超声波测距仪设计

合集下载

基于单片机的超声波测距仪的设计

基于单片机的超声波测距仪的设计

基于单片机的超声波测距仪的设计超声波测距仪是一种常见的测量距离的仪器,它使用超声波的反射原理来测量被测物体与测距仪之间的距离。

基于单片机的超声波测距仪可以实现更精确、更灵活的测距功能。

本文将详细介绍基于单片机的超声波测距仪的设计。

首先,我们需要选择合适的硬件平台。

单片机作为核心芯片,可以选择AT89C51或者STM32等。

超声波传感器可以选择HC-SR04或者JSN-SR04T等。

此外,我们还需要一块LCD显示屏用于显示测距结果,以及一些电路连接线等。

接下来,我们需要设计电路部分。

首先,将超声波传感器的VCC引脚连接到单片机的5V引脚,将GND引脚连接到单片机的GND引脚。

然后,将超声波传感器的Trig引脚连接到单片机的一些IO口,将Echo引脚连接到单片机的另一个IO口。

最后,将LCD的引脚连接到单片机的相应IO 口,至此电路部分完成。

接下来,我们需要编写相应的软件程序。

首先,我们需要初始化单片机的IO口,将Trig引脚设置为输出模式,Echo引脚设置为输入模式。

然后,我们需要设置中断,以便能够检测到Echo引脚电平的变化。

当超声波传感器发出一次超声波后,Echo引脚将会有一次脉冲输出,该脉冲的宽度与被测物体与测距仪之间的距离成正比。

我们可以通过测量脉冲的宽度来计算出距离。

在进行测距之前,我们需要先发出一段超声波。

通过设置Trig引脚为高电平,持续10us,然后将其设为低电平,即可发出一段超声波。

接下来,我们需要在中断服务函数中记录下Echo引脚电平变化的时间,即可以得到Echo引脚电平变化的时间间隔。

根据声速的传播速度,我们可以将时间间隔转换为距离。

最后,我们将测量到的距离结果显示在LCD屏幕上。

通过调用LCD驱动程序中的相应函数,我们可以将距离结果以字符串的形式显示在LCD屏幕上。

综上所述,基于单片机的超声波测距仪的设计包括硬件电路的设计和软件程序的编写。

硬件电路主要包括超声波传感器、单片机、LCD显示屏等的连接,软件程序则主要包括初始化IO口、设置中断、发出超声波、测量脉冲宽度、计算距离和显示结果等的功能。

毕业设计方案超声波测距仪的设计方案

毕业设计方案超声波测距仪的设计方案

毕业设计方案超声波测距仪的设计方案1. 引言超声波测距仪是一种常用的测量设备,可以通过发送超声波信号并接收回波来测量距离。

本文将介绍一种基于超声波的测距仪设计方案,用于毕业设计项目。

2. 设计目标本设计方案的主要目标是设计一种精确、稳定、成本效益高的超声波测距仪。

具体而言,设计要求如下:- 测距范围:至少10米- 测量精度:在0.5%以内- 响应时间:小于100毫秒- 成本:尽可能低廉- 可靠性:能够在不同环境条件下稳定工作3. 设计原理超声波测距仪的工作原理是利用超声波在空气中传播速度恒定的特性,通过测量超声波的往返时间来计算距离。

一般来说,超声波测距仪由发射模块和接收模块组成。

发射模块:发射模块用于发送超声波信号,通常由脉冲发生器和超声波发射器组成。

脉冲发生器用于产生短暂的高频脉冲信号,驱动超声波发射器将信号转换成超声波信号并发射出去。

接收模块:接收模块用于接收反射回来的超声波信号,并将其转换成电信号。

接收模块一般由超声波接收器和信号处理电路组成。

超声波接收器将接收到的超声波信号转换成电信号,并通过信号处理电路进行放大、滤波和波形整形等处理,得到可用的测量信号。

距离计算:通过测量超声波的往返时间,可以计算出距离。

超声波在空气中的传播速度约为340米/秒,因此距离可以通过距离等于速度乘以时间的公式来计算。

4. 硬件设计硬件设计是实现超声波测距仪的关键。

以下是硬件设计方案的主要组成部分:超声波发射器和接收器:选择适当的超声波发射器和接收器是关键。

一般来说,发射器和接收器的频率应该相同,常见的频率有40kHz和50kHz。

此外,发射器和接收器需要具有相匹配的电特性,以确保信号的传输和接收的准确性。

脉冲发生器:脉冲发生器的设计应考虑到发射模块的需求,需要产生高频、短暂的脉冲信号。

常用的脉冲发生器电路有多谐振荡电路和555定时器电路等。

信号处理电路:接收到的超声波信号需要进行处理,以便得到可用的测量信号。

实训报告超声波测距仪

实训报告超声波测距仪

一、实训目的本次实训旨在通过实际操作,掌握超声波测距仪的设计、制作和调试方法,了解超声波测距的原理和特点,提高动手能力和创新思维。

二、实训内容1. 超声波测距原理超声波测距仪是利用超声波的传播速度和反射原理进行距离测量的设备。

当超声波发射器发射超声波信号后,遇到障碍物会反射回来,接收器接收反射信号,通过计算超声波往返时间,即可得到距离。

2. 超声波测距仪设计(1)硬件设计本次实训所设计的超声波测距仪主要由以下模块组成:1)超声波发射模块:采用超声波发射器产生40kHz的超声波信号。

2)超声波接收模块:采用超声波接收器接收反射回来的超声波信号。

3)单片机模块:采用AT89S51单片机作为主控制器,负责控制超声波发射、接收、数据处理和显示。

4)显示模块:采用四位共阳数码管显示距离。

5)电源模块:采用稳压电源为整个系统供电。

(2)软件设计1)初始化:设置单片机工作状态,初始化各个模块。

2)超声波发射:单片机控制超声波发射器发射超声波信号。

3)超声波接收:单片机控制超声波接收器接收反射回来的超声波信号。

4)数据处理:计算超声波往返时间,根据超声波在空气中的传播速度,计算出距离。

5)显示:将计算出的距离显示在数码管上。

3. 超声波测距仪调试(1)硬件调试:检查各个模块的连接是否正确,确保电路正常工作。

(2)软件调试:编写程序,调试单片机控制程序,使超声波测距仪能够正常工作。

三、实训过程1. 硬件制作(1)按照电路图连接各个模块,焊接电路板。

(2)组装超声波发射器、接收器和数码管。

2. 软件编写(1)根据超声波测距原理,编写程序实现超声波发射、接收、数据处理和显示功能。

(2)调试程序,确保超声波测距仪能够正常工作。

3. 调试与测试(1)检查电路连接是否正确,确保电路正常工作。

(2)调试单片机控制程序,使超声波测距仪能够正常工作。

(3)进行实际测量,测试超声波测距仪的测量精度和稳定性。

四、实训结果与分析1. 测量精度通过实际测量,超声波测距仪的测量精度在1厘米以内,满足日常使用要求。

超声波测距仪的设计

超声波测距仪的设计

1绪论1.1 超声波测距原理测量距离的方法有很多种,短距离的可以用米尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。

因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,系统的测量精度理论上可以达到毫米级。

超声波测距的原理一般采用渡越时间法TOF (time of flight ),也可以称为回波探测法,如图1所示。

超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在介质中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

根据传声介质的不同,可分为液介式、气介式和固介式三种。

根据所用探头的工作方式,又可分为自发自收单探头方式和一发一收双探头方式。

而倒车雷达一般是装在车尾,超声波在空气中传播,超声波在空气中(20℃)的传播速度为340m/s(实际速度为344m/s 这里取整数),根据计时器记录的时间就可以计算出发射点距障碍物的距离,公式340*/2S t 。

图1-1 超声波测距原理由于超声波也是一种声波,其声速c 与温度有关,表1列出了几种不同温度下的声速。

在使用时,如果温度变化不大,则可认为声速是基本不变的。

如果测距精度要求很高,则应通过温度补偿的方法加以校正。

表1-1 声速与温度的关系 温度(℃) -30 -20 -10 0 10 20 30 100 声速(m/s)3133193253233383443493861.2整体设计示意图整体设计示意图如图1-2所示图1-2整体设计示意图根据总体设计图,可以设想根据超声波发射与接收器模块在工作时发射超声波到接收反射回的回波后,并将发射超声波与接收回波的状态信号传输到单片机,再经过单片机内部程序的处理,并将计算结果以数据的形式由单片机I/O 接口传输到LCD 液晶显示屏并显示出测量结果的数据,同时由软件控制测量距离在某一临界值时单片机会向报警电路输出报警信号,使报警电路正常工作。

再结合单片机周围控制电路和下载供电电路,实现对单片机的程序的编译写入和修改。

超声波测距仪的设计与调试-接收部分PPT培训课件

超声波测距仪的设计与调试-接收部分PPT培训课件
技术难点
如何实现高精度的测距,以及在多障碍物环境下如何准确判断障碍物的 位置和距离。
实际应用案例二
案例名称
机器人避障系统
描述
在机器人避障系统中,通过安装超声波测距仪,机器人能够实时感 知周围环境,检测障碍物的距离,自动调整行进路线,实现自主避 障。
技术难点
如何处理复杂环境下的噪声干扰,以及如何提高测距的实时性和准确 性。
接收部分的软件设计
数据采集
编写软件程序,通过ADC (模数转换器)实时采集 接收到的超声波信号数据。
信号处理算法
根据实际情况,设计适当 的信号处理算法,如滤波、 去噪、特征提取等,以提 高测距精度。
数据输出
将处理后的数据输出到显 示界面或通过串口发送到 上位机进行进一步处理。
03 超声波测距仪接收部分调 试
实际应用案例三
案例名称
管道检测系统
描述
在管道检测系统中,通过将超声波测距仪搭载在管道检测 设备上,能够实时检测管道内部的状况,如管道的腐蚀程 度、堵塞情况等。
技术难点
如何克服管道内部的复杂环境,如液体、气体等对超声波 传播的影响,以及如何提高测距的精度和稳定性。
THANKS FOR WATCHING
此外,随着物联网和智能传感器技术的发展,超声波测距仪 在智能家居、智能安防等领域的应用也越来越广泛。
超声波测距仪的发展趋势
未来,随着材料科学、微电子技术和算法的进步,超声波测距仪将朝着 更小、更轻、更准确的方向发展。
新型材料和制造工艺的应用将有助于减小测距仪的体积和重量,提高其 便携性和灵活性。同时,随着算法的改进和数据处理能力的提升,超声
等措施。
测量误差大
总结词
测量误差大是超声波测距仪常见的问 题之一,表现为测量结果与实际距离 存在较大偏差。

超声波测距仪的设计方案

超声波测距仪的设计方案

软件算法优化
实验结果有效
采用时间戳和温度补偿的方法,提高了超 声波测距的精度和稳定性。
经过实验验证,该超声波测距仪的测量误 差在3mm以内,满足设计要求。
研究不足与展望
实验环境限制 硬件性能提升 软件算法优化 应用领域扩展
本次实验主要在室内环境下进行,对于室外复杂环境下的测量 精度和稳定性还需要进一步验证。
[2] 王晓华, 钱燕. 基于单片机的超声波测距 仪设计[J]. 仪表技术与传感器, 2020,(04): 56-60.
[3] 张志超, 王琳. 嵌入式超声波测距 仪的设计与实现[J]. 仪表技术与传感 器, 2021,(01): 78-82.
THANKS 感谢观看
可以考虑采用更高性能的单片机和传感器,以提高超声波测距 的精度和响应速度。
可以进一步优化软件算法,例如加入目标识别和跟踪功能,提 高超声波测距的应用范围。
超声波测距技术在机器人避障、自动驾驶、安防等领域都有广 泛的应用前景,可以进一步拓展应用领域。
07 参考文献
参考文献
[1] 张涛, 王超. 超声波测距仪的设计与 实现[J]. 电子测量技术, 2019, 42(11): 105-109.
计算距离
通过测量超声波从发射到 接收的时间,计算出距离 。时间乘以声速得到距离 。
数据处理及存储
数据处理
对采集到的数据进行处理,如滤波、去噪等,以提高测量精度。
数据存储
将处理后的数据存储到存储器中,方便后续分析和处理。
人机交互界面设计
显示测量结果
通过液晶显示屏或LED显示屏显 示测量结果。
按键输入
研究超声波测距仪的设计方案 有助于提高测量精度和可靠性 ,推动相关领域的发展。

超声波测距仪设计

超声波测距仪设计

超声波测距仪设计超声波测距仪是一种常用的非接触式测距设备,可用于测量物体的距离、尺寸、形状等。

下面是一种基于Arduino的超声波测距仪设计方案。

材料清单:- Arduino UNO 控制板- HC-SR04 超声波模块- 电位器(用于调节灵敏度)- 面包板- 杜邦线步骤:1. 将HC-SR04模块连接到Arduino上。

HC-SR04模块有4个针脚,分别是VCC、Trig、Echo、GND,将VCC与Arduino的5V针脚相连,GND与Arduino的GND相连,Trig与Arduino的数字针脚9相连,Echo与Arduino的数字针脚10相连。

2. 将电位器连接到ModV+和ModV-针脚上,再连接到VCC和GND针脚上。

调节电位器可以改变超声波模块的灵敏度。

3. 将面包板插入Arduino上,将HC-SR04和电位器插入到面包板上,然后连接所有针脚。

4. 编写Arduino代码。

以下是一个简单的示例代码(距离单位为cm):```c++const int trigPin = 9;const int echoPin = 10;void setup() {Serial.begin(9600); // 初始化串口,用于输出距离。

pinMode(trigPin, OUTPUT);pinMode(echoPin, INPUT);}void loop() {digitalWrite(trigPin, LOW);delayMicroseconds(2);digitalWrite(trigPin, HIGH);delayMicroseconds(5);digitalWrite(trigPin, LOW);long duration = pulseIn(echoPin, HIGH);int distance = duration / 58; // 将毫秒转换为厘米。

Serial.println(distance); // 输出距离。

超声波测距仪的设计与制作

超声波测距仪的设计与制作
下一页 返回
7.1 项目描述
• 由于超声测距是一种非接触检测技术, 不受光线、被测对象颜色等 影响, 较其他仪器更卫生, 更耐潮湿、粉尘、高温、腐蚀气体等恶 劣环境, 具有少维护、不污染、高可靠、长寿命等特点, 因此广泛 应用于纸业、矿业、电厂、化工业、水处理厂、农业用水、环保检测、 食品、水文、空间定位、公路限高等行业中。可在不同环境中进行距 离准确度在线标定, 可进行差值设定, 可直接用于水、酒、糖、饮 料等液位或料位高度。
上一页 返回
2.2常用电子仪器的介绍与使用
• 2. 2. 1示波器 • 示波器是一种用来观察各种周期性变化的电压和电流波形的电子仪
器.可用来测电压或电流的幅度、频率、相位、调制度及脉冲信号的 各种电参量。它是电工、电子实验中必不可少的常用电子测量仪器。
下一页 返回
2.2常用电子仪器的介绍与使用
• 1.示波器的种类 • 示波器的种类较多.主要有通用示波器和专用示波器两大类。按不
• (1)信号发生器:通常使用的信号发生器有高频和低频正弦波信号发 生器、脉冲发生器、函数发生器、噪声发生器等。
下一页 返回
2.1电子仪器的分类
• (2)电压表:在电子线路实验中一般使用电子电压表、数字电压表等。 元器件参数测量仪器包括电桥、Q表、晶体管特性参数图示仪、集成 电路测试仪等。
• (3)示波器:包括通用示波器、多踪示波器等。 • (4)频率、相位测量仪器:包括通用电子计数器、数字式频率计、数
上一页 下一页 返回
7.2 理论知识
• 测量距离实际是测量发射脉冲与回波脉冲之间的时间差, 因电磁波 以光速传播, 据此就能ห้องสมุดไป่ตู้算成与目标的精确距离。
• 雷达测距系统框图如图7-1 所示。 • 对于车载雷达, 一般选用60GHz、120GHz、180GH
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接收、放大模块型号:CX20106A
• 超声波传感器将收到的返回超声波转成微弱电信 号,经CX20106A放大、整形后,输出负脉冲电 压。
工作原理
• 超声波发射器向某一方向发射超声波,在启动发射电路的 同时启动单片机内部的定时器T0,利用定时器的计数功能 记录超声波发射的时间和收到反射波的时间。超声波在空
超声波测距仪
• 外形图(瞄准装置,电源开关,液晶显示器 等) • 原理框图
• 接收、放大模块型号
• 工作原理 • 超声波测房间体积仪原理 • 使用说明
外形图
原理框图
超声波接收 放大电路 锁相环检 波电路定时器ຫໍສະໝຸດ 单片机控制无线发射器
超声波发射器
放大电路
液晶 显示 无线 接收 单片机控制
语音 播报
气中传播,途中碰到障碍物就立即返回来,超声波接收器
收到反射波就立即停止计时。超声波在空气中的传播速度 为340m/s,根据计时器记录的时间t,就可以计算出发射 点距障碍物的距离(d)

d=s/2=(c×t)/2
测房间体积原理
• 超声波在空气中传播,途中碰到墙就立即返回来 ,测量出各墙之间的距离得出房间的长宽高, • V=LwH
使用说明
• 华仪MS6450超声波测距仪
相关文档
最新文档