人教版七年级数学下册解一元一次不等式专项练习 (1)
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。
七年级数学下册 专题 解一元一次不等式组(计算题50题)(解析版)

七年级下册数学《第九章不等式与不等式组》专题解一元一次不等式组(计算题共50题)1.(2022秋•越秀区校级期末)解不等式组:5−1>4+2≥2−4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:5−1>4+2①≥2−4②,由①得:x>3,由②得:x≤4,则不等式组的解集为3<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(20231≤3+2.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.1−≤3+2,由3K23>1得x>53,由4x﹣5≤3x+2得x≤7,故不等式组的解集为53<x≤7.【点评】本题考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(20233−1−2<K56.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x≥3x﹣1得:x≥−12,解不等式r23−2<K56得:x<3,则不等式组的解集为−12≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(20231≤−+1+23.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.1≤−+1①+23②,由①得:x≤23,由②得:x>﹣1,则不等式组的解集为﹣1<x≤23.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2023•陕西模拟)解不等式组:2+5≤3(+2)−1<2.【分析】分别解两个不等式,然后根据大小小大中间找确定不等式组的解集.【解答】解:2+5≤3(+2)①−1<2②,解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为:﹣1≤x<3.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分得到不等式组的解集.6.(2023•安徽模拟)解不等式组2+1≤4−−1<32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:2+1≤4−s−1<32②,由①得x≤1,由②得:x>﹣2,则不等式组的解集为﹣2<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023≥+1≤.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣5≥x+1,得:x≥3,由3K42≤x,得:x≤4,则不等式组的解集为:3≤x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2023−3)≤−1>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−3)≤s−1>0②,解不等式①得:x≥113,解不等式②得:x>3,则不等式组的解集为x≥113.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−1)≤4−1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:≥−12,不等式②得:x<4,∴不等式组的解集为:−12≤<4.【点评】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.10.(20233≤13−2<−1.【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.3≤13①−2<−1②,由①得x≤2,由②得x>﹣2,∴不等式组的解集为﹣2<x≤2.【点评】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023+2)≥2+51<K22并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,将解集表示在数轴上,根据数轴求得不等式的解集即可求解.【解答】解:解不等式①得,x≥﹣1,解不等式②得,x>0,所以不等式组的解集为x>0.这个不等式组的解集在数轴上表示如图:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,数形结合是解题的关键.12.(20232)>8+9①2>r23②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①,得:x<32,解不等式②,得:x>﹣5,则不等式组的解集为﹣5<x<32.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(2023−7<3(+1)−1≥7−32.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.−7<3(+1)①−1≥7−32t,解不等式①得:x<5,解不等式②得:x≥4,则不等式组的解集为4≤x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2023•碑林区校级三模)解不等式组:2(−2)≤3−1−2r13>+1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:2(−2)≤3−①1−2r13>+1②,解①得:x≤73,解②得x<−15.故不等式组的解集是:x<−15.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,15.(2023−1)<72≥.【分析】先解每个不等式,再求两个不等式解集的公共部分即可.−1)<7①+2≥t,解不等式①得,x<3,解不等式②得,x≤2,∴不等式组的解集为x≤2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.16.(2023•香洲区校级一模)解不等式组:4−2≤3(+1)①1−K12<4②.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:由①得x≤5,由②得x>2,故不等式组的解集为2<x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(20231<−+21+23.【分析】分别将每个一元一次不等式求解,然后求出公共解集即可.【解答】解:解不等式2x﹣1<﹣x+2,得x<1,解不等式K12<1+23,得x>﹣5,故不等式组的解集是:﹣5<x<1.【点评】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(20232≥4+1K32+1.【分析】分别解两个不等式,求解集的公共部分即可.2≥4+1①K32+1②解不等式①得:x≥﹣1,解不等式②得:x<3.∴不等式组的解集为﹣1≤x<3.【点评】本题考查解一元一次不等式组,解题关键是熟练掌握解一元一次不等式的步骤.19.(20233)<41≤2r13.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.3)<4s−1≤2r13②,由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.20.(20231≤7−32K12+1.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后写出相应的整数解即可.1≤7−32①K12+1②解不等式①,得:x≤4,解不等式②,得:x>﹣1,∴不等式组的解集是﹣1<x≤4.【点评】本题考查解一元一次不等式组,熟练掌握解一元一次不等式的方法是解答本题的关键.1.(2023•河北区一模)解不等式组2>−4①+3≤5②.请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】根据解一元一次不等式组的方法,可以解答本题.【解答】解:2>−4①+3≤5②,解不等式①,得x>﹣2,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:故原不等式组的解集为﹣2<x≤2.故答案为:x>﹣2,x≤2,﹣2<x≤2.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集,掌握解一元一次不等式组的方法是关键.2.(2023•河西区模拟)解不等式组+5≥4,①4≥7−6.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:+5≥4①4≥7−6②,解不等式①,得x≥﹣1,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:∴原不等式组的解集:﹣1≤x≤2.故答案为:x≥﹣1;x≤2;﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2023<7①2≥+1②请按下列步骤完成解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)解不等式①,得x<4;(2)解不等式②,得x≥3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为3≤x<4,故答案为:x<4,x≥3,3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2023•南昌模拟)解不等式组3<92>−3+5,并将解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:解不等式3x<9可得:x<3;解不等式2x>﹣3x+5可得:x>1;故原不等式组的解集是1<x<3.其解集在数轴上表示如下所示:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.5.(2023+3>−K13≤1,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2x+3>x得:x>﹣3,由2−K13≤1得:x≤4,则不等式组的解集为﹣3<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2023春•东台市月考)解不等式组并将其解集在数轴上表示:3−2<42(−1)≤3+1.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:3−2<4①2(−1)≤3+1②,由①得:x<2,由②得:x≥﹣3,则不等式组的解集为﹣3≤x<2..【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.7.(20232>3(−1)≤7−,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.2>3(−1)①≤7−t,解不等式①得:x>−12,解不等式②得:x≤5,∴不等式组的解集为:−12<x≤5,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.8.(2023•鼓楼区校级模拟)解不等式组,并把它的解集表示在数轴上:−1)≤3(1+p①−K12②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:x≤5,解不等式②得:x>﹣1,则不等式组的解集为﹣1<x≤5,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023<6K12,并把它的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.<6①K12②,由①得,x<1,由②得,x>﹣1,故不等式组的解集为﹣1<x<1,在数轴上表示为:【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.10.(2023>3(−1).【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解;解不等式5x+3>3(x﹣1),得:x>﹣3,解不等式8r29>,得x<2,则不等式组的解集为﹣3<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023•蜀山区校级模拟)解不等式组:3−1≥+1+4<4−2.并在数轴上表示它的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣1≥x+1得:x≥1,由x+4<4x﹣2得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(20234≥2−1,并将解集在数轴上表示出来.【分析】分别计算出方程组中两个不等式的解集,两个解集的公共部分就是不等式组的解集.4≥2−1①②解不等式①,得:x<﹣1;解不等式②,得:x≤3;在数轴上表示为:∴这个不等式组的解集为x<﹣1.【点评】此题考查一元一次不等式组的解集,在数轴上表示不等式的解集,解题关键在于掌握运算法则.13.(2023−3<4s14≤r12②,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,然后根据数轴上不等式组的解集表示出来即可.−3<4①14≤r12②,解不等式①,得:x<3,解不等式②,得:x≥﹣2,∴该不等式组的解集为:﹣2≤x<3,把该不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法以及数轴上表示不等式的解集,解题关键是熟练掌握确定不等式组解集的口诀:同大取大、同小取小、大小小大中间找、大大小小找不到.14.(2022−1<3(−1)K22≥13,并把解集在数轴上表示出来.【分析】首先解每一个不等式,求得每一个不等式的解集,即可求得该不等式组的解集,再在数轴上表示出来即可.【解答】解:由5x﹣1<3(x﹣1)得:5x﹣1<3x﹣3,解得x<﹣1,由23−K22≥13得:4x﹣3x+6≥2,解得x≥﹣4,故原不等式组的解集为﹣4≤x<﹣1,把解集在数轴上表示出来,如下图:【点评】此题主要考查了解一元一次不等式组,关键是正确掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.在数轴上表示解集时,“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(20231)<3−2①1≤r22②并将其解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.1)<3−2①−1≤r22②,解不等式①,得:x<2,解不等式②,得:x≥﹣6,∴原不等式组的解集是﹣6≤x<2,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.1.(20233)≤−4在数轴上表示出它的解集,并求出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出整数解即可.3)≤−4①t ,由①得:x ≤2,由②得:x >﹣2,∴不等式组的解集为﹣2<x ≤2,解集表示在数轴上,如图所示:则不等式组的整数解为﹣1,0,1,2.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.2.(2023•鼓楼区一模)解不等式组4(−1)>3−22−3≤5,并写出该不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:4(−1)>3−2①2−3≤5②,解①得x >2,解②得x ≤4.则不等式组的解集是:2<x ≤4.则整数解是:3,4.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(2022秋•道县期末)解不等式组3−2<4①2(−1)≤3+1②,并求出它的非负整数解.【分析】【先分别解不等式,求出不等式组的解集,然后找出负整数解.【解答】解:解①得:x<2,解②得:x≥﹣3,∴不等式组的解集为﹣3≤x<2,∴不等式组的非负整数解为0,1.【点评】本题考查了解一元一次不等式组,解题关键是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解了.4.(2022≤3(+1)≥−1的最大整数解.【分析】先求出不等式组的解集,再求出最大整数解即可.【解答】解:由5x﹣1≤3(x+1),得:x≤2;由1+23≥−1,得:x≤4;∴不等式组的解集为:x≤2,∴不等式组的最大整数解为:2.【点评】本题考查求不等式组的整数解.正确的求出不等式组的解集,是解题的关键.5.(2022秋•湘潭县期末)求不等式组4−7<5(−1)2≤18−3+7的正整数解.【分析】先求出不等式组的解集,再求出正整数解即可.【解答】解:4−7<5(−1)①2≤18−3+7②,解不等式①得:x>﹣2,解不等式②得:x≤5,∴不等式组的解集为:﹣2<x≤5,其中正整数解是1,2,3,4,5.【点评】本题考查了解不等式组及不等式组的解集,熟练掌握不等式组的解法是解决问题的关键.6.(2023•长清区校级开学)解不等式组:2+>7−4<4+2,并求出所有整数解的和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2+x>7﹣4x,得:x>1,由x<4+2,得:x<4,则不等式组的解集为1<x<4,所有整数解的和为2+3=5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023−1)≥1−1,并写出它的所有非负整数解.【分析】分别求出两个不等式的解集,然后求出两个解集的公共部分,再写出范围内的非负整数解即可.−1)≥1①−1②,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.(2022秋•鄞州区期末)解不等式组:−4<2+3−2≤1,并求出所有满足条件的整数之和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣4<2x,得x>﹣4,由x+3−2≤1,得:x≤﹣1,则不等式组的解集为﹣4<x≤﹣1,不等式组的整数解的和为﹣3﹣2﹣1=﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023−2)>4≥3r26−1并写出该不等式组的最小整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣3(x﹣2)>4,得:x<1,由2K13≥3r26−1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,∴该不等式组的最小整数解为﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2023−1)≥1−5r12<1,并写出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解即可.−1)≥1①−5r12<1②,由①得:x≤1,由②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,则不等式组的整数解为0,1.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(2022+22r15,并直接写出这个不等式组的所有负整数解.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可写出这个不等式组的所有负整数解.+2①2r15②,解不等式①,得:x<1,解不等式②,得:x>﹣3,∴该不等式组的解集为﹣3<x<1,∴这个不等式组的所有负整数解是﹣2,﹣1.【点评】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.12.(2022春•大兴区校级期中)解不等式组4(+1)≤7+10−5<K83,并求出这个不等式组的所有的正整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:4(+1)≤7+10①−5<K83②,解不等式①得:x≥﹣2,解不等式②得:x<72,所以不等式组的解集为:−2≤<72,所以不等式组的所有正整数解为:1,2,3.【点评】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.13.(2023−5r12≤1<3(+1),在数轴上表示它的解集,并写出它的最大整数解和最小整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.−5r12≤1①<3(+1)②,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示不等式组的解集为:,∴不等式组的最大整数解为:1,最小整数解为:﹣1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解题的关键是掌握不等式组的解法.14.(2022•会东县校级模拟)解不等式组3(−1)<5+1(−1)≥2−4并求它的所有的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.【解答】解:3(−1)<5+1①(−1)≥2−4②,解①得x>﹣2,解②得x≤3.则不等式组的解集是:﹣2<x≤3.则非负整数解是:0,1、2、3.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(2023•鼓楼区模拟)解关于x的不等式组:4(+1)≤7+102−3<K12,并求出它所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数求其和即可.【解答】解:4(+1)≤7+10①2−3<K12②,解不等式①得,x≥﹣2,解不等式②得,x<53,所以不等式组的解集为﹣2≤x<53,所以原不等式组的整数解是﹣2、﹣1、0、1,所以所有整数解的和为﹣2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
七年级下册数学一元一次不等式组应用题专项练习附答案

七年级下册数学一元一次不等式组应用题专项练习附答案七年级下册数学一元一次不等式组应用题专项练习附答案一、综合题(共11题;共108分)1.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640 t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1 080 t.(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4 500 t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少.4.某商店需要购进甲、乙两种商品共130件,其进价和获利情况如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于3000元,且销售完这批商品后总获利多于1048元,请问有哪些购货方案?5.某校组织夏令营活动,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则刚好坐满;若只租用42座客车,则能少租一辆,而且还有一辆没有坐满,但超过30人,问:(1)该校有多少人参加夏令营活动?(2)已知36座客车每辆租金400元,42座客车每辆租金440元,请你帮该校设计一种最省钱得租车方案。
人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)(1)计算题:0011 -330(2017)()3π-+-+ (2)计算题: 124(2)22x x x x ---÷++ (3)解不等式组:3(2)41123x x x x --≤⎧⎪-+⎨<⎪⎩ 【答案】(1)4(2)答案见解析(3)答案见解析【解析】试题分析:(1)根据绝对值、特殊角的三角函数值、零指数幂、负整数指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题;(3)根据解一元一次不等式组的方法可以解答本题.试题解析:解:(1)原式﹣2﹣1+3 =3+1﹣2﹣1+3=4;(2)原式=2212224x x x x x-+-+⋅+-()() =44224x x x x x ()()+-+⋅+- =﹣(x +4)=﹣x ﹣4;(3)324{1123x x x x --≤-+()①<②,解不等式①,得:x ≥1,解不等式②,得:x <5,∴原不等式组的解集是1≤x <5.32.(1)化简:(31a +﹣a+1)÷2441a a a -++. (2)解不等式组:1422123x x x x ->+⎧⎪+⎨>⎪⎩ 【答案】(1)22a a +-- ,(2)x <﹣1 【解析】【分析】(1)括号内先进行通分,然后进行分式的加减法运算,最后再进行分式的乘除法运算即可;(2)分别求出每一个不等式的解集,然后再确定出解集的公式部分即可得不等式组的解集.【详解】(1)原式=()()()23111·12a a a a a --+++- =()()()2221·12a a a a a +-++- =22a a+-; (2)1422123x x x x ->+⎧⎪⎨+>⎪⎩①②, 由①得:x <﹣1,由②得:x <14, 所以原不等式组的解集为:x <﹣1.33.“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.【答案】(1)采购了100条长条椅,200条弧型椅;(2)有三种方案,见解析;(3)最省钱的租车方案是租用A型卡车15辆、B型卡车5辆,最低运费为23250元.【解析】试题分析:(1)设景区采购长条椅x条,弧型椅y条,然后根据游客人数和花费钱数两个等量关系列出方程组求解即可;(2)设租用A型卡车m辆,则租用B种卡车(20﹣m)辆,根据两种型号卡车装运的休闲椅的数量不小于两种休闲椅的数量列出不等式组,求解即可,再根据车辆数是正整数写出设计方案;(3)设租车总费用为W元,列出W的表达式,再根据一次函数的增减性求出最少费用.试题解析:解:(1)设景区采购长条椅x 条,弧型椅y 条,由题意得: 35130016020056000x y x y +=⎧⎨+=⎩,解得:100200x y =⎧⎨=⎩. 答:采购了100条长条椅,200条弧型椅;(2)设租用A 型卡车m 辆,则租用B 种卡车(20﹣m )辆,由题意得:4122010011720200m m m m +-≥⎧⎨+-≥⎩()(),解得:15≤m ≤17.5,由题意可知,m 为正整数,所以,m 只能取15、16、17,故有三种租车方案可一次性将这批休闲椅运回来,可这样安排:方案一:A 型卡车15辆,B 型卡车5辆,方案二:A 型卡车16辆,B 型卡车4辆,方案三:A 型卡车17辆,B 型卡车3辆;(3)设租车总费用为W 元,则W =1200m +1050(20﹣m )=150m +21000.∵150>0,∴W 随m 的增大而增大.又∵15≤m ≤17.5,∴当m =15时,W 有最小值,W 最小=150×15+21000=23250,∴最省钱的租车方案是租用A 型卡车15辆、B 型卡车5辆,最低运费为23250元.点睛:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,读懂题目信息,理解数量关系并确定出等量关系和不等量关系是解题的关键,(3)利用一次函数的增减性和自变量的取值范围求最值是常用的方法.34.解不等式组:2132x x x +≥⎧⎨+>⎩,并在所给的数轴上表示解集.【答案】-1≤x<3【解析】分析:根据不等式的解法,先分别求解两个不等式的解集,再根据不等式组的解集的确定方法求出不等式的解集,并表示在数轴上即可.详解:解不等式①,得:1x ≥-解不等式②,得:3x <在数轴上表示解集为:点睛:此题主要考查了不等式组的解法,关键是明确不等式组的解集的确定方法:都大取大,都小取小,大小小大取中间,大大小小无解.35.(1)计算:(﹣12)﹣1﹣°+(π﹣4)0 (2)解不等式组3(2)64113x x x x --≥⎧⎪-⎨+>⎪⎩.并写出它的整数解. 【答案】(1)0;(2)整数解为2 , 3【解析】分析:(1)先分别计算有理数的负指数幂、绝对值、特殊角的三角函数值以及零次幂,最后再计算加减即可求得答案;(2)分别求出每个不等式的解集,然后再取它们的公共部分,进而求出整数解即可本题解析:(1)(﹣)﹣1﹣|1﹣|+2sin60°+(π﹣4)0=-2﹣+1+2×+1=-2﹣+1++1=0.(2)解:由①得2x ≥由②得4x <∴此不等式组的解集为24x ≤<整数解为2, 336.求不等式组231320x x -≤⎧⎨+>⎩的解集. 【答案】223x -<≤. 【解析】分析:分别解不等式,找出解集的公共部分即可.详解:231,320x x -≤⎧⎨+>⎩①②解不等式①,得 2x ≤;解不等式②,得2 3x >-; 原不等式组的解集为223x -<≤. 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.37.解不等式组2(1)31132x x x x +≤-⎧⎪+⎨<⎪⎩【答案】x ≥3.【解析】分析:首先分别求出每一个不等式的解,从而得出不等式组的解集. 详解:解不等式①:2x+2≤3x-1 即x ≥3; 解不等式②:2x<3(x+1) 即x>-3;∴该不等式组的解集为x ≥3.点睛:本题主要考查的是不等式组的解法,属于基础题型.理解不等式的性质是解题的关键.38.(1)解不等式组:22(1)43x x x x --⎧⎪⎨≤-⎪⎩< (2)解方程:3323x x x x --=- 【答案】(1)0<x ≤3(2)x=32或x=-32 【解析】试题分析:()1分别解不等式找出解集的公共部分即可.()2设3x y x -=,方程变形为:32y y ,-=解方程求出y 的值,再代入3x y x -=,求出x ,注意检验.试题解析:(1)()2214,3x x x x <①②⎧--⎪⎨≤-⎪⎩由①得:0x >,由②得:3x ≤,则不等式组的解集为03x <≤;(2)设3x y x-=,方程变形为:32y y ,-= 去分母得:2230y y --=,解得:1y =-或3y ,= 可得31x x -=-或33x x-=, 解得:32x =或32x =-, 经检验32x =与32x =-都是分式方程的解. 39.解不等式组12655x x x ->⎧⎨≤+⎩①② 请结合题意填空,完成本题的解答. (Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为 .【答案】(Ⅰ)x >3;(Ⅰ)x ≤5;(Ⅰ)见解析;(Ⅰ)3<x ≤5.【解析】【分析】【详解】解:(Ⅰ)解不等式Ⅰ,得:x >3;(Ⅰ)解不等式Ⅰ,得:x ≤5;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为3<x ≤5.40.解不等式(组),并把它的解集在数轴上表示出来: (1)0.10.81120.63x x x ++-<-; (2)13(1)8321232x x x x --<-⎧⎪--⎨≤-⎪⎩ 【答案】(1) x <3 ;(2) -2<x ≤2【解析】分析:(1)根据一元一次不等式的解法思路有移项、化简(同乘除)可求得;(2)根据求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)可求得.详解:(1)x 0.1x 0.8x 1120.63++-<-, 化简得:2x −x 86+<1−x 13+, 去分母得:3x −(x+8)<6−2(x+1),去括号得:3x −x −8<6−2x −2,移项合并得:4x<12,化系数为1得:x<3.在数轴上表示得:(2)()1318x 3x 21232x x ⎧--<-⎪⎨--≤-⎪⎩①②,由①得:x>−2,由②得:x⩽2,∴原不等式组的解集为:−2<x⩽2;在数轴上表示为:点睛:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)

人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)一、选择题1.若关于x 、y 的二元一次方程组{3x −y =−1−a,x −3y =3的解满足x -y >-2,则a 的取值范围是( ) A .a <4B . 0<a <4C . 0<a <10D .a <102.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( )A .y =-1B .y =1C .y =-2D .y =23.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买多少枝钢笔.( )A . 11B . 12C . 13D . 144.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为21.5元,那么x 的最大值是( )A . 11B . 8C . 7D . 55.初三的几位同学拍了一张合影作留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为( )A . 至多6人B . 至少6人C . 至多5人D . 至少5人6.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <37.不等式|x -2|>1的解集是( )A .x >3或x <1B .x >3或x <-3C . 1<x <3D . -3<x <3二、填空题8.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________.9.若-3是关于x 的方程x−a 3-2−x 4=1的解,则x−a 3-2−x 4≥1的解集是__________.10.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用____________资金购买书桌、书架等设施.11.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_________. 12.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______.三、解答题13.已知方程组{x −y =2a,2x +3y =5−a的解为非负数,求整数a 的值. 14.若关于x 的方程2x -3m =2m -4x +4的解不小于78-1−m 3,求m 的最小值.15.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.17.解不等式:5x+12-x−24>5x−16+x−33.答案解析1.【答案】D【解析】在关于x 、y 的二元一次方程组{3x −y =−1−a①,x −3y =3②中, ①+②,得4x -4y =2-a ,即x -y =12-a 4,∵x -y >-2,∴12-a 4>-2,解得a <10,故选D.2.【答案】D【解析】ax -2>0,移项,得ax >2,∵解集为x <-2,则a =-1,则ay +2=0,即-y +2=0,解得y =2.故选D.3.【答案】C【解析】设买x 支钢笔,则笔记本有(30-x )本,则有5x +2(30-x )≤100,即3x ≤40,解得x ≤1313.因此最多能买13支钢笔.故答案为13.4.【答案】B【解析】根据题意得8+2.6(x -3)≤21.5,解得x ≤8.19,∵不足1千米按1千米计,∴x 的最大值是8.故选B.5.【答案】B【解析】设参加合影的同学人数为x 人,则有5+0.5x <1.5x ,解得x >5,∵x 取正整数,∴参加合影的同学人数至少为6人.故选B.6.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A.7.【答案】A【解析】∵|x -2|>1,∴x -2>1或x -2<-1;所以解集为x >3或x <1;故选A.8.【答案】k >4【解析】由方程3(x +2)=k +2去括号移项,得3x =k -4,∴x =k−43, ∵关于x 的方程3(x +2)=k +2的解是正数,∴x =k−43>0,∴k >4. 9.【答案】x ≥-3【解析】把x =-3代入方程x−a 3-2−x 4=1,可得a =-394, 把a =-394代入x−a 3-2−x 4≥1,解得x ≥-3,故答案为x ≥-3.10.【答案】7 500元【解析】设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元, 根据题意得30 000-x ≥3x ,解得x ≤7 500.即最多用7 500元购买书桌、书架等设施;故答案是7 500元.11.【答案】80【解析】设以后几天平均每天完成x 土方.由题意得:3x ≥300-60,解得x ≥80答:以后几天平均至少要完成的土方数是80土方.故答案为80.12.【答案】3-a【解析】∵关于x 的不等式(a -2)x >a -2解集为x <1,∴a -2<0,即a <2,∴原式=3-a .故答案为3-a .13.【答案】解:{x −y =2a①,2x +3y =5−a②,①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1;②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1;则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.14.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =5m+46, 根据题意,得5m+46≥78-1−m 3,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-14.所以当m ≥-14时,方程的解不小于78-1−m 3,m 的最小值为-14. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于78-1−m 3,即可得到关于m 的不等式,即可求得m 的范围,从而求解.15.【答案】解:(1)设甲票价为4x 元,乙为3x 元,∴3x +4x =42,解得x =6,∴4x =24,3x =18, 答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y 张,则乙种票(36-y )张,根据题意得24y +18(36-y )≤750,解得y ≤17,答:甲种票最多买17张.【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.16.【答案】解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得x≥4或x≤-5.(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.故a≤7.【解析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x-3|+|x+4|≥a对任意的x都成立,即求到3与-4两点距离的和最小的数值.17.【答案】解:去分母得6(5x+1)-3(x-2)>2(5x-1)+4(x-3),去括号得30x+6-3x+6>10x-2+4x-12,移项得30x-3x-10x-4x>-2-12-6-6,合并同类项,得13x>-26,系数化为1,得x>-2.【解析】利用不等式的基本性质,即可求得原不等式的解集.。
人教版七年级数学(下)《一元一次不等式》专题训练1

人教版七年级数学(下)《一元一次不等式》专题训练
3.解不等式()4156x x -≥-,并写出所有正整数解.
【点睛】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.
x-.
346
x-+.
63
合并,得3x --.
解得3x .
在数轴上表示为:
.
【点睛】本题考查了解简单不等式的能力,解题的关键是:答这类题学生往往在解题时不注意性质3而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.。
人教版七年级数学下一元一次不等式(组)练习题.docx

一元一次不等式(组)练习题一、选择题1.不等式6(x +1)-3x >3x +3的解集为( )A 、x >1B 、无解C 、x >-1D 、任意数2.不等式4x -7≥5(x -1)的解集是( )A 、x ≥ 2B 、x ≥-2C 、x ≤-2D 、x ≤23、不等式027≥-x 的正整数解有( )A、1个 B、2个 C、3个 D、无数个4、若x x -=-44,则x 的取值范围是( )A、4πx B、4≤x C、4φx D、4≥x5、若n m >,则下列不等式中成立的是( )(A)b n a m +<+ (B)nb ma < (C)22na ma > (D)n a m a -<-6、不等式组⎩⎨⎧<-≤-321x x 的解集是( )(A)1-≥x (B)5<x (C)51<≤-x (D)51<-≤或x x7.一个数x 的31与-4的差不小于这个数的2倍加上5所得的和,则可列不等式是() A.52431+>--x x B.52431+>+x x C.52431+≥-x x D.52431+≥+-x x8、不等式组()⎪⎩⎪⎨⎧<-+<+043321413x x 的最大整数解是( )A 、0B 、-1C 、-2D 、19、满足不等式-1<312-x ≤2的非负整数解的个数是( )A .5B .4C .3D .无数个10.如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( )A 、9 ≤m <12B 、9 <m ≤12C 、m <12D 、m ≥ 9二填空1.如果b a <,则a 321- b 321-(用“>”或“<”填空).2.当x 时,式子53-x 的值大于35+x 的值.3.满足不等式组⎪⎪⎩⎪⎪⎨⎧≥--->-xx x 211221的整数解为 .4.不等式x x ->+2541的负整数解是 . 5.某足协举办了一次足球比赛,计分规则为:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场后的积7分,则甲队平 场.6、当x ________时,代数式61523--+x x 的值是非负数. 7.尚明要到离家5千米的某地开会,若他6时出发,计划8时前赶到,那么他每小时至少走 千米.三、解答题1.求下列不等式(组)的解集 ⑴x x x ++≤--332311 ⑵⎪⎩⎪⎨⎧-<--≥+-xx x x 6)1(313242.求使不等式74756+>+x x 和3443)2(8+<+-x x 同时成立的自然数x .3.已知不等式61254<--x 的负整数解是方程ax x =-32的解,求不等式组⎪⎩⎪⎨⎧<+>--a x x a x 25133)(7的解集.4.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元,已知两种⑵若该商场把100只球全部以零售价售出,为使商场的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元?(10分)初中数学试卷桑水出品。
人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (73)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案)解下列方程或不等式(组):(1)()3142x x -+≥ (2)()3511211x x x -<+⎧⎨->⎩【答案】(1)1x ≥-;(2)382x << 【解析】【分析】(1)先去括号,再移项合并同类项即可;(2)先根据解一元一次不等式的一般步骤:去括号、移项、合并同类项、系数化为1,解得各自的解集,再求得不等式组的解集即可.【详解】(1)原不等式去括号得:3342x x -+≥移项得:3234x x -≥-合并同类项1x ≥-∴原不等式的解集为:1x ≥-;(2)先解不等式:3511x x -<+移项得:3115x x -<+合并同类项得:216x <系数化成1得:8x <再解不等式:()211x ->去括号得:221x ->移项得:212x>+合并同类项得:23x>系数化成1得:32x>∴原不等式组的解集为:38 2x<<【点睛】本题考查一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.52.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【答案】(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可;②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b , ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元.(ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去.当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤, ∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.53.解不等式组523(2)15x x x x ->-⎧⎨->-⎩,并把不等式组的解集表示在数轴上. 【答案】﹣2<x ≤3,见解析.【解析】【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.【详解】解:523(2)15x x x x ->-⎧⎨->-⎩①② 由①得:x >﹣2,由②得:x ≤3,∴不等式组的解集为:﹣2<x ≤3.在数轴表示为.【点睛】本题考查解一元一次不等式组,熟练掌握计算法则是解题关键.54.解不等式组:523(1)37122x xx x-+⎧⎪⎨-≥-⎪⎩>,并把它的解在数轴上表示出来.【答案】52<x≤4【解析】【分析】依次求出各不等式,再找到其公共解集. 【详解】解:523(1)37122x xx x-+⎧⎪⎨-≥-⎪⎩>①②,解不等式组:解①得:x>52解①得:x≤4,故不等式组的解是52<x≤4.故答案为:52<x≤4.【点睛】此题主要考查不等式的解集,解题的关键是熟知不等式的性质.55.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①x ﹣(3x +1)=﹣5;②23x +1=0;③3x ﹣1=0 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是 (填序号); (2)若不等式组1321x x x +>-+⎧⎨-<⎩的某个关联方程 2x-m=1 的解是整数, 求 m 的值;(3)若方程12﹣12 x =12 x ,3+x =2(x +1 2)都是关于 x 的不等式组22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围. 【答案】(1)①;(2)m =3;(3)0≤m <0.5.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为2的方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由x ﹣(3x+1)=﹣5,解得,x =2,故方程①x ﹣(3x+1)=﹣5 是不等式组的关联方程,由23x +1=0 得,x =32-,故方程②23x +1=0 不是不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程, 由 3x ﹣1=0,得 x =13,故方程③3x ﹣1=0 不是不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程, 故答案为:①;(2)由不等式组1321x x x +>-+⎧⎨-<⎩,解得,1<x <3,则它的关联方程的解是整数,x=2 关联方程 2x-m=1 的解,故 m =3;(3)由12 ﹣12 x =12 x ,得 x =0.5,由 3+x =2(x +12)得 x =2, 由不等式组 22x x m x m<-⎧⎨-⎩ ,解得,m <x ≤2+m , ∵方程 12﹣1 2 x =12x ,3+x =2(x +1 2 )都是关于 x 的不等式组22x x m x m <-⎧⎨-⎩的关联方程, ∴ 0.522m m <⎧⎨+⎩ ,得 0≤m <0.5, 即 m 的取值范围是 0≤m <0.5. 【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.56.(1)解不等式:2x ≤3(x ﹣1)+4(并把解集在数轴上表示出来)(2)解不等式组21321 3232x xx++⎧->⎪⎨⎪-≥⎩【答案】(1) x ≥-1; 解集在数轴上表示见解析;(2) x<-2.【解析】【分析】(1)先解出不等式的解集,再在数轴上表示;(2)先分别求出个不等式的解集,再求不等式组的解集.【详解】解:(1)2x ≤3(x﹣1)+42x≤3x-3+4-x≤1x≥-1在数轴上表示如下:(2)213213232x xx++⎧->⎪⎨⎪-≥⎩①②由①得x<-2由②得x<1所以不等式组的解集为:x<-2 【点睛】本题考查不等式和不等式组的解法,运用数轴确定不等式组的解集是解答本题的关键.57.解不等式组11211x x ①②+-⎧⎨-≤⎩;请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得____________________;(Ⅱ)解不等式②,得____________________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为_______________________.【答案】(Ⅰ)2x -;(Ⅱ)1x ≤;(Ⅲ)见解析;(Ⅳ)21x -.【解析】【分析】(I )先移项合并,再未知数的系数化为1,即可得到不等式的解集; (II )先移项合并,再未知数的系数化为1,即可得到不等式的解集; (III )根据求出每一个不等式的解集,将解集表示在数轴上表示出来; (IV )取不等式①②的解集的公共部分即可.【详解】解:(Ⅰ).解不等式①,得2x -,故答案为:2x -,(Ⅱ)解不等式②,得1x ≤;故答案为:1x ≤,(III )把不等式①和②的解集在数轴上表示出来.如图:(IV )原不等式组的解集为:21x - ;故答案为: 21x - ;【点睛】本题考查了解一元一次不等式组以及把不等式组的解集画在数轴上,掌握不等式的解法是解题的关键.58.解下列不等式组,并把解集在数轴上表示出来.(1) 2+134+)17(-x x ⎧⎨⎩①<≥② ;(2) 3(2)8143x x x x +>+⎧⎪⎨-≥⎪⎩①② 【答案】(1)1⩽x<3;(2)1<x ⩽4【解析】【分析】(1)求出不等式的解集,根据不等式的解集找出不等式组的解集即可.(2)求出不等式的解集,根据不等式的解集找出不等式组的解集即可.【详解】(1)∵解不等式①得:x ⩾1,解不等式②得:x<3,∴不等式组的解集为:1⩽x<3,在数轴上表示不等式组的解集为:(2)∵解不等式①得:x>1,解不等式②得:x ⩽4,∴不等式组的解集为:1<x ⩽4,在数轴上表示不等式组的解集为:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则59.解不等式或方程组:(1)221123x x +--≥; (2)4143314312x y x y +=⎧⎪⎨---=⎪⎩①,②. 【答案】(1)14x ≤; (2)3114x y =⎧⎪⎨=⎪⎩. 【解析】【分析】(1)根据一元一次不等式解法去分母、去括号、移项、合并同类项,即能得到答案.(2)先把方程组整理成一般形式,再利用加减消元法解答.【详解】(1) 解:去分母,得3(2+x)≥2(2x-1)-6去括号,得6+3x ≥4x-2-66+2+6≥4x-3x合并同类项,得14≥x即x ≤14(2)方组可化为x+4y=14① 3x −4y=−2②,①+②得,4x=12,解得x=3,把x=3代入①得,3+4y=14,解得y=114所以,原方程组的解是x=3 y=114 经验证x=3 y=114是原方程组的解. 【点睛】 本题考察了(1)一元一次不等式的解法, 解一元一次不等式的步骤一般为:去分母、去括号、移项、合并同类项、系数化为1,具体要使用哪些步骤要根据具体情况而定.(2)解二元一次方程组,灵活掌握加减消元法,进行解题是关键.60.定义:对于任何有理数m ,符号[]m 表示不大于m 的最大整数.例如:[4.5]4=,[8]8=,[ 3.2]4-=-.(1)填空:[]π=________,[ 2.1]5-+=________;(2)如果52[]43x -=-,求满足条件的x 的取值范围; (3)求方程43[]50x x -+=的整数解.【答案】(1)3,2;(2)1772x <≤;(3)5x =-【分析】(1)根据题目中所给的运算方法求解即可;(2)根据题目中所给的运算方法得到不等式组52433x --≤<-,解不等式组即可求得x 的取值范围;(3)把43[]50x x -+=化为45[]3x x +=,根据题目中所给的运算方法可得4513x x x +-<≤,解不等式组可得85x -<≤-,已知[]x 是整数,设453x n +=(n 是整数),可得354n x -=,即可得35854n --<≤-,解得不等式组可得95n -<≤-,再由n 是整数确定8,7,6,5n =----,因题目求方程43[]50x x -+=的整数解,即可得只有当5n =-,方程的整数解为5x =-.【详解】(1)3,2(2)由题:52433x --≤<- 解得不等式组的解集为:1772x <≤(3)由题得:45[]3x x +=∴4513x x x +-<≤ 解得不等式组的解集为:85x -<≤-∵[]x 是整数设453x n +=(n 是整数) ∴354n x -= 35854n --<≤- 解得不等式组的解集为:95n -<≤-∵n 是整数∴8,7,6,5n =----,∵x 是方程43[]50x x -+=的整数解,∴只有当5n =-,方程的整数解为5x =-.【点睛】本题是阅读理解题,还考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式组的解集.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x-6 7x+3 x-4 5x-3 ———> ——————> ———-3 7 8 7 4
9x+1>10x-13 6(7x+1)<9(10x+27)
7x+4 x+8 5x+2 x+5 ———> ——————> ———+3 6 4 4 3
9x-20<4x-11 2(3x+10)>5(8x+1)
5x-5 5x-5 4x+2 6x-8 ———> ——————< ———+1 6 6 3 5
7x-27>8x-14 2(3x+3)<9(4x-28)
7x+2 3x+9 3x+5 x+8 ———< ——————> ———-5 6 4 4 5
x+14>8x-25 4(9x-9)>9(8x+4)
4x-2 4x-9 x-9 x+8 ———> ——————> ———+1 5 3 7 7
x+21<6x-15 8(9x-5)>3(10x-10)
6x-6 x+7 4x-1 x+3 ———< ——————< ———-5 7 6 5 5
x-17>8x-22 2(3x-3)>3(6x+18)
x-2 4x+8 x+1 x+9 ———> ——————< ———+6 8 5 5 5
3x+12>8x+27 8( x+2)>3(2x+23)
4x+6 x+4 5x-1 5x-3 ———> ——————< ———+3 3 4 6 6
3x+2<10x+23 2(5x-6)>3(2x-20)
9x+2 4x-7 7x-9 7x-6 ———< ——————> ———-6 8 3 8 6
3x+11>2x-26 4(3x+8)>7(2x-8)
x-2 2x+5 5x-6 x-6 ———< ——————< ———-4 3 3 4 4
x+23>6x+25 8( x-4)>7(6x-30)
x-9 x+2 x+6 x-3 ———> ——————> ———-6 6 4 3 7
5x+20<8x-22 6(7x-9)>5(6x+30)
8x+1 x-6 4x-5 x-6 ———> ——————> ———-3 7 3 5 4
9x-10>4x-6 6(7x+4)>7(6x-21)
x+8 x-3 x-6 7x-8 ———> ——————< ———+4 6 4 7 6
x+7>2x+24 4(3x+10)<9(10x-18)
6x+8 9x-9 4x-6 x-3 ———< ——————< ———+3 7 8 5 7
9x+24<2x-15 2(7x+7)<3(8x-2)
x+2 x+1 4x-4 9x-1 ———> ——————< ———-6 5 8 5 8
5x+29>8x-8 2(7x+8)>7(10x-21)
x-5 x-7 6x-6 4x-6 ———< ——————> ———-2 4 8 5 5
3x+22>6x-1 6(7x-5)<5(8x+4)
x+4 4x+3 x-3 x-5 ———< ——————> ———-5 6 5 3 6
7x-22>10x-19 8(9x-6)>5(6x+3)
x+6 x+7 6x+1 8x-8 ———> ——————> ———+5 8 5 7 7
x+15>4x-20 2( x+3)>7(8x+8)
x+5 x-4 7x-3 5x+6 ———> ——————< ———+3 3 5 8 4
x+20<10x+30 4( x-8)<9(6x-15)
x-7 7x+3 9x+7 3x-8 ———< ——————< ———-6 7 8 8 4
5x-24>6x+4 8(5x-3)<7(4x+9)
4x-6 6x-7 x+2 x+1 ———> ——————< ———+5 5 5 6 6
x-28<4x-6 8(7x-2)>3(6x-2)
8x+5 x+4 x+9 x-1 ———> ——————> ———-2 7 6 6 4
3x-17>2x+8 8(3x+3)<9(4x-8)
x-7 5x-1 5x-3 9x-5 ———> ——————< ———+2 8 4 4 8
9x+30<10x-26 8(3x+2)<3(10x-16)
x+7 x-9 2x+9 x+5 ———< ——————< ———-6
5 7 3 4
9x-24<2x+2 6(7x-8)>7(8x+16)
x+3 4x-4 x+2 x-7 ———> ——————> ———+4
5 5 4 8
x+5>4x-13 8(3x-5)<5(4x-1)
x+2 x+3 6x+7 x-7 ———> ——————> ———+2 3 8 7 6
3x-16>2x+16 6(5x+4)<5(4x+17)
x+4 8x-7 x+1 x-7 ———< ——————> ———-2 3 7 6 7
5x-13<8x+8 6(5x-5)<7(4x-28)
8x+2 4x+2 x-8 8x+8 ———< ——————< ———-5 7 3 7 7
9x-22<2x-5 6(5x+6)<9(2x+9)
7x-3 x-3 x+6 x+9 ———< ——————> ———-4 6 6 8 4
7x+2<8x-10 4( x+7)>3(2x+4)
5x-7 7x+2 4x+9 x+9 ———> ——————> ———-3 6 6 5 5
5x+9<10x-11 2( x-3)<3(10x+12)
x-8 x-3 7x-7 6x+2 ———> ——————> ———-5 8 7 6 5
7x+2<4x-10 6(5x-9)>3(8x+6)
4x-3 7x-7 7x+3 x-6 ———< ——————> ———-4 5 6 6 4
5x+5>10x+26 8(5x+3)>9(8x-18)
x-6 5x-4 5x+7 5x-5 ———> ——————< ———+1 7 4 6 4
5x-5<4x+20 6( x-6)<3(10x-12)
9x-2 3x-7 2x-4 3x-5 ———< ——————< ———+3
8 4 3 4
x-14>10x-16 4(7x-2)<9(10x+15)
x+4 4x+7 x+3 4x+7 ———< ——————> ———+5
5 5 8 5
3x+1<8x+10 2(9x+3)<5(10x-8)
7x+7 x+1 x+5 x+5 ———< ——————> ———-1 8 6 3 3
3x-23>4x+11 2(7x+2)>3(8x+19)
4x-3 6x+6 x-5 6x-5 ———< ——————< ———+6 3 7 4 7
7x-10<6x+13 2( x+6)>3(8x+20)
8x+4 x-4 x+7 x+7 ———> ——————< ———+6 7 8 8 4
x+18<2x-1 4(9x-3)>9(6x-10)
5x+7 7x-9 x-8 3x-1 ———> ——————> ———+6 4 8 5 4
9x+9<2x+16 6(3x-9)<3(6x-24)
2x-3 x+1 4x+7 4x-9 ———< ——————> ———+4 3 3 3 3
3x-17>6x+26 6(7x-5)>9(4x-15)
x+5 x-6 8x-8 4x+7 ———> ——————> ———+3 5 6 7 3
5x-14<10x+6 6( x+4)>7(10x-5)
x-2 5x-7 7x+9 7x-1 ———> ——————< ———-1 7 4 8 6
3x-18<4x+21 8(3x-3)>3(2x+5)
4x+5 5x-4 4x+4 7x-9 ———< ——————> ———+4 3 4 3 6
3x-14<4x+25 2(7x+2)<3(4x+25)
x-7 5x-4 x+7 5x+3 ———> ——————> ———+4 4 6 5 6
9x+16>2x-15 2(3x+9)<3(10x+28)
2x+7 x-2 x-2 5x-4 ———> ——————< ———-6 3 4 3 4
9x+28>8x-23 2(3x+3)>3(8x+1)
4x+3 x+3 x+6 x-4 ———< ——————> ———-1
5 8 8 4
5x-25<4x+4 6( x-9)>7(4x-23)
x+8 x-2 7x-4 2x-2 ———> ——————< ———-1
6 6 6 3
7x+13<10x+21 6(5x-6)>3(10x-4)
2x-6 x+7 4x+6 x+7 ———< ——————> ———-5
3 8 3 3。