电路分析1.4

合集下载

1.4 非线性电路的分析方法

1.4 非线性电路的分析方法

1.4 非线性电路的分析方法如前所述,在小信号放大器的分析和设计中, 通常是采用等效电路法,以便采用经典电路理论来进行分析、计算。

线性电路中,通常信号幅度小,整个信号的动态范围在元器件特性的线性范围内,所以器件的参数均视为常量,可以借助于公式计算电路的性能指标。

“模拟电子技术基础”课程中“低频小信号放大器”以及本课程中 “高频小信号谐振放大器”的分析中都涉及线性电路的分析。

在通信电子线路中,除了小信号放大电路外,有源器件还常工作在大信号或非线性状态。

与线性电路相比,非线性电路的分析和计算要复杂得多。

在非线性电路中,信号的幅度较大时,信号的动态范围涉及元器件特性的整个范围,半导体器件工作在非线性状态。

它们的参数不再是常数而是变量了。

因此,难以用等效电路和简单的公式计算电路了。

此外,在线性、非线性频谱搬移电路中,都涉及非线性电路的分析方法。

非线性电路的分析是本课程中的重要内容。

分析非线性电路时,常用幂级数分析法、指数函数分析法、折线分析法、开关函数分析法和时变参数分析法等。

1.4.1 幂级数分析法常用的非线性元器件的特性曲线大都可以用幂级数来表示。

在小信号运用的条件下,可以将一些非线性元器件的特性曲线用幂级数近似表示,使问题简化。

用这种方法分析非线性电路,虽然存在一定的准确性问题,但可以较好地说明非线性器件的频率变换作用。

因此在小信号检波、小信号调幅等电路分析时常常采用。

下面以图1.4.1所示电路为例,介绍幂级数分析法。

图中二极管是非线性器件,所加信号电压u 的幅度较小,称为小信号;L R 为负载, 0U 是静态工作点电压。

设流过二极管的电流i 函数关系为:)(u f i =若该函数)(u f 的各阶导数存在,则这个函数可以在静态工作点0U 处展开成幂级数(或称为泰勒级数)。

+-+-+-+=300///200//00/0)(!3)()(!2)())(()(U u U fU u U fU u U f U f i+-+-+-+=303202010)()()(U u b U u b U u b b (1-4-1)式中 0)(00U u iU f b ===为工作点处的电流u LR 图 1.4.1 二极管及其伏安特性(a)o(b)Id d )(0/1U u ui U f b === 为过静态工作点切线的斜率,即跨导;0220//2d d !21)(U u ui U f b ===kk0k k d d !1)(U u ui K U f b ===如果取00=U ,即静态工作点选在原点,则式(1-4-1)可写为 ++++=332210u b u b u b b i (1-4-2)从数学分析来看,上述幂级数展开式是一收敛函数,幂次越高的项其系数越小。

数字信号处理电路分析

数字信号处理电路分析

数字信号处理电路分析数字信号处理(Digital Signal Processing,简称DSP)是指对数字信号进行采样、量化、编码和计算等处理的技术。

数字信号处理电路(Digital Signal Processing Circuit,简称DSP电路)是实现数字信号处理功能的硬件电路。

1. 数字信号处理电路的基本原理数字信号处理电路由以下几部分构成:采样电路、模数转换电路、数字信号处理器和数模转换电路。

其基本原理如下:1.1 采样电路:将连续时间的模拟信号转换成离散时间的数字信号。

采样定理规定了采样频率应大于信号最高频率的两倍,以避免采样失真。

1.2 模数转换电路:将连续的模拟信号转换成对应的数字信号。

模数转换器的核心是模数转换器芯片,采用逐级逼近型模数转换器或者delta - sigma调制器。

1.3 数字信号处理器:对数字信号进行数学运算和算法处理的核心部件。

它可以用于音频、视频等信号的压缩、滤波、变换等处理。

1.4 数模转换电路:将数字信号转换为模拟信号,以便于输出到外部设备。

2. DSP电路常用应用及分析2.1 音频信号处理DSP电路广泛应用于音频设备中,如音乐播放器、音响等。

采用DSP电路可以对音频信号进行滤波、均衡、混响等处理,以改善音质和增加音效。

2.2 图像处理在数字相机、手机摄像头等设备中,DSP电路可用于图像处理,如去噪、增强对比度、调整颜色平衡等。

DSP电路的高速处理能力和算法优化可以提供更好的图像质量。

2.3 通信信号处理在通信领域,DSP电路被广泛应用于调制解调、编解码、信号压缩等方面。

采用DSP电路可以提高通信质量和信号处理的速度。

2.4 视频信号处理DSP电路在电视、监控摄像头等设备中也起到重要作用。

例如,DSP电路可以完成视频信号的编码、解码、去噪和增强,以提高图像质量和显示效果。

2.5 生物医学信号处理生物医学信号处理是DSP电路的重要应用领域之一。

通过DSP电路可以对生物医学信号进行滤波、去噪、生理参数提取等处理,为医学诊断和治疗提供支持。

电路分析

电路分析

集总参数 元件有何 特征?
1.2 电路的基本物理量
1、电流
• 电流的大小
稳恒直流情况下
dq i=
dt Q I= t
…… (1-1) …… (1-2)
单位换算
1A=103mA=106μA=109nA
• 电流的方向
习惯上规定以正电荷移动的方向为电流的正方向。
电路图上标示的电流方向为参考方向,参考方向是为 列写方程式提供依据的,实际方向根据计算结果来定。
• 利用电路模型研究问题的特点
电路模型是用来探讨存在于具有不同特性的、各 种真实电路中共同规律的工具。
电路模型主要针对由理想电路元件构成的集总参 数电路,集总参数电路中的元件上所发生的电磁 过程都集中在元件内部进行,任何时刻从元件两 端流入和流出的电流恒等、且元件端电压值确定。 因此电磁现象可以用数学方式来精确地分析和计 算。
–I1 + I2 – I3 –I4 = 0
KCL的有关举例与讨论
• 讨论1
i1
i2 • i4
i3
根据 ∑ i(t)= 0 可列出KCL:i1 – i2+i3 – i4= 0 整理为 i1+ i3= i2+ i4
可得KCL的另一种形式:∑i入= ∑ i出
KCL的推广应用
IA
A
IAB
IB
IBC
B
IC
+I
US_
U RL
R0
_
b
若实际电源输出的电压 值变化不大,可用电压源 和电阻相串联的电源模型 表示,即实际电源的电压 源模型。
aI
U R0
+
IS
R0 U RL
– b
若实际电源输出的电流 值变化不大,则可用电流 源和电阻相并联的电源模 型表示,即实际电源的电 流源模型。

电气工程专业学习计划

电气工程专业学习计划

电气工程专业学习计划一、学习目标1.掌握电气工程基础理论和专业知识,包括电路分析、电力系统、电机驱动、电力电子等内容。

2.熟练掌握电气工程相关的数学、物理、计算机等基础知识和技能。

3.掌握电气工程领域的先进技术和发展趋势,培养创新意识和能力。

4.具备独立进行电气工程实践和工程设计的能力。

二、学习内容1.电路分析1.1基本电路理论1.2电路分析方法1.3交流电路分析1.4数字电路设计2.电力系统2.1电力系统基础知识2.2电力系统分析与设计2.3电力系统保护与控制2.4电力系统优化与调度3.电机与驱动3.1电机原理与应用3.2电机控制技术3.3电机设计与制造3.4电机故障诊断与维修4.电力电子4.1电力电子器件与电路4.2电力电子调节技术4.3电力电子应用及新技术4.4电力电子系统设计与分析5.数学、物理基础5.1高等数学5.2线性代数与解析几何5.3概率论与数理统计5.4电磁学5.5工程热力学6.计算机基础6.1C语言程序设计6.2数据结构与算法6.3数字信号处理6.4嵌入式系统设计三、学习方法1.理论学习1.1课堂学习:认真听讲,及时复习课本内容,做好笔记。

1.2自主学习:利用图书馆、网络资源等,查阅相关资料,深入理解掌握所学知识。

2.实践训练2.1实验课程:完成实验任务,掌握实验操作技能,理论与实践相结合。

2.2科研训练:参与导师科研团队,积极参与电气工程方向的课题研究。

3.综合训练3.1大作业:按要求完成课程设计、毕业设计等大作业,培养综合分析问题、解决问题的能力。

3.2参与竞赛:参加电气工程相关的学科竞赛,提高专业技能和创新意识。

四、学习计划1.大一1.1电路分析1.2高等数学1.3C语言程序设计1.4实习课程:电路实验2.大二2.1电力系统2.2线性代数与解析几何2.3数据结构与算法2.4实习课程:电力系统实验3.大三3.1电机与驱动3.2概率论与数理统计3.3数字信号处理3.4实习课程:电机控制实验4.大四4.1电力电子4.2工程热力学4.3嵌入式系统设计4.4实习课程:电力电子实验五、学习安排1.每学期定期参加学校组织的学科讲座、学术报告、专业讲座等活动,增强对电气工程专业的了解。

《电路分析基础》课程教案.doc

《电路分析基础》课程教案.doc
教学方式:讲授、讨论、指导或其他讲授法
教学资源
多媒体、板书、音像及其他多媒体课件
授课题目(章、节)
第1章电路的基本概念和定律
1.5基尔霍夫定律
教学目的与要求
理解基尔霍夫电流定律和基尔霍夫电压定律,并能正确应用基 尔霍夫定律求解简单电路。
教学内容和时间安排
授课内容
第1章电路的基木概念和定律
1. 5基尔霍夫定律
教学时间安排:计划2学时
重点和难点
重点:理解欧姆定律及其适用条件,会进行简单电阻电路的计算; 理解和掌握两种理想电源模型的特点。
难点:同上
复习思考题,作业题
P13页1.3—1至1.3 — 5;P18页1.4一1至于1.4-3;练习题
P53页1.4、1.5为作业
教学安排
课型:理论、实验、上机、观摩录像或其他采用理论
复习思考题,作业题
P36页1.6-1至于1.6.5练习题
P56页1.20 1.21为作业
教学安排
课型:理论、实验、上机、观摩录像或其他采用理论
教学方式:讲授、讨论、指导或其他讲授法
教学资源
多媒体、板书、音像及其他多媒体课件
授课题目(章、节)
第1章 电路的基本概念和定律
1.7实际电源的模型及其互换等效
1. 1电路模型
1.1.1实际电路组成与功能
电路的主要功能是实现电能的传输、分配和转换及电信号的 传输、处理和存储等。
1.1.2电路模型
电路模型都是由理想元件构成的、与实际电路相对应的电路 图。通常包括三大基木环节:电源、负载和中间环节。
1.2电路变量
1.2.1电流及其参考方向
1.2.2电压、电动势及参考极性
难点:同上

电路分析第1章

电路分析第1章

第1章 电路的基本概念和定律
练习与思考
1.1-1 结合自己所熟悉的一种家用电器, 谈谈对电路功能的 理解,并举出建立该电器设备的电路模型所需要的理想电路元 件种类。 1.1-2 实验室用的一种滑动式可变电阻器,是将铜线绕在圆 形骨架上,要建立它的电路模型只用理想电感元件行吗? 严格 地讲应该用哪几种理想电路元件?
1.1.1 电路及其功能 电路及其功能 电路是由电路元(器)件按一定要求连接而成,为电流的流 通提供闭合路径的集合体,复杂的电路也常称为网络。 实际应用中的电路种类繁多,用途各异,但按其功能可概 括为两个方面:一是对能量的传送、 转换与分配; 电力系统 中的输电电路就是典型实例。其二是完成电信号的产生、传输、 处理及应用; 手机、 电视机电路是这方面的典型实例。
q I= t
(1 - 2)
第1章 电路的基本概念和定律 虽然规定了电流的实际方向,但在电路问题中,特别是电 路比较复杂时,电流的实际方向往往难以确定,尤其是交流电 路中, 电流的方向随时间变化, 根本无法确定它的实际方向。 为此引入参考方向这一概念。 参考方向可以任意设定, 在电路 中用箭头表示,并且规定,如果电流的参考方向与实际方向一 致, 电流为正值; 反之, 电流为负值, 如图1.2所示。 这样就 可以把电流看成一个代数量了, 它既可以为正, 也可以为负。 由此看来,设定的参考方向是确定电流为正的标准, 因此参考 方向也称为正方向。除了用箭头表示电流的参考方向外,也可 用双下标表示,如Iab 就表示电流的参考方向是从a点指向b点。 当参考方向改变时有Iab=-Iba 。不设定参考方向而谈电流的正负 是没有意义的。
第1章 电路的基本概念和定律
电电电电
a
电电电电 元元
b a

电路分析知识点口诀总结

电路分析知识点口诀总结

电路分析知识点口诀总结第一章电路基础知识1.1 电路的基本概念电路由电源、负载、连接元件组成,是电子设备工作必备。

1.2 电压、电流、电阻欧姆定律要牢记,U=IR永不忘,串并联电路也别忘。

1.3 电流方向约定俗成顺流不搅,电子自由逆流而行。

1.4 电路拓扑结构串并联有各自特点,复杂电路要分析清。

第二章电路分析方法2.1 调用基尔霍夫定律节点电流法、支路电压法,啥时候用取决于电路布局。

2.2 小信号模型极小信号设称大概值,满足简化电路分析任务。

2.3 非线性电路分析戴维南定理和叠加定理能相助,不要忘。

第三章直流电路分析3.1 直流电路元件特性电流与电压线性关系,电阻等效电路相熟悉。

3.2 直流电路分析方法节点电流法最佳用,支路电压法也可选。

3.3 戴维南定理应用探究电路等效电阻,简单电路有用大家记。

3.4 叠加定理分析非线性电阻方便定,多次线性重要渐渐明。

第四章交流电路分析4.1 交流电路分析概述相位、频率、幅值要记牢,交流电路特别之处。

4.2 交流电路元件特性电感、电容、交流电阻巧相结合,频率影响特性改变参。

4.3 交流电路分析方法相量分析最佳选,频域分析要多加油。

4.4 交流电路的复数表示离散时域总相量,连续频域分频率。

第五章电路中的功率及能量5.1 电路中的功率有源元件发电,负载元件吸收,功率计算必先知。

5.2 交流电路的有功功率电压、电流同相不管怎样,有功功率等于电压与电流的积。

5.3 交流电路的无功功率电压、电流反相太正,有功功率进传出设定。

5.4 电路中的能量电容电感能存能量,电压电流物理量。

第六章电路中的频率响应6.1 电路的频率特性传输函数表示频域,频率响应电路特性。

6.2 电路的频率响应分析通频带宽带频率区间,截止频率临界值。

6.3 电路的频率特性曲线低通、带通、高通曲线善图示,频率响应了然于心。

6.4 负载影响频率响应改变电路负载会影响频率响应,电路设计中要特别考虑。

总结口诀:电路基本概念要牢记,电压电流电阻永不忘。

《电路分析基础第三版》-第1章电路分析的电子教案

《电路分析基础第三版》-第1章电路分析的电子教案

运算放大器 21
作为理想运算放大器模型,具 有以下条件: 1. 即从输入端看进去元件相当于开路, 称为“虚断”。 2. 开环电压增益 A=∞(模型中的 A 改为 ∞),即两输入端之间相当于“短路”, 称为“虚短”。 “虚断”、“虚短”是分析含理想运 算放大器电路的基本依据。
22
1.8 等效电路的概念
6
1.1.2
实际电路的组成
下图1-1是我们日常生活中的手电筒电路,就是一 个最简单的实际电路。它由3部分组成:(1)是提
供电能的能源,简称电源;(2)是用电装置,统称
其为负载,它将电能转换为其他形式的能量; (3)是连接电源与负
s
1
3
图 1-1 手电筒电路 7
载传输电能的金属导
线,简称导线。电源、
1
2 a 3
i3
4
i4
图1-9 说明KCL
17
1.6.2 基尔霍夫电压定律(KVL)
KVL的基本内容是:对于任何集总电路中的任 一回路,在任一瞬间,沿回路的各支路电压的代数 和为零。
如图1-10,从a点开始按 a 顺时针方向(也可按逆时针方向) _ 绕行一周,有: u4 4 u1- u2- u3+ u4=0 + 当绕行方向与电压参考方向 一致(从正极到负极),电压 d 为正,反之为负。
11电路和电路模型1315电压源和电流源16基尔霍夫定律12电流和电压的参考方向18等效电路的概念19电阻的串联与并联110含独立源电路的等效化简111含受控源电路的等效化简112平衡电桥电阻y形连接与三角形连接的等效变换17受控源与运算放大器支路上电流电压的参考方向及电流电压间关联参考方向的概念
21世纪高职高专新概念教材
29
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p1 R1i12 12 4 2 W 192W
2 p 2 R 2 i 2 8 2 2 W 32W
p3 p4 p5 p6
2 R3 i3 2 R4 i4 2 R5 i5 2 R6 i6
6 2 W 24W
2
4 12 W 4 W 3 1 2 W 3W 1 12 W 1W
其电压无论为何值,电流恒等于零的二端电阻,称为 开路。开路的特性曲线与u轴重合,是R=∞或G =0的特殊
情况[图(a)]。
其电流无论为何值,电压恒等于零的二端电阻,称为 短路。短路的特性曲线与i轴重合,是 R=0 或G =∞的特殊 情况[图(b)]。
线性时不变电阻吸收的功率为
p ui Ri Gu
三、线性电阻元件与电阻器
i Gu
式中R 称为电阻,其 SI单位为欧[姆](Ω) G 称为电导,其 SI单位为西[门子](S)
用晶体管特性图示器测 量二端电阻器的电压电 流关系。
实验表明:
在低频工作条件下, 电阻器的电压电流关系是 ui平面上通过坐标原点的 一条直线。
线性电阻有两种值得注意的特殊情况——开路和短路。
(a)开路的电压电流关系曲线。 (b)短路的电压电流关系曲线。
2
2
当 R>0 (或G >0)时,p0,这表明正电阻总是吸收功率,
不可能发出功率。当R<0 (或G<0)时,p0,这表明负电阻 可以发出功率。
例l-2 图示电路中,已知R1=12, R2=8, R3=6, R4=4, R5=3, R6=1 和i6=1A。 试求 a、b、c、d各点的电位和各电阻的吸收功率。
实验表明:
在低频工作条件下, 晶体二极管的电压电流关 系是ui平面上通过坐标原 点的一条曲线。
二、线性电阻
线性时不变电阻的特性曲线是通过u-i平面(或i-u平面) 原点的一条不随时间变化的直线。如图所示。
线性时不变电阻的电压电流关系由欧姆定律描述,其 数学表达式为
u Ri

(1 15)
(1 16)
电阻元件一般定义:
如果一个二端元件在任一时刻的电压u与其电流 i 的关
系,由u-i平面上一条曲线确定,则此二端元件称为二端电
阻元件,其数学表达式为
f (u, i ) 0
(1 14 )
电阻特性曲线表明了电阻电压与电流间的约束关系
(Voltage Current Relationship,简称为VCR)。
电阻的分类:
1. 线性电阻与非线性电阻
其特性曲线为通过坐标原点直线的电阻,称为线性电阻;否 则称为非线性电阻。 2. 时变电阻与时不变电阻 其特性曲线随时间变化的电阻,称为时变电阻;否则称为时 不变电阻或定常电阻。
a) 线性时不变电阻 c)非线性时不变电阻
b)线性时变电阻 d)非线性时变电阻
用晶体管特性图示器测 量晶体二极管的电压电 流关系。
§l-4 电阻元件
集总参数电路(模型)由电路元件连接而成。电路元件 是为建立实际电气器件的模型而提出的一种理想元件。 按电路元件与外电路连接端点的数目,电路元件可分 为二端元件、三端元件、四端元件等。
(a) 二端元件
(b) 三端元件
(c) 四端元件
常用的各种二端电阻器件
晶体二极管
电阻器
一二端电阻
v d u de R 6 i 6 1 1A 1V i 5 i 6 1A v c u ce u cd u de R5 i 5 v d 3 1A 1V 4V i 3 i 4 i 5 u ce / R 4 i 5 4V / 4 1A 2A v b u bc u ce R3 i 3 v c 6 2A 4V 16V i1 i 2 i 3 u be / R 2 i 3 16V / 8 2A 4A v a u ab u be R1i1 v b 12 4A 16V 64V
相关文档
最新文档