID

全电流安培环路定理
L H dl I 传导 I D dD d D dS D dS 位移电流 I D S t dt dt S
讨论: 1. 传导电流:电荷定向运动 2. 若传导电流为零
L
L
穿过S1 面 电流
穿过S2 面 电流
S1
I

+ + + +
S2
D
电流不连续 -
二、 全电流安培环路定理 S2 面电位移通量 D DS
极板间电位移矢量 D 位移电流

大学物理,电磁感应12.4自感和互感

大学物理,电磁感应12.4自感和互感
要求自感电动势,应先求出自感系数。
9
12.3 自感和互感
自感应用:
第12章 电磁感应
日光灯镇流器;高频扼流圈;自感线圈与电 容器组合构成振荡电路或滤波电路。 通电后,启辉器辉光放电,金属片受热形变 互相接触,形成闭合回路,电流流过,日光灯灯 丝加热释放电子。 同时,启辉器接通辉光熄灭, 金属片冷却断开,电路切断,镇流器线圈中产生 比电源电压高得多的自感电动势,使灯管内气体 电离发光。 自感危害:电路断开时,产生自感电弧。
dI 1 dI 1 dΨ21 M 21 M ε 21 dt dt dt
当线圈 2 中的电流变化时,在线圈 1 中产生的 互感电动势为:
dΨ12 dI 2 dI 2 ε12 M 12 M dt dt dt
20
12.3 自感和互感
第12章 电磁感应
ε12
dI 2 = -M dt
4
12.3 自感和互感
2、自感系数 L
根据毕奥—萨尔定律: μ0 Idl r dB 4π r 3
第12章 电磁感应
I
B
线圈中的电流在空间任意一点激发的磁感应 强度的大小与线圈中的电流强度成正比,即: 穿过线圈自身总的磁通量与电流 I 成正比,
写成:
Φ LI
L 为自感系数。
解:设长直导线中电流 I ,
矩形线圈平面上的磁链数为: dr I
N B dS


M I
0 I N ldr a 2r 0 NIl a b ln 2 a 0 Nl a b ln 2 a
s ab
r
l
a
b
24
12.3 自感和互感
思考? 若已知矩形线圈中有电流:

大学物理-第12章--电磁感应

大学物理-第12章--电磁感应
∴取以 r 为半径的圆周为绕行回路L ,绕行方向为逆时针,面元法线如图。
× × × ×
× ×××
r n ×L × × × ×
× × ××× × R
×××××
×
B
×× ×× ×× ××
当r < R
时: L E感 dl
S
B
dS
t
等式左边 L E感 dl L E感dl cos 00
× × × ×
导线内每个自由电子
受到的洛仑兹力为:
fm e(v B)
非静电力
?++ + ++
B
v
fm
在导线内部产生的静电场方向
ab
E
a
++ + ++
电子 受的静电力
fe
fe eE
平衡时: fe fm
此时电荷积累停止,
fm
ab 两端形成稳定的电势差。 b
★ 洛仑兹力是产生动生电动势的根本原因.
B
v
2、动生电动势的表达式
S 1 hL 2
磁通
m
1 hLB 2
B
t
0
o B h
C D
i
dm dt
1 hL dB 1 hL B 2 dt 2 t
L
讨论 只有CD导体存在时,
电动势的方向由C指向D
加圆弧连成闭合回路,
由楞次定理知:感生电流的
方向是逆时针方向……..
1 B hL
1 2 t
B SOCD t

铁芯
磁场 B
线圈
电 子束
环形 真空室
五、感生电场计算举例
例 12-5. 半径为R的长直螺线管内的磁场,以dB/dt 速

第十二章电磁感应电磁场

第十二章电磁感应电磁场

bA cb 0
bA cb bc
a
a
vBdy v
0I
dy
b
b 2y
0Iv ln b 2 a
O
I
a
C
v
B
A
v
b
y
bc
bA
讨论:(1)在磁场中旋转的导体棒
(a)棒顺时针旋转
v
L
S
0 (v B) dl
L
0 Bvdl
ω
L Bl dl 1 BL2
0
2
动生电动势的方向由 O指向A 。
回路中产生的感应电动势 的大小与磁通量对时
间的变化率成正比。
k dΦm
dt
dm
dt
负号表示感应电动势总是反抗磁通的变化
国际单位制中 k =1
单位: 1V=1Wb/s
若有N匝线圈,每匝磁通量相同,它们彼此串联,总电动 势等于各匝线圈所产生的电动势之和。令每匝的磁通量为 m
磁链数: Ψ NΦm
(2) 在磁场中旋转的线圈
在匀强磁场B 中, 面积为S 的N 匝矩形线
圈以角速度为 绕固定
的轴线作匀速转动。
在任意时刻 t,线圈平面法 线与磁场的夹角为,这时
通过线圈平面的磁链数
Nm NBS cos
ωn
d(Nm )
dt
NBS d sin NBS sin t
dt
max sin t ——交变电动势
能量的转换和守恒
外力做正功输入机械能,安培力做负功吸收 了它,同时感应电流以电能的形式在回路中输出 这份能量。
发电机的工作原理: 靠洛仑兹力将机械能转换为电能
3、动生电动势的计算
计算动生电动势的一般方法是:

大学物理《普通物理学简明教程》第十二章 电磁感应 电磁场

大学物理《普通物理学简明教程》第十二章  电磁感应 电磁场

第十二章 电磁感应 电磁场问题12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转.解 导线在右边区域激发的磁场方向垂直于纸面向里,并且由2IB rμ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定.(1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向.(2)线圈绕AD 轴旋转,当从0o到90o时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90o到180o时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180o到270o 时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270o到360o 时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零.12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗?解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生.12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)].CI解 在磁场中运动的导体所产生的感应电动势为()d Lε=⨯⎰v B l ⋅,在图(a)与(c)中的运动情况中,⨯v B 的方向与d l 方向垂直,铜棒中没有感应电动势.在图(b)中,铜棒绕中心轴运动,左右两段产生的感应电动势大小相等,方向相反,所以铜棒中总的感应电动势为零.12-4 有一面积为S 的导电回路,其n e 的方向与均匀磁场的B 的方向之间的夹角为θ.且B 的值随时间变化率为d d B t .试问角θ为何值时,回路中i ε的值最大;角θ为何值时,回路中i ε的值最小?请解释之.解 由i d d d cos S S dt dtεθ=--⎰B BS =⋅,可得当0θ=o 时,回路中i ε的值最大,当90θ=o 时,回路中iε的值最小.12-5 有人认为可以采用下述方法来测量炮弹的速度.在炮弹的尖端插一根细小的永久磁铁,那么,当炮弹在飞行中连续通过相距为r 的两个线圈后,由于电磁感应,线圈中会产生时间间隔为t ∆的两个电流脉冲.您能据此测出炮弹速度的值吗?如0.1m r =,4=210s t -∆⨯,炮弹的速度为多少?解 带有小磁铁的炮弹飞向线圈,线圈中会产生感应电流, 测得的两个电流脉冲产生的时间间隔即炮弹飞过这两个线圈间距所用的时间. 由题意可知, 炮弹的速度为1500m s rv t-==⋅∆12-6 如图所示,在两磁极之间放置一圆形的线圈,线圈的平面与磁场垂直.问在下述各种情况中,线圈中是否产生感应电流?并指出其方向.(1)把线圈拉扁时;(2)把其中B B B (a)(b)(c)ne Bθ一个磁极很快地移去时;(3)把两个磁极慢慢地同时移去时.解 这三种情况中, 通过的磁通量均减小,线圈中均会产生感应电流, 从上往下看, 感应电流的方向沿顺时针方向.12-7 如图所示,均匀磁场被限制在半径为R 的圆柱体内,且其中磁感强度随时间的变化率d d B t =常量,试问: 在回路1L 和2L 上各点的d d B t 是否均为零?各点的k E 是否均为零?1kd L ⋅⎰ÑEl 和2k d L ⋅⎰ÑE l 各为多少?解 由于磁场只存在于圆柱体内,在回路1L 上各点d d B t 为常量,在回路2L 上各点d d B t 为零.空间中各点的感生电场分布为r R < k d 2d r BE t=r R > 2k d 2d R BE r t=可见在回路1L 和2L 上各点的k E 均不为零.对于在回路1L11k d d d d d d L L S S t t⋅=-=-⎰⎰ÑB B E l S ⋅对于回路2L 22kd d 0d L tΦ⋅=-=⎰ÑE l12-8 一根很长的铜管铅直放置,有一根磁棒由管中铅直下落.试述磁棒的运动情况.解 长直铜管可以看作由许多铜线圈组成,当磁棒下落,每通过一个线圈,线圈中的磁通量都会发生变化,在下落过程中,铜管中始终会有感应电流产生,并且感应电流产生的磁场的方向与磁棒磁场方向相反,因此,磁棒始终受到铜管对它的阻碍作用.12-9 有一些矿石具有导电性,在地质勘探中常利用导电矿石产生的涡电流来发现它,这叫电磁勘探.在示意图中,A 为通有高频电流的初级线圈,B为次级线圈,并连接电流计G,从次级线圈中的电流变R2L 1L化可检测磁场的变化.当次级线圈B检测到其中磁场发生变化时,技术人员就认为在附近有导电矿石存在.你能说明其道理吗?利用问题12-9图相似的装置,还可确定地下金属管线和电缆的位置,你能提供一个设想方案吗?解 该检测方法利用的原理是电磁感应。

第12章 电磁感应电磁感应2013高考导航

第12章 电磁感应电磁感应2013高考导航

第十二章
电磁感应
本部分内容讲解结束
按ESC键退出全屏播放
第十二章
电磁感应
第十二章电磁感应源自十二章电磁感应2013高考导航
考纲展示 1.电磁感应现象.磁通量.法拉第电 磁感应定律.楞次定律Ⅱ 2.导体切割磁感线时的感应电动势.
右手定则Ⅱ
第十二章
电磁感应
3.自感现象Ⅰ 4.日光灯Ⅰ 说明:(1)导体切割磁感线时感应电动 势的计算,只限于垂直于B、v的情况 (2)在电磁感应现象里,不要求判断内 电路中各点电势的高低
第十二章
电磁感应
命题热点 1.感应电流的产生条件、方向判断和
电动势的简单计算,磁感应强度、磁
通量、电动势、电压、电流随时间变
化的图象,以及感应电动势、感应电
流随线框位移变化的图象,是高频考
点,以选择题为主.
第十二章
电磁感应
2.滑轨类问题、线框穿越有界匀强磁 场、电磁感应的能量等综合问题,能 很好地考查考生的能力,备受命题专 家的青睐.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章 电磁感应
1 、如图所示,等边三角形的金属框,边长为l ,放在
均匀磁场中,ab 边平行于磁感强度B ,当金属框绕ab 边以角速度ω 转动时,bc 边上
沿bc 的电动势为 _________________,
ca 边上沿ca 的电动势为_________________,金属框内的总
电动势为_______________.(规定电动势沿abca 绕向为正值) 2 、
半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为__________________________.
3 、一长直导线旁有一长为a ,宽为b 的矩形
线圈,线圈与导线共面,长度为a 的边与导线
的互感系数为_______________________. 4 、一半径r =10 cm 的圆形闭合导线回路置于均匀磁场B (B =0.80 T)中,B
与回路平面正交.若圆形回路的半径从t = 0开始以恒定
的速率d r /d t =-80 cm/s 收缩,则在这t = 0时刻,闭合回路中的感
应电动势大小为______________;如要求感应电动势保持这一数
值,则闭合回路面积应以d S /d t =____________的恒定速率收缩.
5 、
如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强
度为B 的匀强磁场垂直于xy 平面.当aOc 以速度v
沿x 轴正
向运动时,导线上a 、c 两点间电势差
U ac =____________;当aOc 以速度v
沿y 轴正向运动时,a 、c 两
点的电势相比较, 是____________点电势高.
x ×
× ×
×
×
l b B
c
a l l ω
6 、半径为R 的无限长圆柱导体电流,如图所示, 电流强度为I ,横截面上各点的电流密度相等, 求每单位长度导体内所储存的磁能
7、如图所示,两根平行长直导线置于空气中,横截面 半径都是a ,两导线中心相距为d ,属于同一回路。

设两导线内部的磁通量可忽略不计。

求这一对导线 单位长度的自感系数
8 、在图示的电路中,导线AC 在固定导线上向右匀速平移,速度v = 2m/s .设
5=AC cm ,
均匀磁场随时间的变化率d B /d t = -0.1 T/s ,某一时刻B = 0.5 T ,x =10 cm ,
则这时动生电动势的大小为__________________,
总感应电动势的大小为______________. 以后动生电动势的大小随着AC 的运动而____________.
9 、一边长为a 及b 的矩形导线框,它的边长为b 的边与
一载有电流为I 的长直导线平行,其中一条边与长直导线相
距为c ,c >a ,如图所示.今线框以此边为轴以角速度ω匀速旋转,求框中的感应电动势.
I
10 、有一水平的无限长直导线,线中通有交变电流t I I ωcos 0=,其中I 0和ω为常数,t 为时间,I >0的方向如图所示.导线离地面的高度为h ,D 点在导线的正下方.地面上有一N 匝平面矩形线圈其一对边与导线平行.线圈中心离D 点
水平距离为d 0,线圈的边长为a (021
d a <)及b ,总电阻为R .取法线n 竖直向上,试计算导线中
的交流电在线圈中引起的感应电流(忽略线圈自感).
11、有一三角形闭合导线,如图放置.在这三角
形区域中的磁感强度为k y x B B at -=e 20,式中B 0
和a 是常量,k
为z 轴方向单位矢量,求导线中
的感生电动势.
O x y
b b
如图所示,有一矩形回路,边长分别为a 和b ,它在xy 平面内以匀速v 沿x 轴方向移动,空
间磁场的磁感强度B 与回路平面垂直,且为位置
的x 坐标和时间t 的函数,即kx t B t x B sin sin ),(0ω =,其中0B ,ω,k 均为已知常数.设在t =0时,回路在x =0处.求回路中感应电动势对时间的关系. 13、
两根平行放置相距为2a 的无限长载流直导
线,其中一根通以稳恒电流I 0,另一根通以交变
电流i =I 0cos ωt .两导线间有一与其共面的矩形线圈,线圈的边长分别为l 和2b ,l 边与长直导线平行,且线圈以速度v 垂直直导线向右运动(如图).当线圈运动到两导线的中心位置(即线圈中心线与距两导线均为a 的中心线重合)时,两导线中的电流方向恰好相反,且i =I 0,求此时线圈中的感应电动势.
0B y
x
C
D E
F a
b x O
v

I i
有一很长的长方的U 形导轨,与水平面成θ角,裸导线ab 可在导轨上无摩擦地下滑,导轨位于磁感强度B 竖直向上的均匀磁场中,如图所
示.设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计,abcd 形成电路,t =0时,v =0. 试求:导线ab 下滑的速度v 与时间t 的函数关系.
15、同轴电缆由半径为R 1的实心圆柱形导体和半径为R 2(R 2 > R 1)的薄圆筒(忽略壁厚)构成,在圆柱体和薄筒之间充满相对磁导率为μr 的绝缘材料,求同轴电缆单位长度上的自感系数(设柱形导体磁导率为μ0)
d
16、设电子为半径R的小球,电荷分布于其表面.当电子以速度v(v远小于真空中光速)运动时,在电子周围无限大空间建立磁场.试计算磁场总能量.17、一厚度为h、半径为R、电导率为γ 的铝圆盘放置
在磁感强度B = a t (a为正值常量)的均匀分布但随时Array刻t变化的磁场中,磁场方向与盘面垂直,如图所示.试
求圆盘中感应电流密度的分布及单位时间内发出的热
量.
18、
一边长为a 的正方形线圈,在t = 0 时正好从如图所示的均匀磁场的区域上方由静止开始下落,设磁
场的磁感强度为B
(如图),线圈的自感为L ,质量为m ,电阻可忽略.求线圈的上边进入磁场前,线圈的速度与时间的关系.
19、长直导线与矩形单匝线圈共面放置,导线与线圈的长边平行.矩形线圈的边长分别为a 、b ,它到直导线的距离为c (如图).当矩形线圈中通有电流I = I 0sin t 时,求直导线中的感应电动势.
B
c
20、证明题
用简单例子说明:楞次定律是能量守恒的必然结果.换句话说,如果电磁感应的规律正好与楞次定律相反,则能量守恒定律便不成立.。

相关文档
最新文档